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Abstract This paper describes novel methods for con-

structing the intrinsic geometry of the human brain con-

nectome using dimensionality-reduction techniques. We

posit that the high-dimensional, complex geometry that

represents this intrinsic topology can be mathematically

embedded into lower dimensions using coupling patterns

encoded in the corresponding brain connectivity graphs.

We tested both linear and nonlinear dimensionality-re-

duction techniques using the diffusion-weighted structural

connectome data acquired from a sample of healthy sub-

jects. Results supported the nonlinearity of brain connec-

tivity data, as linear reduction techniques such as the

multidimensional scaling yielded inferior lower-dimen-

sional embeddings. To further validate our results, we

demonstrated that for tractography-derived structural

connectome more influential regions such as rich-club

members of the brain are more centrally mapped or

embedded. Further, abnormal brain connectivity can be

visually understood by inspecting the altered geometry of

these three-dimensional (3D) embeddings that represent

the topology of the human brain, as illustrated using sim-

ulated lesion studies of both targeted and random removal.

Last, in order to visualize brain’s intrinsic topology we

have developed software that is compatible with virtual

reality technologies, thus allowing researchers to collabo-

ratively and interactively explore and manipulate brain

connectome data.

Keywords Diffusion MRI � Tractography �
Dimensionality reduction � Virtual reality � Connectomics

1 Introduction

Magnetic resonance imaging (MRI) techniques have

allowed us to noninvasively study the human brain both

anatomically and functionally. The complex interactions

between different regions of the brain have necessitated

the development and growth of the field of connectomics.

A brain connectome at the macroscale is typically mathe-

matically represented with connectivity matrices that

describe the interaction between the different brain regions.

Most current connectome study designs are based on brain

connectivity matrices, which involve the computation of

summary statistics on a global or nodal level [1]. However,

current connectome visualization methods typically repre-

sent anatomic and functional connectivity data using

somewhat arbitrary or heuristic methods [2]. In this study,

we address this shortcoming by developing a framework

that realizes, constructs, and visually represents the com-
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plex intrinsic geometry or topology of the entire brain

network.

Classical linear techniques for dimensionality reduction

such as principal component analysis (PCA) and multidi-

mensional scaling (MDS) are computationally efficient and

suitable for linear structures [3]. However, neural networks

represent highly nonlinear data and may exhibit more com-

plexity than what PCA or MDS are designed to detect [4].

Thus, we propose to use nonlinear dimensionality-re-

duction algorithms that maintain the advantages of PCA or

MDS, namely, computational efficiency, global optimality,

and asymptotic convergence guarantees. Nonlinear

dimensionality reduction solves the well-known ‘‘Swiss

roll problem,’’ where the shortest Euclidean distances

between data points at a higher-embedded dimension are

not representative of the actual geodesic path along the

low-dimensional manifold i.e., the intrinsic geometry (in

the case of the Swiss roll, the intrinsic geometry is a 2D

plane which is rolled up in a 3D space). Intuitively, this

was accomplished in Isomap [5] by modifying the classical

MDS. Isomap reconstructs the path length for points that

are far away by adding up a series of steps between nodes

to approximate its geodesic distance. As a result, Isomap

was described by the authors to be a ‘‘complete isometric

feature mapping.’’

In recent years, other dimensionality-reduction tech-

niques have been proposed and examined for comparisons

versus Isomap (e.g., locally linear embedding (LLE) [6],

Laplacian eigenmaps [7], diffusion maps [8], and t-dis-

tributed stochastic neighbor embedding (t-SNE) [9]). One

goal of this paper is to examine the intrinsic geometry of

the brain and to see if ‘‘crowding’’ of data points in the

lower-dimensional embedding is an issue that requires

more advanced dimensionality-reduction techniques.

Clinically, previous work with nonlinear dimensionality

reduction has been applied to large datasets consisting of a

combination of imaging and non-imaging data (lab mea-

surements, gene sequencing), assembled to develop accu-

rate biomarkers to better understand disease progression

[10]. t-SNE in particular has been used to explore areas

such as breast cancer [11] and proteomics [12].

