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Secoisolariciresinol diglucoside (SDG), found mainly in flaxseed, is one of the essential
lignans. SDG, as well as the beneficial fatty acid composition and high fiber content,
has made flaxseed an important source of functional food or nutraceutical ingredients.
Various studies have shown that SDG offers several health benefits, including protective
effects against cardiovascular diseases, diabetes, cancer, and mental stress. These
health benefits have been attributed to the antioxidant properties of SDG. Additionally,
SDG metabolites, namely mammalian lignans, enterodiol and enterolactone, have
shown promising effects against cancer. Therefore, understanding the biosynthetic
pathway of SDG and its molecular mechanisms is a key to enable the production of new
flaxseed cultivars rich in nutraceutical content. The present review highlights studies on
the different health benefits of SDG, as well as lignan biosynthesis in flaxseed and genes
involved in the biosynthetic pathway. Since SDG, the predominant lignan in flaxseed,
is a glycosylated lignan, we also focus on studies investigating the genes involved in
secoisolariciresinol glycosylation. These genes can be used to produce new cultivars
with a novel level of glycosylation or lignan composition to maximize the yields of lignans
with a therapeutic or protective potential.

Keywords: lignans, flaxseed, glycosyltransferases, Linum, pinoresinol-lariciresinol reductase,
secoisolariciresinol diglucoside, UGT74S1, health benefits

INTRODUCTION

Secoisolariciresinol (SECO) diglucoside (SDG) is one of the essential dietary lignans, found in
high levels in flaxseed (Frank et al., 2004). Along with α-linolenic acid, lignans, mainly SDG,
have made flaxseed derivatives (flax oil and lignan extracts) important sources of functional
food or nutraceutical ingredients (Hu et al., 2007; Patel et al., 2012). Although flaxseed possesses
beneficial fatty acid composition and high fiber content, the phytoestrogenic, anticarcinogenic,
and antiatherogenic effects have been attributed to its lignan content (Muir and Westcott, 2003;
Frank et al., 2004; Webb and McCullough, 2005; Carraro et al., 2012). Moreover, ingested SDG
is converted into mammalian lignans, enterodiol (END) and enterolactone (ENL), by the gut
microflora enzymes (Carraro et al., 2012; Struijs, 2008), and these mammalian lignans have been
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found to negatively correlate with the incidence of breast cancer
(Jenab and Thompson, 1996; Frank et al., 2004; Adolphe et al.,
2010).

SDG was isolated from flaxseed by Bakke and Klosterman
(1956), and in contrast to free lignans found in most plants,
SDG is present in an oligomeric structure, referred to as
lignan macromolecule (Bakke and Klosterman, 1956; Muir and
Westcott, 2003; Struijs, 2008). Flaxseed is the richest source
of SDG; however, it also contains small amounts of other
lignans, namely pinoresinol, lariciresinol, and matairesinol (Muir
and Westcott, 2003; Struijs, 2008; Adolphe et al., 2010). SDG
has two enantiomers (+) and (−), whose distribution varies
in different Linum species. A study showed that one of the
two enantiomers of SDG was predominant in the seed, except
for some species, such as L. elegans and L. flavum, that
contained both enantiomers (Muir and Westcott, 2003). The
(+) enantiomer was predominant in L. usitatissimum (flaxseed);
however, the concentration of SDG varied in different varieties
(Muir and Westcott, 2003). Although new technologies, such
as in vitro morphogenesis (Lalaleo et al., 2018b), transformed
hairy root culture (Gabr et al., 2018) and other biotechnological
systems (Lalaleo et al., 2018a), are being used to increase the
content of lignans in Linum species, the difference in varieties
still affects the health beneficial properties of the lignan fractions
(Ezzat et al., 2018). In this review, we highlight studies on the
biosynthesis of SDG in flaxseed and its health benefits, as well as
the genes involved in this metabolic pathway.

LIGNANS FROM FLAXSEED

The main lignan in flaxseed is SDG, which is found in a linked
macromolecular structure (lignan macromolecule) (Muir and
Westcott, 2003; Suzuki and Umezawa, 2007; Struijs, 2008; Touré
and Xueming, 2010; Schmidt et al., 2012). In flaxseed, the hull
fraction contains higher amounts of lignans than that in the
whole seeds (Oomah and Mazza, 1997; Madhusudhan et al.,
2000; Wiesenborn et al., 2003; Struijs et al., 2006), suggesting that
lignans are mainly biosynthesized in the hull.

