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Peripheral artery disease (PAD) is a serious public health issue, characterized by circulation disorder of the lower extreme that
reduces the physical activity of the lower extremity muscle. The artery narrowed by atherosclerotic lesions initiates limb ischemia.
In the progression of treatment, reperfusion injury is still inevitable. Ischemia-reperfusion injury induced by PAD is responsible
for hypoxia and nutrient deficiency. PAD triggers hindlimb ischemia and reperfusion (I/R) cycles through various mechanisms,
mainly including mitochondrial dysfunction and inflammation. Alternatively, mitochondrial dysfunction plays a central role. The
I/R injury may cause cells’ injury and even death. However, the mechanism of I/R injury and the way of cell damage or death are
still unclear. We review the pathophysiology of I/R injury, which is majorly about mitochondrial dysfunction. Then, we focus on
the cell damage and death during I/R injury. Further comprehension of the progress of I/R will help identify biomarkers for
diagnosis and therapeutic targets to PAD. In addition, traditional Chinese medicine has played an important role in the treatment

of I/R injury, and we will make a brief introduction.

1. Introduction

Peripheral artery disease (PAD) is defined as the obstructing
or narrowing of the arteries of low extremities due to ath-
erosclerotic plaque, subsequently restricting or blocking
blood flow to the affected lower extreme. The PAD is
characterized by the reduced oxygen and energy delivery to
lower limbs, resulting in exertional leg pain that limits the
ability of walking, which would be resolved through rest. If
limb ischemia is severe, it may cause pain on rest or am-
putation [1]. Since atherosclerosis is a systemic disease, a
portion of patients with PAD will have heart or cerebro-
vascular disease [2]. The most risk factors of PAD are
consistency with myocardial infarction and stroke, which
indicated that PAD is an independent risk factor [3, 4].
Patients with short-distance claudication or severe ischemia

undergo revascularization to restore blood, which prevents
limb pain at rest and limb amputation. Nevertheless, PAD is
still a serious health hazard problem with significant mor-
bidity and mortality. Further understanding of physiopa-
thology needs further research to improve therapeutic
strategies.

Ischemia-reperfusion (I/R) is characterized as the re-
duction of blood supply to the tissue or organ, which
subsequently leads to vascular restoration and concomitant
reoxygenation of downstream tissue [5]. The restriction of
oxygen supply leads to insufficient metabolic supply, causing
tissue hypoxia. Contrary to expectations, restoration of
blood and oxygen is associated with aggravation of injury
and promotion of inflammation. The pathophysiology of I/R
injury is various (Figure 1). Mitochondrial dysfunction can
reduce energy supply and oxidative stress, and inflammation
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FiGure 1: The pathogenesis of PAD. PAD is characterized by reduced oxygen and energy delivery to lower limbs, and undergoing
revascularization would restore blood. However, this surgery would induce I/R injury. The mechanisms of I/R injury are multifactor, mainly

consisting of mitochondrial dysfunction and inflammation.

may result in intermittent claudication, limb pain at rest, and
amputation. Reactive oxygen species (ROS) derived radicals
such as superoxide anion (O, "), hydrogen peroxide (H,0,),
hydroxyl radical (-OH), hypochlorous acid (HOCI), and
nitric oxide-derived peroxynitrite. ROS are potent oxidizing
property, causing cell membrane damage by lipid perox-
idation, which is responsible for local and systemic damage
caused by I/R injury. In addition, inflammation plays an
important role in I/R injury. Depending on the degree and
the duration of ischemia of the affected organ, it can trigger
remote complications such as the heart and kidney [6, 7].

Traditional Chinese medicine (TCM) has been used in
the treatment of various diseases for more than 2000 years.
Several studies have shown that TCM can be used in the
treatment of ischemia and I/R injury through different
mechanisms, including regulation of energy metabolism,
inhibition of antioxidants, and reduction of inflammatory
cytokines. This review covers the main mechanisms of
skeletal I/R injury, and the application of TCM in I/R
therapy is introduced, which may provide a theoretical basis
and novel idea for dealing with I/R injury of PAD.