To the best of our knowledge, this paper represents the

first application of dimensionality reduction to reveal the

brain connectivity’s intrinsic geometry. To put into context

why the intrinsic geometry may be a better space to

understand brain connectivity data, we can look at the field

of cartography. For decades, cartographers have mapped

quantitative data onto world maps to create unique, infor-

mative visualizations. For example, by resizing regional

areas of the state of New York according to the incidence

of lung cancer, one can show graphically that New York

City occupies the largest area and therefore has the highest

incidence of lung cancer [13]. Similarly, dimensionality-

reduction techniques remap the brain according to its

connectivity such that in the resulting geometry the shape

the connectome assumes is independent of the anatomic

distances between nodes. Using tractography-derived

structural connectomes to illustrate this point, the proposed

approach relies on the intuition that, as long-range fiber

pathways (e.g., the superior longitudinal fasciculus or SLF)

connect brain regions that are physically relatively far

apart, its topology may thus be better determined using the

corresponding connectivity matrix, rather than the inter-

regional anatomic distances.

2 Methods

2.1 Image acquisition

Forty-six healthy control subjects (HC, mean age:

59.7 ± 14.6, 20 males) were recruited by community

outreach using newspaper, radio, television advertisements,

and relevant outpatient clinics. The study was approved by

the University of Illinois at Chicago Institutional Review

Board and conducted in accordance with the Declaration of

Helsinki.

We acquired brain MRI data on a Philips 3.0T Achieva

scanner (Philips Medical Systems, Best, The Netherlands)

using an 8-channel SENSE (sensitivity encoding) head

coil. High-resolution three-dimensional (3D) T1-weighted

images were acquired with a MPRAGE (magnetization

prepared rapid acquisition gradient echo) sequence (field of

view: FOV = 240 mm; 134 contiguous axial slices; TR/

TE = 8.4/3.9 ms; flip angle = 8�; voxel size = 1.1 9

1.1 9 1.1 mm). For DTI images, we used single-shot spin-

echo echo-planar imaging (EPI) sequence (FOV =

240 mm; voxel size = 2.5 9 2.5 9 2.2 mm that was

interpolated to 0.83 9 0.83 9 2.2 mm; TR/TE = 6,994/

71 ms; flip angle = 90o). Sixty seven contiguous axial

slices aligned to the anterior commissure–posterior com-

missure (AC-PC) line were collected in 32 gradient

directions with b = 700 s/mm2 and one acquisition with-

out diffusion sensitization (B0 image). Parallel imaging

was utilized with an acceleration factor of 2.5 to reduce

scanning time to approximately 4 min.

2.2 Data preprocessing

We generated individual structural brain networks for each of

the forty-six subjects using a pipeline reported previously

[14]. First, diffusion-weighted (DW) images were eddy cur-

rent corrected using the automatic image registration (AIR)

tool embedded in DtiStudio software (http://www.mristudio.

org), by registering all DW images to their corresponding B0

images with 12-parameter affine transformations. This was

198 A. Q. Ye et al.

123

http://www.mristudio.org
http://www.mristudio.org


followed by computation of diffusion tensors and determin-

istic tractography using fiber assignment by a continuous

tracking algorithm [15]. T1-weighted images were used to

generate label maps using the Freesurfer software (http://sur

fer.nmr.mgh.harvard.edu).

A total of 82 Freesurfer labels were created for structural

images and then further subdivided using an algorithm that

continuously bisected each region across all subjects using

a plane perpendicular to the main axis of its shape.

Mathematically, this is achieved by first aligning the cen-

troid coordinates of this ROI across all subjects to yield a

combined group ROI (thus accounting for the difference in

individual subject spaces). Second, we determined the

main axis by conducting a PCA on all voxels belonging to

this combined group ROI. Previous studies using similar

algorithms have shown that upsampling regions into

higher-resolution voxels maintains network connectivity

[16]. In this study, we chose a threshold of 800 voxels or

about 1 cm3; when the size of an ROI dropped below this

threshold, it would no longer be further subdivided. This

procedure upsampled the overall gray matter regions by

about 8 times, thus converting the structural 82 regions into

620 sub regions, resulting in structural brain network

connectivity matrices of size 620 by 620. All networks

were examined to ensure that all regions were directly

connected to at least one other region preventing the for-

mation of any isolated ‘‘islands.’’ To compensate for inter-

subject variations, we averaged all individuals’ networks

together to obtain a group average network.