BIOSYNTHETIC PATHWAYS OF
FLAXSEED LIGNANS

The biosynthesis of lignans in flaxseed involves the following
pathways (Umezawa, 2003; Hano et al., 2006; Struijs, 2008; Ghose
et al., 2014) (KEGG PATHWAY: map01061):

• the phenylpropanoid pathway
• stereospecific coupling by dirigent proteins
• biosynthesis of dibenzylbutane lignans
• glycosylation of lignans into SDG

THE PHENYLPROPANOID PATHWAY

The phenylpropanoid pathway is responsible for the formation
of the C6-C3 basic unit of lignans. The first step of this pathway

is the deamination of phenylalanine by phenylalanine-ammonia
lyase producing cinnamic acid (Struijs, 2008). Cinnamic acid
is oxidized to p-coumaric acid, which can further be oxidized
to caffeic acid. Then, caffeic acid can be metabolized into
ferulic acid by caffeic acid O-methyltransferase. Ferulic acid
is converted into its coenzyme A-activated form, feruloyl-CoA
by 4-coumarate:CoA ligase. Feruloyl-CoA is further reduced to
coniferaldehyde by cinnamoyl-CoA reductase and finally into
coniferyl alcohol by cinnamyl alcohol dehydrogenase and sinapyl
alcohol dehydrogenase (Boerjan et al., 2003).

STEREOSPECIFIC COUPLING BY
DIRIGENT PROTEINS

The formation of a lignan via stereoselective coupling of two
coniferyl alcohols was first studied in Forsythia species in 1990,
when two phenylpropanoid monomers, coniferyl alcohols, were
oxidized in the presence of the insoluble fraction of Forsythia
stem, yielding pinoresinol (Umezawa et al., 1990). Later, a protein
purified from the insoluble fraction of Forsythia stem was used
to catalyze the dimerization of coniferyl alcohols only in the
presence of an oxidase and was called a dirigent protein since it
is not involved in the reaction (Davin et al., 1997; Corbin et al.,
2018). The discovery of the dirigent protein (Davin et al., 1997;
Davin and Lewis, 2000) allowed the understanding of phenolic
radical coupling: an oxidase forms two radicals from the alcohols,
and the dirigent protein aligns the radicals, followed by the
stereoselective radical coupling reaction. Of all the C6-C3 units
formed by the phenylpropanoid pathway, only coniferyl alcohol
is dimerized in a stereospecific way (Davin et al., 1997).

After the formation of pinoresinol, lignan biosynthesis can
proceed by two different pathways. In the first pathway, the
furan structures are reduced, and dibenzylbutane lignans, such
as SECO, are formed. In the second pathway, the furan structures
remain intact, and methylenedioxy bridged furanofuran lignans,
such as sesamin, are formed (Suzuki and Umezawa, 2007; Struijs,
2008; Schmidt et al., 2012). In flaxseed, the biosynthesis follows
the first pathway.

BIOSYNTHESIS OF DIBENZYLBUTANE
LIGNANS

Pinoresinol is subsequently converted into lariciresinol and
secoisolariciresinol by a bifunctional NADPH-dependent
pinoresinol/lariciresinol reductase (PLR) (Ford et al., 2001).
PLRs completely convert pinoresinol into lariciresinol first
before lariciresinol is converted to SECO (Von Heimendahl
et al., 2005; Hemmati et al., 2007). The other lignan found
in flaxseed, matairesinol, is formed by secoisolariciresinol
dehydrogenase (SDH) (Ford et al., 2001; Xia et al., 2001;
Umezawa, 2003; Struijs, 2008). The main lignan in flaxseed is
found in a glycosylated form, indicating an additional role of the
genes responsible for the glycosylation of SECO. These genes
are UDPG: glucosyltransferases (GTs), which glycosylate the C-9
and C-9′ hydroxyl positions of SECO (Ford et al., 2001).
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GLYCOSYLATION OF SECO

In flaxseed, this represents the last step in the biosynthesis
of SDG. Glycosylation is catalyzed by GTs, which are highly
divergent, polyphyletic, and belong to a multigene family found
in all living organisms (Mackenzie et al., 1997; Barvkar et al.,
2012).

Several studies have shown the presence of plant GTs (Ross
et al., 2001; Wang and Hou, 2009; Caputi et al., 2012). In plants,
they belong to family 1 GTs, known as uridine GTs (UGTs)
(Caputi et al., 2012; Fofana et al., 2017b). UGTs catalyze the
transfer of UDP-activated sugars to specific acceptor molecules
(Jones and Vogt, 2001; Ross et al., 2001; Witte et al., 2009). In
plants, they are characterized by a unique, well-conserved PSPG
(plant secondary product glycosyltransferases) box, formed by a
sequence of 44-amino acid residues (Paquette et al., 2003; Gachon
et al., 2005; Barvkar et al., 2012) and a catalytic mechanism
that inverts the anomeric configuration of the transferred sugar
(Wang and Hou, 2009; Barvkar et al., 2012).