2. Mitochondrial Dysfunction

Mitochondria participate in multiple physiological func-
tions, including energy metabolism, Ca** signal, cell dif-
ferentiation, and apoptosis [8-10]. During recent years,
many studies have described the mitochondrial functions in
I/R injury. The reduction of blood supply causes insuffi-
ciency of oxygen and affects the function of the electron
transport chain. Skeletal muscle is energy dependent, mainly
provided by mitochondrial metabolism. With increased
ATP turnover, the skeletal muscle transforms from rest to

activity, and the substrates of energy production can be
oxidized [11]. The I/R injury of the lower limb affects the
local muscle environment through various processes,
resulting in the reduction of muscle function . The sensi-
bilities of different muscles are discrepant due to their an-
tioxidant capacities [12, 13]. PAD-induced I/R injury causes
myopathic and neuropathic changes [14], which may also
impair the function of mitochondria [15, 16].

ATP is mainly produced by the oxidative phosphorlation
process in resting myocyte. Sestrin2 functions as a scaffold
protein, which interacts with OXPHOS components to keep
mitochondrial integrity under I/R stress [17]. The producing
substrates of energy include phosphate compounds, glucose,
glycogen, and lipids in mitochondria. In addition, mito-
chondria are the major source of ROS. Both complexes I and
III of the mitochondrial respiratory chain can produce ROS.
The main reactive species are superoxide anion and nitric
oxide (NO), subsequently forming secondary reactive spe-
cies, such as H,O, and peroxynitrite [18]. Therefore, the
mitochondria play an important part in the skeletal muscle
fiber physiology, both in energetic metabolism for energy
supply and cell signaling.

Ischemia in the lower extremity restricts the nutrient and
oxygen supply, leading to a mass of ionic and metabolic
changes. Since oxygen is lacking, mitochondrial OXPHOS
can be affected, and the potential of the mitochondrial
membrane decreased [19]. The activities of the electron
transport chain (complexes I, II, and IV) are changed during
ischemia [20, 21], which lead to reduced synthesis of ATP
and elevation in concentrations of inorganic phosphate and
adenine nucleotide [22, 23]. In the progression of ischemia,
ATP is catabolized into xanthine and hypoxanthine; sub-
sequently, the substrates conduce to ROS production during
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the progression of reperfusion [22, 24]. For continuously
providing energy, anaerobic metabolism and phosphocre-
atine pathways are activated to generate ATP. ATP, phos-
phocreatine, and glycogen exhaust within 7 hours, which
correlates with skeletal muscle death [23, 25-28]. These
changes of metabolism cause accumulation of H', nico-
tinamide adenine dinucleotide (NAD), and lactate, which
make extra- and intracellular acidified. [6, 29-32]. Then, the
Na™/H" exchanger is activated to recover H'. Various ionic
exchangers of the sarcolemma are restrained by low ATP,
including Na*-K*-ATPases and Ca®*-ATPases. And Na®-
Ca®* antiporters are reversed to recover the Na* concen-
tration, subsequently resulting in the accumulated con-
centration of Ca** [6, 33]. The accumulation of Ca** causes
damage of cell integrity by degrading lysozymes, proteases,
and nucleases and induces inflaimmation and cell death
through necrosis and apoptosis [34, 35].

ROS are one of the main factors responsible for local and
systemic damage in the progress of I/R injury. ROS include
0,7, H,0,, -OH, HOCI, and NO-derived peroxynitrite.
During the progress of ischemia, ROS are mainly produced
by complexes I and III of the mitochondrial respiratory
chain [32, 36, 37]. Several enzymes play an important role in
the production of ROS, such as the xanthine oxidase (XO)
system, NADPH oxidase (NOX) system, and nitric oxide
synthase (NOS) system.