2.3 Dimensionality reduction

In this study, we mainly discussed results generated using

two classic dimensionality-reduction techniques: (1)

MDS—a classic linear embedding technique, (2) Isomap, a

nonlinear dimensionality reduction as described by [5]. A

modern nonlinear embedding technique called t-distributed

stochastic neighborhood embedding [9] was additionally

tested as it has been theorized to be advantageous over

Isomap, but was found to be inferior to Isomap in our

specific application and thus was excluded from this paper.

After the structural networks are generated, the corre-

sponding connectome data need to be appropriately rep-

resented in a high-dimensional space where a distance

metric can be properly computed (such that a neighborhood

can be defined for constructing the Isomap).

Here, we propose to represent connectivity data in a

n = 620 Euclidean space by placing node i at the coordi-

nates defined by the vector d that codes its graph distance

to every node in the brain: di ¼ ðGraphDistancei;1;
GraphDistancei;2. . .;GraphDistancei;nÞ; here GraphDis-

tance represents the shortest path length between two

nodes; the graph distance matrix of a structural connectome

is usually formed by defining edge length as the inverse of

the connectivity strength followed by applying the Dijk-

stra’s algorithm. To understand why this would realize the

intrinsic geometry of the structure connectome, we simply

note that in the intrinsic geometry one would want to

embed two nodes (k and l) next to each other if k dk � dl k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i

ðGraphDistancek;i � GraphDistancel;iÞ
2

r

is small.

To promote uniformity throughout the analyses, we used

the dimensionality-reduction toolbox introduced by van der

Maaten for all reductions [17]. The number of dimensions

was reduced from 620 to 3 dimensions. For Isomap, the

number of nearest numbers used for neighborhood deter-

mination was increased iteratively until all regions were

included during manifold building. For both structural and

functional imaging modes, this step created the final output.

2.4 Visualization using BRAINtrinsic

In order to visualize and navigate a 3D embedding of the

intrinsic geometry, we must have a flexible and robust

viewing platform. To this end, we have developed

BRAINtrinsic, an open source virtual reality visualization

system. BRAINtrinsic exploits the hardware-accelerated

graphics functionality provided by WebGL (www.webgl.

com) and is designed to be fully compatible within a virtual

reality environment. Presently, BRAINtrinsic can be also

used with the Oculus Rift device (www.oculus.com). The

code is open source and publicly available at the authors’

code repository at (https://github.com/gioconte/gioconte.

github.io). An example of the layout and graphical user

interface can be seen in Fig. 1.

2.5 Targeted node removal

Previous studies have looked at the differences in brain

network robustness and its tolerance to removal of nodes

(either targeted or random) [18], including the removal of

rich-club regions [19, 20]. To test if dimensionality-re-

duction techniques capture visually meaningful and inter-

pretable information in a 3D environment, we used similar

removal strategies to understand the structural connec-

tome’s topology after random or targeted node removal.

Our metric of choice is �d, the average Euclidean dis-

tance from all embedded nodes to the center of the

embedding. As a primary investigation we removed rich-

club regions as previously defined in [21], which consist of

the left and right precuneus, superior frontal cortex, supe-

rior parietal cortex, hippocampus, putamen, and thalamus.

These twelve regions represented 21.5 % of all nodes in
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our 620-region structural brain connectome. For compar-

ison, we then ran 20,000 trials that randomly selected and

removed the same amount of nodes to obtain a distribution

of �d under random removal.

Finally, we also removed the first 21.5 % of nodes using

various targeted removal schemes according to the fol-

lowing well established connectome measures: (a) nodal

strength (descending), (b) clustering (ascending), (c) nodal

path length (ascending), and (d) betweenness centrality

(descending) [22], as well as e) embeddedness, a recently

proposed novel connectome metric [23]. Embeddedness

computes a ratio between nodal efficiency and the rate of

information transfer decay for this node, and thus probes

the relative scale-invariant information exchange effi-

ciency. Highly embedded brain regions are those that

comprise the limbic system, the default mode network, and

the subcortical nuclei. These regions are linked in the

evolutionary role they play in memory, emotion and

behavior.

3 Results

3.1 High-dimensional representation of functional

and structural brain connectivity

Figure 2 shows the adjacency matrices for both the struc-

tural group-averaged connectome (Top row). The (i, j)

element represents the tractography-based fiber count

between brain regions i and j. The resulting row vectors

(vertically stacked; bottom row) computed using the pro-

cedure in 2.3 now describes the proposed high-dimensional

Euclidean representation of the brain connectome. Here,

each row represents the Euclidean coordinates of the

corresponding brain region (620 dimensions for structural

data). Note that in the structural data, these vertically

stacked row vectors are equivalent to the graph distance

matrix of the structural adjacency matrix.