In flax, 137 UGT genes have been identified (Barvkar et al.,
2012). UGT74S1 gene expression was high in the seed coat. Since
SDG accumulates in the seed coat (Hano et al., 2006), it was
suggested that UGT74S1 might play a role as SECO GT (Barvkar
et al., 2012). Further studies found that two UGT genes, UGT74S1
and UGT94H, exhibited high expression level in the developing
seeds, and their expression correlated with that of PLR genes,
involved in SECO biosynthesis (Ghose et al., 2014). However,
upon reaction of the purified proteins with SECO and UDP-
glucose, only UGT74S1 produced both SECO monoglucoside
(SMG) and SDG metabolites, showing that UGT74S1 is involved
in SECO glycosylation to form flax SDG lignan (Ghose et al.,
2014).

The uniqueness of UGT74S1 in controlling SDG formation
from SECO was further proven in a study characterizing a
mutagenized flax population with mutations in UGT74S1 and
altered lignan glycosylation, which showed that the loss-of-
function of SECO glycosylation into SDG was attributable solely
to UGT74S1 mutation (Fofana et al., 2017b). UGT74S1 may be the
key enzyme controlling SECO glycosylation in flax, although two
closely related genes, UGT74S4 and UGT74S3, may also contribute
to a minor extent, where they may play a role in supplying SMG as
a substrate to UGT74S1 for the second glycosylation step (Fofana
et al., 2017a). Moreover, several studies have shown that specific
amino acids within the PSPG motif might play a role (He et al.,
2006; Noguchi et al., 2007; Modolo et al., 2009). Additionally,
Ghose et al. (2015) have shown that Trp355 and His352 are critical
amino acids within the PSPG motif and are determinant for
UGT74S1 glycosylating activity (Ghose et al., 2015).

A summary of the biosynthesis of SDG is shown in Figure 1.

HEALTH BENEFITS OF SDG

Various studies on the health effects of flaxseed lignans have
shown some potential beneficial effects on human and animal
health. The conversion of SDG into mammalian lignans, ENL
and END, by the intestinal microflora contributes to the

bioavailability of SDG; however, other factors, such as diet,
antibiotics, and obesity, also affect the circulating lignan levels in
the body (Adlercreutz, 2007). Therefore, different levels of lignan
bioactivation are observed owing to variations in these factors.

SDG and its mammalian metabolites have been shown to act
as nutraceutical agents against some diseases, such as cancer,
diabetes, and heart diseases (Touré and Xueming, 2010; Imran
et al., 2015). Some of these health effects (Table 1) are discussed
in this review.

Antioxidant Activity of SDG
Some beneficial effects of SDG have been attributed to its
antioxidant properties. The ability of SDG to scavenge hydroxyl
radicals might contribute to its effects in cancer and lupus
nephritis (Prasad, 1997; Touré and Xueming, 2010). SDG
and its metabolites have been also shown to prevent DNA
oxidative damage and lipid peroxidation (Katare et al., 2012). The
antioxidant activities of SECO, SDG, END, and ENL were shown
to be involved in the hypocholesterolemic and antiatherogenic
effects (Prasad, 2000a,b). Moreover, a recent study comparing
flaxseed oil and flaxseed lignan showed that SDG could prevent
oxidative stress associated with metabolic syndrome (Pilar et al.,
2017).

Additionally, SDG scavenged radiation-induced HOCl in
physiological solutions, and a synthetic SDG (LGM2605) was
suggested as a promising attenuator of oxidative stress-induced
inflammatory tissue damage (Mishra et al., 2018).

Effects on the Cardiovascular System
Chronic heart diseases, caused directly or indirectly by
oxidative stress, inflammation, obesity, diabetes, dyslipidemia,
and hypertension, are the leading causes of death in developed
nations (Imran et al., 2015). SDG and its metabolites were
reported to exhibit cardiovascular protective effects, where
they lowered total cholesterol, LDL-cholesterol (LDL-C), and
triglyceride levels and normalized HDL-cholesterol (HDL-C) and
glucose metabolism, leading to less cardiovascular complications
(Zhang W. et al., 2008; Zanwar et al., 2013, 2014). SDG
consumption may protect against the development of chronic
diseases, such as cardiovascular diseases (Mathieu et al., 2009;
O’Keefe et al., 2009; Adolphe et al., 2010).