XO system includes XO and xanthine dehydrogenase
(XDH). XO plays a primary role in ROS production, which
localizes in macrovascular endothelial cells of the skeletal
muscle. In the ischemic state, XDH is converted into XO
because of the low ATP level, and XO may induce the
production of ROS during the conversion of hypoxanthine
to uric acid. NOX enzymes promote the production of
superoxide and hydrogen peroxide, and NOS uncoupling
leads to the generation of ROS; both processes may induce
I/R injury. These ROS damage membranes, including those
of the mitochondria. Damaged mitochondrial membranes
lead to the release of caspases and activation of apoptosis. In
addition, hypoxia increased the activity of NOS forming NO,
which reacts with superoxide to give peroxynitrite that
damages nucleic acids and lipids. Meanwhile, defense sys-
tems can reduce ROS-induced damage, which include cat-
alase, glutathione peroxidase (GPx), superoxide dismutase
(SOD), glutathione, coenzyme Q, and vitamin E. However,
in the PAD muscle, matrix SOD has been demonstrated to
be deficient, which is the initial line of ROS defense in
mitochondria.

Sufficient oxygen supply in the reperfusion progression
is the primary reason of myocyte death via generating ex-
cessive quantities of ROS. Production of ROS in mito-
chondria is a self-amplified process. This process is hard to
eliminate as the antioxidant defenses are also changed by
ischemia. Meanwhile, ischemia and reperfusion can further
affect the activity of mitochondrial complexes I, II, III, and
IV, which affects the membrane channel and increases cy-
tosolic Ca®* concentration [24, 37, 38]. Elevated Ca**
concentration stimulates proteases and phospholipases,
which affect membrane receptors, ion channels, and en-
zymes, leading to cell membrane degradation and decreasing

cell survival rate [39, 40]. Furthermore, osmotically active
molecules accumulate and recover in cells generating an
osmotic gradient within intra- and extracellular environ-
ments, which causes cells to water uptake, swelling, and
break up [23]. It was reported that improving mitochondrial
quality control is critical to improve the effectiveness of
current treatments in PAD such as exercise [41]. Therefore,
alleviation of oxidative stress may be a useful strategy to deal
with I/R injury. And inhibition of the XO system, NOX
system, or NOS system may be a feasible method. In ad-
dition, increasing endogenous antioxidants can directly
regulate ROS, which may alleviate I/R injury.

In order to maintain normal physiological function,
mitochondria are constantly changing dynamically, which is
called mitochondrial dynamics. Mitochondria dynamics
involves mitochondrial fusion, fission, and autophagy,
which plays an important role in maintaining cellular
physiological function and hemostasis. Studies indicated
that mitochondrial dynamics changed during I/R injury.
Mitochondrial fusion helps mitigate stress by mixing par-
tially damaged mitochondria. And fission is needful to create
new mitochondria. However, during overloaded cellular
stress in some diseases, including I/R injury, fission may
facilitate apoptosis [42].

The mitochondrial permeability transition pore (mPTP)
is located in the inner mitochondrial membrane. The mPTP
is a nonselective multiprotein channel, which can be reg-
ulated by various cell factors, such as ROS, ATP, inorganic
phosphate, pH, Ca**, and membrane potential. The bio-
chemical changes during I/R injury can turn up the mPTP.
The persistent mPTP opening deregulates the release of
matrix Ca’*, restricts OXPHOS, swells the matrix, and
eventually ruptures the outer membrane by the release of
apoptotic proteins and cell death. Meanwhile, the opening of
mPTP can promote the production of ROS.

3. Inflammation

I/R injury is associated with the activation of inflammation
and immune system. The characteristic of reperfusion injury
is immune responses, including natural antibody recognition
of neoantigens and activation of the complement system. I/R
induced by PAD occurs in a sterile environment, which has
been termed sterile inflammation. Sterile inflammtion shares
similar response to those ivoked by microorganism.. The
sterile immune response, through pattern recognition mol-
ecules such as toll-like receptors (TLRs), activates immune
cells. Ligand binding to TLRs activates downstream signaling
pathways, subsequently inducing the generation of proin-
flammatory cytokines and chemokines [43]. During I/R, with
the cell damage and death, endogenous molecules can activate
these receptors. And ligands are termed damage-associated
molecular patterns (DAMPs). DAMPs are normally located in
intracellular, they will release to extracellular at the time of
tissue damage [44, 45]. The function of DAMPs is that they
activate immune response, restrict harmful immune response,
and promote tissue integrity [46, 47]. TLR4 is one of the
famous pattern recognition receptors, which mediates in-
flammation through its activation by lipopolysaccharide.