3.2 Creation of the MDS brain

MDS, a classic linear technique, was first used to test the

proposed visualization platform. Visually, the MDS

embedding of the structural connectome primarily clus-

tered into a funnel shape (Fig. 3a). As will be shown in the

following section, there are clear advantages in the realized

embedding as we move from MDS, a linear dimensionality

technique, to Isomap, a nonlinear dimensionality-reduction

technique.

3.3 Creation of the Isomap brain

Figure 3b–d shows the intrinsic topology of the structural

connectome in the Isomap space. Three variations were

visualized: the entire brain connectome formed by the 82

cortical/subcortical gray matter brain regions plus the brain

stem (Fig. 3b), the brain connectome formed by the 82

cortical/subcortical gray matter regions (Fig. 3c), and the

brain connectome formed by 68 cortical regions alone

(Fig. 3d). Here, the shape of the computed brain Isomaps

visually resembles a parabolic bowl or a flower, with the

brain stem as the stem and the other lobes forming the inner

and outer petals.

Visually, the intrinsic geometry of the structural con-

nectome formed by 68 cortical gray matter ROIs alone

does not differ much from that of the connectome formed

by both cortical and subcortical gray matter ROIs. Con-

trasting this with the targeted removal results shown in

Fig. 1 The anatomy of a human

brain shown in BRAINtrinsic.

Different colors represent

different lobes of the brain,

while the line segments show

shortest paths connecting brain

nodes (e.g., in tractography-

derived structural connectome,

the thicker the line, the more

reconstructed tracts can be seen

in the connectivity matrix).

Inset shows the author (Leow)

using the Oculus Rift

technology to visualize brain

connectome data using the

proposed approach
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later sections, one may argue that in the absence of sub-

cortical structures interhemispheric communication

remains minimally impacted, likely via cortico-cortical

connections [24].

3.4 Fundamental network measures for Embeddings

One way to validate the utility of dimensionality reduction,

especially in the case of structural connectome, is to

understand the concept of nodal path length in the resulting

3D embedding. To this end, as nodes with shorter nodal

path lengths communicate more efficiently with the rest of

the brain and are thus more ‘‘important,’’ we expect that

they would thus be more centrally located in the dimen-

sionally reduced embeddings. Therefore, we hypothesize

the existence of a positive correlation between the nodal

path length of a node and its Euclidean distance to the

origin of embedding.

Figure 4 demonstrates such a correlation (or lack of)

when comparing nodal path length versus the anatomic,

MDS, and Isomap ROI distance to the center of that par-

ticular embedding. The center of the anatomic brain was

defined as the mean of the (x, y, z) coordinates of all

regions-of-interest. As expected, the correlations between

the nodal path length and this node’s Euclidean distance to

the embedding’s origin for both dimensionality-reduction

techniques (r2 of 0.427 and 0.828 for MDS and Isomap,

respectively) were markedly higher than the correlation

between nodal path length and this ROI’s anatomic dis-

tance to the center of the brain (r2 = 0.144). Due to the

superiority of Isomap compared to MDS, we will only

present results from the Isomap algorithm from here

forward.

Fig. 2 Connectivity matrices for the original structural (n = 82

nodes) and upsampled structural (n = 620 nodes) connectomes. For

the structural networks, the (i, j) element represents the tractography-

based fiber count between brain regions, i and j. The resulting

n-dimensional row vectors (vertically stacked; bottom row) describes

the high-dimensional Euclidean representations of connectome data
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3.5 Rich-club connectivity

Recent studies have suggested that certain brain regions

form a ‘‘rich-club’’ subnetwork, such that members in this

subnetwork are densely interconnected with each other,

even more than expected from nodes of their degree [21].