A recent study on the potential protective effects of SDG
in monocrotaline-induced pulmonary arterial hypertension
was conducted using male rats. Pretreatment with SDG
decreased right ventricular hypertrophy, reactive oxygen species
(ROS) levels, lipid peroxidation, catalase, superoxide dismutase,
glutathione peroxidase activities, alanine transaminase (ALT),
and aspartate transaminase (AST) plasma levels, compared to
those in the monocrotaline group. However, cotreatment with
SDG did not attenuate ventricular hypertrophy, ALT or AST
levels, but decreased ROS levels and catalase and superoxide
dismutase activities, compared to those in the monocrotaline
group (Puukila et al., 2017).

Secoisolariciresinol diglucoside, even at very low doses
(15 mg/kg), suppressed the development of hypercholesterolemic
atherosclerosis by 73%, and this effect was associated with a
decrease in serum total cholesterol, LDL-C, and oxidative stress,
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FIGURE 1 | Biosynthetic pathway of SDG. Phenylpropanoid pathway (yellow): PAL, phenylalanine ammonium lyase; C4H, cinnamate 4- hydroxylase; COMT, caffeic
acid O-methyltransferase; 4CL, 4-coumarate:CoA ligase; CCR, cinnamoyl-CoA reductase; CAD, cinnamyl alcohol dehydrogenase; SAD, sinapyl alcohol
dehydrogenase. Stereospecific coupling (blue); DIR, dirigent proteins. Biosynthesis of dibenzylbutane lignans (pink); PLR, pinoresinol/lariciresinol reductase; SDH,
secoisolariciresinol dehydrogenase. Glycosylation of SECO (green); UGT74S1, UGT74S3, UGT74S4, uridine glucosyltransferases (UGTs).

and an increase in HDL-C levels. Therefore, SDG can prevent
or delay the progression of atherosclerosis, and hence prevent
coronary artery disease, stroke, and peripheral arterial vascular
diseases (Prasad and Jadhav, 2015).

Anticancer Effects
Secoisolariciresinol diglucoside has been shown to prevent some
malignancies, such as breast, lung, and colon cancers, owing to
its strong antiproliferative, antioxidant, antiestrogenic, and/or

antiangiogenic activities. Additionally, the anticancer activity
of SDG was suggested to be associated with inhibition of
enzymes involved in carcinogenesis (Imran et al., 2015). SDG
reduced aberrant crypt multiplicity that may protect against
colon cancer (Jenab and Thompson, 1996), and supplementation
of SDG in diet resulted in reduction of the volume, area, and
number of tumors (Li et al., 1999). In humans, the protective
effects of SDG against cancer have been associated with its
capability to affect hormone levels and cancer progression
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TABLE 1 | Health benefits of secoisolariciresinol diglucoside (SDG) and its metabolites, namely secoisolariciresinol (SECO), enterolactone (ENL), and enterodiol (END).

Health benefits Reference

Effects on cardiovascular
system

• decrease in thrombus formation rate Sano et al., 2003; Prasad, 2007, 2008,
2009

• decrease in atherosclerosis

• reduction of serum and hepatic cholesterol and
LDL-cholesterol levels

Prasad, 2005; Prasad et al., 1998;
Fukumitsu et al., 2008; Felmlee et al.,
2009

• increase in vascular endothelial function Penumathsa et al., 2008

• suppression or slowing of progression and regression of
atherosclerosis

Prasad and Jadhav, 2015

• protective effects in a monocrotaline-induced model of
pulmonary arterial hypertension (PAH)

Puukila et al., 2017

Antidiabetic activity • reduction of HbA1C in participants with type 2 diabetes Pan et al., 2007, 2009

• decrease in insulin and leptin concentrations Fukumitsu et al., 2008

• delay in the onset of diabetes by 80% Prasad, 2001

Anticancer effects • reduction of mammary tumor incidence Chen et al., 2003

• reduction of terminal end bud structures in the mammary
gland

Ward et al., 2000; Tan et al., 2004

• decrease in the expression of COLO 201 human colon
cancer cells in athymic mice

Danbara et al., 2005

• decrease in prostate-specific antigen level and cell
proliferation

Demark-Wahnefried et al., 2004

• suppression of cancer cell proliferation, migration, and
metastasis

Chikara et al., 2017; Mali et al., 2017

Effects on mental stress • reduction of plasma cortisol and small increase in plasma
fibrinogen levels during mental stress

Spence et al., 2003; Imran et al., 2015

• antidepressant-like effect of flaxseed SDG Ma et al., 2013

Effects on the reproductive
system

• reduction of immature ovarian relative weight and delay in
puberty

Imran et al., 2015

(Imran et al., 2015). Furthermore, SDG was considered a
chemopreventive agent against malignant mesothelioma owing
to its ability to reduce acute asbestos-induced peritoneal
inflammation, nitrosative, and oxidative stress (Pietrofesa et al.,
2016).