Oxidative stress can enhance the activation of TLR4 [48].
Deletion of TLR4 is hyporesponsive to lipopolysaccharide
[49]. Antagonists for TLR4 or regulators which reduce TLR4
expression may be a useful treatment.

During I/R, accumulation of inflammatory cells has been
found. These inflammatory cells include monocytes, den-
dritic cells, and granulocytes [50-53]. The role of inflam-
matory cells is not fully studied. They may activate
inflammation and accelerate tissue injury or restrict the
recovery of injury [54].

The benefited function of inflammatory cells depends on
their production. For example, dendritic cells may produce
inflammatory cytokine interleukin-10 (IL-10) [55, 56]. They
can downregulate the expression of tumor necrosis factor-«
(TNF-a), IL-6, and ROS. Nearly, all inflammatory cells
express NADPH oxidase contributing to format ROS and
peroxynitrite. Peroxynitrite may induce oxidative DNA
injury and activate nuclear enzyme poly (ADP-ribose) po-
lymerase-1 (RARP-1). Granulocytes are involved in tissue
repair. Howerver, if they are accumulated enough, they may
lead to uncontrolled inflammation and tissue injury [57]. In
addition, I/R injury inducesadaptive immune response,
which involves various T lymphocytes. The function of
T lymphocytes needs further research in PAD-induced I/R.

The complement system is a biological cascade and pro-
motes clear pathogens from the organism. It acts as an immune
surveillance system, which can discriminate healthy host tissue,
apoptotic cells, foreign intruders, and cellular debris [58]. In the
progress of I/R injury, the complement system is activated. It
was confirmed that ischemia upregulates the expression of the
antigen on cellar surfaces, which binds to the IgM natural
antibody. Natural antibodies are a major component of B1 cells,
which produce IgM and IgG [59]. Antigen-antibody complex
causes C1 binding, complement activation, and formation of
C3a and C3b. Subsequently, C3b activates a complement
cascade causing to form a membrane attack complex (MAC).
The MAC can stimulate macrophages to release prostaglandin
E2, and neutrophils release ROS, IL-1, etc [59-61]. Studies
showed that inhibiting the component of the complement could
be an effective treatment of I/R injury, but it needs further
verification [62-64].

Platelet aggregated excessively and platelet-derived
mediators aggravate injury during I/R. Endothelial inter-
actions activate platelets [65]. Subsequently, the platelets
transport to the sites of injury. In addition, I/R promotes
coagulation [17]. It was reported that several anticoagulants
can inhibit clot formation [66, 67], such as tissue factor
inhibitor, protein C, and antithrombin heparin. Besides,
cytokines are factors that transmit signals between cells and
include various and numerous families of polypeptide
regulators. They can play a role in immunomodulating. It
was verified that IL-1, IL-6, thromboxane A2, and necrosis
factor are referred to I/R injury.

In conclusion, inflammation is important progression,
which may cause cell damage and repair. It inhibits the
activation of the complement system and reduces proin-
flammatory cytokines; chemokines are a potential thera-
peutic strategy to reduce tissue damage, induced by I/R

injury.
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4. Cell Damage and Death in I/R Injury

I/R injury-induced tissue injury includes two portions:
ischemia injury and reperfusion injury. When ischemia
progresses, metabolites accumulated, and metabolic aci-
dosis occurred. If the blood supply is restored, the in-
creased inflammation and ROS production aggregated
injury. If the damage is slight, the function of cells may
activate the recovery system to maintain their function and
survival. However, if the injury is severe, cells will die
through the apoptotic or necrotic pathway [68]. Different
ways of cell death through various pathogenesis (Figure 2).