The rich-club concept was adopted from applications in

social science and computer science where certain highly

central individuals or nodes were found to exist in tightly

interconnected communities [25]. Brain regions that exhi-

bit this ‘‘rich-club’’ property include the bilateral pre-

cuneus, superior frontal cortex, superior parietal cortex,

hippocampus, putamen, and thalamus. Here, we investigate

the locations of these rich-club regions in the correspond-

ing brain Isomap. Results suggest that, indeed, nodes from

all six rich-club regions are visually centrally located in the

Isomap (Fig. 5); moreover, they are also clustered close to

one another. On the other hand, as shown in Fig. 6, we note

Fig. 3 a BRAINtrinsic visualization of the transformed MDS brain

map with a coronal view (left) and a top or axial view (right). Colors

represent different lobes of the brain. Visually, MDS embedding

resembles a funnel with a high concentration of nodes near the vertex.

b The Isomap topology of the structural brain connectome formed by

cortical/subcortical gray matter regions plus the brain stem. Note here

brainstem and several subcortical regions are closely embedded in the

Isomap, suggesting that they are highly interconnected (while less so

with the rest of the brain), which is consistent with known

neuroanatomy. c The Isomap topology for the connectome formed

by the cortical/subcortical gray matter regions without the brain stem

from a coronal (left) and axial (right) viewpoint. Visually resembling

a flower, this topology and its simple Euclidean quantifications in

Figs. 5 and 6 provide intuitive insight into the relative role each brain

region plays, as well as how removal of targeted regions can affect

this configuration. We additionally examined the connectome’s

topology after removing subcortical structures (d), with results

suggesting that in the absence of subcortical regions, the topology

remains minimally altered, likely thanks to alternative routing via

cortico-cortical connections
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that interestingly not all centrally located regions are tra-

ditionally labeled rich club (e.g., the left and right caudate,

pallidum, paracentral lobule, and caudal anterior, posterior,

and isthmus cingulate are all relatively centrally located).

Additional analyses were conducted for the connectome

formed by 68 cortical ROIs alone (Fig. 7), with results

confirming that in the absence of subcortical regions,

regions including the precuneus, the paracentral lobule, the

superior frontal gyrus, and the caudal anterior, posterior,

and isthmus cingulate again are centrally mapped in the

resulting Isomap embedding.

3.6 Targeted node removal

To further understand the effects of node removal (beyond

subcortical gray matter removal), we visually and quanti-

tatively compared the resulting intrinsic geometry by

removing rich-club nodes as defined previously [19], ver-

sus removal of randomly selected nodes of equal amount;

for quantitative assessment we measured the degree of

cohesion using the average distance to the center of the

embedding (�d) to summarize the overall effect.

Figure 8 shows the net results of 20,000 trials of random

removal of 21.5 % of all nodes (the percentage of rich-club

nodes after upsampling to the 620 node network). The

mean and confidence interval for the Monte Carlo simu-

lation was 2.411 and 0.249 (CI 5–95 %), respectively,

while rich-club removal result is the third bar cluster from

the right. As expected, rich-club removal has a larger

impact on �d as compared to random removal trials.

Similar simulations were then further conducted by

removing an equal number of nodes (21.5 %) with respect

to the following criteria: (a) nodal strength (high to low),

(b) clustering (low to high), (c) nodal path length (low to

high), (d) betweenness centrality (high to low), (e) subcor-

tical region removal, and (f) embeddedness (high to low).

Overall, removing nodes based on clustering minimally

changes the cohesion of the connectome, supporting the

fundamental differences between local properties such as

clustering and global properties. By contrast, removing

nodes with the highest degree of embeddedness has the

largest impact on the cohesion of the connectome, thus

supporting that highly embedded regions play important

roles in the structural connectome.

Although plotting �d under different removal strategies

provides a quantitatively informative picture, visual

investigations of these embeddings (Fig. 9) arguably pro-

vides an even more intuitive understanding of the impact of

node removal. For example, the topology after rich-club

removal (2nd row middle) or removal of nodes with the

lowest 21.5 % nodal path length is ring-like as there is a

loss in its central architecture. On the other hand, removing

the top 21.5 % embedded regions (2nd row right) further

degraded the structural connectome’s topology from a ring

into a ‘‘horseshoe.’’ By contrast, a representative random

removal showed minimal change in the shape of the

embedding. These changes are interesting in the scope of

brain exploration, but more importantly, could lead to a

greater distinction of connectivity abnormalities in clinical

cohorts or longitudinal changes in individual brains.

Fig. 4 The comparison of the nodal path length (x axis) for the

620-ROI structural connectome versus their distances to the center in

various spaces. The correlation coefficients for each subplot is

r2 = 0.144 (anatomic space), r2 = 0.427 (MDS), and r2 = 0.828

(Isomap). As expected, a node’s nodal path length does not relate to

its distance to the brain’s anatomic center (left subplot), but overall,

mostly linearly maps onto its Euclidean distance to the embedding’s

topological center when a nonlinear technique such as Isomap is used.

Indeed, as the dimensionality-reduction technique becomes more

advanced (from no dimensionality reduction to linear reduction to

nonlinear reduction), better representations of the intrinsic geometry

are achieved and embedded in a 3D Euclidean space
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4 Discussion

Using dimensionality-reduction techniques, we described a

novel mathematical framework that creates 3D-embedded

mappings representing the intrinsic geometry or topology

of the human brain connectome. These embeddings can

thus be thought of as the ‘‘native space’’ of brain connec-

tome. Comparing results generated from tractography-

derived structural connectome (Fig. 3), we showed that this

intrinsic geometry only minimally relates to neuroanatomy.

Thus, conventional visualization techniques that depict

connectivity data in the neuroanatomic space may not be

optimal (along similar lines, other recently proposed

visualization techniques also used somewhat heuristic and

arbitrary methods [2]).

Using two unique dimensionality-reduction algorithms,

one linear (MDS) and one nonlinear (Isomap), we

demonstrated the nonlinearity of this native space. Indeed,

as shown in Fig. 4 the MDS-based 3D embedding exhibits

a nonlinear relationship with the graph distance computed

from the corresponding structural connectivity matrix,

while the Isomap-based 3D embedding exhibits mostly a

linear one. Moreover, visually MDS-based embedding

suffers from the ‘‘crowding’’ problem (right panel of

Fig. 3A), a known issue for linear techniques when the

underlying geometry is nonlinear. This problem can be best

understood using the famous ‘‘Swiss roll’’ example [5].

Here, the underlying intrinsic geometry of the Swiss roll is

a 2D ‘‘sheet,’’ which is then rolled up and embedded in a

higher-dimensional space (3D). As a result, the shortest 3D

Fig. 5 Illustration of relative locations of rich-club brain regions.

a The Isomap embedding shown axially with the rich-club brain

regions highlighted. Nodes from all six rich-club regions are centrally

located with respect to the whole brain in the Isomap and are clustered

close to one another. This is emphasized in b showing the scatter plot

recreated from Fig. 4 (right panel), this time highlighting the rich-

club nodes. c Neuroanatomic locations of the same rich-club regions

are compared. For all panels, different colors represent different rich-

club regions of the brain, while gray nodes represent nonrich-club

members
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Euclidean distance between two points on the Swiss roll

can be mistakenly much shorter than the true geodesic

distance (i.e., the actual shortest distance needed to travel

from one to the other if we reside in the space as defined

by its intrinsic geometry). This thus creates ‘‘crowding’’

when a linear technique such as MDS is used, but could

additionally entirely misrepresent the underlying true

topology.

At this point, one may ask the following interesting

question. If we do not limit ourselves to 3-D embeddings

due to their easier visualization, what is the optimal

dimension in which the native space of the structural brain

connectome could be best represented? To address this, we

additionally conducted analyses similar to Fig. 5B, this

time varying the number of dimensions of our Isomap

embedding from 1 to 8 and computing the root mean

Fig. 6 For the structural connectome formed by all 82 cortical/sub-

cortical gray matter ROIs, the distance to the origin of the Isomap

space was computed and ranked from low (left) to high (right), with

each region’s name shown on the x axis. Rich-club and highly

embedded regions are highlighted by asterisk and delta, respectively

Fig. 7 For the structural connectome formed by 68 cortical gray

matter ROIs (after removing the subcortical ROIs and re-computing

the Isomap), the distance to the origin of the Isomap space was

computed and ranked from low (left) to high (right), with each

region’s name shown on the x axis

The intrinsic geometry of the human brain connectome 205

123



squared error (RMSE) of the Euclidean distances to the

origin of the embedding, after subtracting those accounted

for by nodal path lengths. Results (Fig. 10) showed that the

RMSE leveled off between N = 4 and 5, while N = 3

already accounted for a substantial amount of the residual

variance (as measured using RMSE).

Next, using targeted attacks versus random node

removal, we demonstrated the potential utility of the pro-

posed framework, as this intrinsic geometry is sensitive to

alterations in the underlying connectivity. Our approach

may have clinical implications. For example, it can be used

in surgical planning to quantitatively understand how

lesions, either real or planned, can affect brain connectiv-

ity. Similarly, one may use such a visual representation to

better detect differences in clinical cohorts, or to longitu-

dinally track connectivity changes over time in individual

brains.