I/R induces cell death via various mechanisms, including
necrosis, necroptosis, apoptosis, and autophagy [65]. Ne-
crosis is characterized as cell and organelle swelling [69];
subsequently, the surface membranes ruptured, and intra-
cellular contents spilled out [65]. Necrotic cells induce in-
tensive immune stimulation, which lead to inflammatory cell
infiltration and cytokine release. If the cells encounter ex-
cessive stress, necrosis occurred [70]. The progression of
necrosis induces serious changes in the external environ-
ment, which are induced by chemical, biological, or physical
injury. Necrosis is usually considered to be random and
uncontrolled processes, in which the cell responses to
overwhelming stress. Necroptosis is termed to be pro-
grammed necrosis [71]. It occurs in pathologic states, es-
pecially I/R injury. Necroptosis shares similar features with
necrosis. Necroptosis is activated by cell stress or death
receptors, such as TNF receptor-1 and Fas receptor. The
combination of death receptors and ligands leads to mo-
bilization and activation of a group of receptor-interacting
protein kinases (RIKs). RIP1 and RIP3 are members of the
receptor-interacting protein kinase (RIPK) family. The
formation of the necrotic complex between RIP1 and RIP3
can mediate caspase-independent cell necrosis [72, 73].
Overexpressed RIP3 may induce upexpression of both ROS
and Ca** and enhance NF-«B protein regulation [74]. Low-
expressed RIP3 may suppress apoptosis [69, 75]. The acti-
vation of RIP3 occurs in TNF-induced necroptosis. There is
an association between necroptosis and inflammation in the
pathogenesis of I/R injury. So, the research on the associ-
ation may be useful to understand the mechanism and
provide guidance for treatment.

Apoptosis is programmed cell death, characterized as
shrinkage of cells and nuclei, with plasma membrane
integrity persisted. It is less immunostimulatory than
necrosis. The mechanisms of apoptosis include two major
pathways: intrinsic and extrinsic pathways. Extrinsic
pathway is the death receptor pathway, activated by death
ligands and receptors such as TNF-&, tumor necrosis
factor-related weak inducer of apoptosis (TWeAK), Fas
ligand, tumor necrosis factor (TNF) related apoptosis-
inducing ligand (TRAIL), and TL1A [76-79]. These
complexes may induce to cleave caspase-3 and subse-
quently kill cells through proteolysis in injured cells [80].
Intrinsic pathway is a mitochondrial pathway, activated by
hypoxia, cellular toxins, and radiation. This progress in-
volves B-cell lymphoma-2 (Bcl-2) protein family mem-
bers, including Bax and BaK [81, 82]. These prodeath
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FIGURE 2: Cell death modalities in I/R injury. Different mechanisms of cell death: necrosis is characterized as cell and organelle swelling;
subsequently, the surface membranes ruptured, and intracellular contents spilled out. Necrotic cells induce intensive immune stimulation,
which lead to cell infiltration and cytokine release, infiltrate inflammatory cells, and generate cytokines. Necroptosis is defined as pro-
grammed necrosis, which shares similar features with necrosis. Apoptosis is programmed cell death, and it is less immunostimulatory than
necrosis. The mechanisms of apoptosis include two major pathways: intrinsic and extrinsic pathways. Autophagy is the main way of cells to

disposal of protein aggregates and damaged organelles.

proteins transport proapoptotic proteins from the inter-
membrane to the outer membrane by activating the
permeability of the membrane [83]. Subsequently, pro-
death proteins bind to the apoptotic protease-activating
factor-1 (APAF1) and assemble the apoptosome; then, the
complex activates caspase-3 and -9, inducing cellular
protein cleavage [69]. Bcl-2 proteins are activated and
unregulated and accumulated on mitochondrial mem-
branes of ischemic cells [84-87]. Ischemia needs oxidative
stress, evoked by reperfusion, to activate Bcl-2 proteins.
Numerous apoptogenic factors are released including
cytochrome ¢, caspase activator Omi, high-temperature-
required protein A2 (HtrA2), second mitochondria-
derived activator of caspases (Smac), and direct inhibitor
of apoptosis protein (IAP) binding protein with low pl
(DIABLO), but their roles and whether their inhibitors
could be used for I/R injury are unclear.

Autophagy is the main mechanism of cells to disposal of
damaged protein aggregates and cellular toxins [69, 88]. It
may provide survival mechanism of cells to resistance of
stressful conditions, such as infection, hypoxia, and mito-
chondrial dysfunction. However, if autophagy is out of
control, it will lead to death of cells. In the process of

autophagy, biological macromolecules and damaged or-
ganelles in the cytoplasm will be degraded in membrane
vesicles. Autophagy involves cytoplasmic components and
ruptured organelles. This process can be activated by I/R
injury [89]. The main regulator of autophagy is the mam-
malian target of rapamycin (mTOR). mTOR will be inac-
tivated in stress or nutrition deficiency. Inactivated mTOR
will inhibit the formation of phagophores. The extension of
the autophagic vesicle requires the participation of the
autophagy-related protein 8/light chain 3 (Atg8/LC3)
complex and Atgl2-Atg5-Atgl6 complex. Autophagy might
upregulate the survival rate of cells. The inhibition of
autophagy may amplify I/R injury [90-92]. However, if the
injury is severe, cellwould be deregulated by autophagy.
[93-95]. Autophagy begins with assembly of phagophore.
[96, 97]. Vesicular autophagosome is formed by phagophore
expansion to fully encase the cell constituents. Autophagy is
regulated by mTOR. However, other regulatory mechanisms
of autophagy need to be further investigated.

By interrupting the cell death process, cell survival rate
can be increased, and the recovery time for lower limb
function can be reduced, which may be effective ways to
reduce I/R injury.
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5. Treatment of Traditional Chinese Medicine

TCM has been applied in China and some other Asian
nations for more than 2000 years. Several studies have
shown that TCM can be used in the treatment of I/R injury.
TCM may reduce I/R injury through angiogenesis, anti-
oxidant effect, reducing oxidative stress, inhibiting inflam-
matory cytokines’ release, and so on.

In the mouse hindlimb ischemia model, hydroxysaftlor
yellow A enhances blood flow recovery and increases cap-
illary and arteriole densities. This indicated that hydrox-
ysafflor yellow A could promote angiogenesis [98]. Another
research study found that tubeimoside-I (TBM) promoted
endothelial cell viability, migration, and tube formation in
human umbilical vein endothelial cells. In the hindlimb
ischemia model, TBM may promote angiogenesis [99].

IL-6, IL-8, and plasma malondialdehyde (MDA) were
used to indicate lipid peroxidation and systemic inflam-
matory response. If the patient pretreated with Shengmai
injection (SMI) before applying automatic gas-filled tour-
niquet, their IL-6, IL-8, and MDA levels would be signifi-
cantly decreased. This indicated that SMI may attenuate lipid
peroxidation and systemic inflammatory response [100].
Schisandrin B may ameliorate ischemia histological changes
of the skeletal muscle. In addition, schisandrin B reduces
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MDA, increases SOD activity, and attenuates plasma in-
flammatory cytokines. These suggested that schisandrin B
reduced I/R injury of the skeletal muscle by attenuation
oxidative stress and inflammation [101]. Study on tetrahy-
dropalmatine showed that it may reduce myeloperoxidase
and MDA, increase SOD, and inhibit autophagy (Figure 3).

I/R injury results from the complex pathophysiology
process, which links to multiple mechanisms; any treatment
targeting single link is insufficient to resolve this disease.
Current studies provide abundant evidence on the mecha-
nisms of TCM in I/R injury. However, most studies focus on
single compound, extracted from Chinese herbs. In fact,
most TCMs are used together to form a formula. TCM
formula has advantages that may affect multiple targets,
which may enhance efficacy and attenuate toxicity. The
interactions between different components need further
research, which may effectively explore the network of TCM
formula. This may be another important research direction.
In addition, TCM will be pretreated by decocting or other
methods before use, which is an important part of TCM
treatment. Nevertheless, its effect on TCM is reported
scarcely.

6. Conclusion

I/R injury is an important clinical problem in PAD; it is still a
critical challenge for doctors. Mitochondria play a central
role in I/R injury on account of cell signaling, oxidative
stress, energy production, and cell damage. The cell death
pathways rely on the degree of injury and the microenvi-
ronment. However, the mechanisms of I/R injury are
complex and include various aspects. An enhanced un-
derstanding of the pathophysiology and cell death pathways
is critical for new therapies. In addition, TCM has been used
to treat diseases for a long time. Recent research has verified
the potential utility of TCM for the treatment of I/R injury.
However, the mechanisms and combination of TCMs need
further research.
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