The results of different removal strategies warrant fur-

ther discussion. Note that removing nodes with the lowest

21.5 % of nodal clustering coefficient (right panel of the

top row, Fig. 9) minimally impacts structural connectome’s

intrinsic geometry, suggesting that clustering coefficient

probes a network property that is to a great degree

decoupled from properties such as nodal path length or

strength. Also, the geometry of the brain connectome

formed by the 68 cortical gray matter regions (i.e.,

removing Freesurfer-defined subcortical regions from the

connectome) largely remains unaltered compared to the

complete connectome formed by both cortical and sub-

cortical regions. This relatively preserved efficiency of

cortico-cortical communications (as evidenced by the

intact shape of the geometry) thus suggests two parallel

systems or ‘‘routes’’ of communication, one via the sub-

cortical regions and the other entirely bypassing them.

Based on these findings, we posit that one system (e.g., the

subcortical routing) does not necessarily dominate the

other; instead they work in conjunction and likely provide

complementary functions to each other [26].

Another corollary to our findings is that regions that are

mapped closer to the center in this native space are not all

traditionally designated as having the rich-club property.

Indeed, as shown in Figs. 6 and 7, the left and right cau-

date, pallidum, paracentral lobule, and caudal anterior,

posterior, and isthmus cingulate are all relatively centrally

located. Intuitively, one can hardly argue against the

importance of these non rich-club nodes that consist of

other subcortical regions (caudate and pallidum) [27–29],

regions instrumental for sensori-motor function (paracen-

tral lobule) [16, 30, 31], and regions known to be part of

the limbic system (components of the cingulate) [32, 33].

Moreover, all these regions are considered highly embed-

ded as recently shown in [23].

To provide an immersive visualization environment for

these novel 3D representations, we have developed the

Fig. 8 The mean (raw) distances and normalized distances (normal-

ized by multiplying the average number of fibers between brain

regions across the entire brain) measured from the center (�d) of the
embedding to every point after various removal schemes. Random

removal was repeated 20,000 times, and the average is shown. For

raw distances, overall removing nodes that have the lowest clustering

coefficient has the smallest impact, while removing nodes with the

highest strength has the largest. However, comparing the normalized

distances reveals that removing highly embedded nodes results in the

largest normalized distance, while random removal has the smallest

impact
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BRAINtrinsic software, which is fully compatible with the

Oculus Rift portable virtual reality technology (Oculus VR,

Menlo Park, CA) (see Fig. 1 inset), thus allowing

researchers to immerse themselves in these novel repre-

sentations of brain connectivity through stereoscopic gog-

gles. In order to help stimulate more research activities in

this direction in the larger neuroimaging community,

BRAINtrinsic is publicly available at http://creativeco

dinglab.github.io/BRAINtrinsic/.

5 Conclusion

In this paper, we present a comprehensive treatment on the

topology of the human brain connectome. While being

novel, our framework outlined an entirely new way to

conceptualize, visualize, and interact with connectivity

data in its native space. In this space, the location and

relative position of a region have intuitive interpretations in

that the regions that are more important are more centrally

embedded, while two regions that exhibit similar patterns

of coupling with the rest of the brain are mapped near each

other. The proposed framework could be easily adapted to

multimodal data obtained from other types of brain imag-

ing as well (e.g., EEG or MEG data). Examples of practical

applications may also include subsequent changes in

structure and function during normal development or

monitoring disease progression in various neuropsychiatric

disorders [34–38]. In addition, the topology of brain con-

nectome after dimensionality reduction could be compared

groupwise in disease states, and/or could be regressed with

respect to various dimensional phenotypic measures.

Fig. 9 Top row: Left front view of an example Isomap embedding

after 21.5 % of nodes were randomly removed. Middle Isomap

embedding after removing nodes with the lowest 21.5 % clustering

coefficient, right nodes removed according to the highest 21.5 %

betweenness centrality. Middle row: Left removal of nodes with the

lowest nodal path length. Middle removal of nodes according to the

literature’s definition of rich club (21.5 % of all nodes; rich club

regions include the left and right precuneus, superior frontal cortex,

superior parietal cortex, hippocampus, putamen and thalamus). Right

removal of 21.5 % of nodes with the greatest strength. Bottom row:

Left removal of nodes with the top 21.5 % of embeddedness
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