Several studies showed a correlation between SDG metabolites
and breast cancer in women, where the serum levels of intestinal
microbial END and ENL showed inverse association with breast
cancer (Pietinen et al., 2001; Boccardo et al., 2004; Imran
et al., 2015). SDG might have the potential to promote early
enhancement of mammary gland differentiation, which could
protect against breast cancer (Tan et al., 2004; Adolphe et al.,
2010). However, García-Mateos et al. (2018) showed that the
preventive potential of SDG and its metabolites could be affected
by the breast cancer resistance protein (BCRP/ABCG2) (García-
Mateos et al., 2018).

Secoisolariciresinol diglucoside was suggested to protect
against breast cancer owing to its regulation of the expression
level of zinc transporters since the concentration of zinc is higher
in breast cancer cells than in the normal breast cells (Zhang L. Y.
et al., 2008). Moreover, studies have shown that the anticancer
potential of SDG metabolite, ENL, is related to its ability to
suppress the proliferation, migration, and metastasis of cancer
cells (Chikara et al., 2017; Mali et al., 2017). A research group
of Dr. Thompson (University of Toronto) verified the anticancer
activity of SDG, where SDG supplementation in mouse diet

resulted in a decrease in the tumor load (Shareef and Sarfraz,
2016).

In a clinical trial, the anticancer effects of SDG were studied in
45 premenopausal women with suspicious breast biopsies or who
were former breast cancer survivors. SDG lignan (50 mg) was
administered daily for a year. Women receiving SDG exhibited
less breast precancerous changes, and 80% of them showed a
decrease in the levels of Ki-67, a biomarker of cell proliferation
(Fabian et al., 2010).

Additionally, the anticancer effects of a purified flaxseed
hydrolysate (PFH), a lignan-rich fraction, were studied. PFH
of the cultivar Giza9 (rich in SDG) reduced the expression
of the metastasis marker, 1-α, metalloproteinases, and vascular
endothelial growth factor, one of the most potent stimulators
of angiogenesis, whereas it increased caspase-3-dependent
apoptosis, suggesting that it exhibited anticancer activity in a
human breast cancer cell line T47D. Dietary intake of Giza9
cultivar-derived PFH resulted in a decrease in the tumor volume
and an increase in the expression of caspase-3, suggesting that
it exerted anticancer activity in tumor-bearing mice (Ezzat et al.,
2018).

Antidiabetic Activity
Apart from flaxseed fibers that may affect insulin secretion
and plasma glucose homeostasis, studies have shown that SDG-
containing nutrients also affect plasma glucose homeostasis
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(Touré and Xueming, 2010). SDG reduced C-reactive protein
concentration, which is related to insulin resistance in type 2
diabetes (Prasad, 2009; Peterson et al., 2010), and decreased the
development of diet-induced obesity (Fukumitsu et al., 2008)
and glucosuria (Prasad, 2001). Flax lignan complex decreased
the metabolic syndrome composite score in males; however, no
effects were observed in females (Cornish et al., 2009). The
antidiabetic activity of SDG was suggested to be related to its
antioxidant effects (Prasad, 2000b; Prasad et al., 2000).

Secoisolariciresinol diglucoside treatment reduced the
incidence of diabetes by 75% in streptozotocin-induced model
of diabetes and by 72% in the Bio-Breed diabetic rat model
of diabetes. These effects were associated with a decrease in
oxidative stress, as evidenced by the decrease in serum and
pancreatic malondialdehyde (MDA) levels. SDG was also shown
to delay the development of diabetes in Zucker fatty rat type 2
diabetes model, which was associated with reduction of serum
MDA and glycated hemoglobin (A1C) levels (Prasad and Dhar,
2015). Thus, SDG may have antidiabetic potential, where it can
reduce the incidence of type 1 diabetes and delay the development
of type 2 diabetes in humans.

Effects on Mental Stress
Administration of SDG inhibited stress-induced behavioral
changes, whereas treatment with high doses of SDG reversed
chronic stress-induced increase in serum corticosterone and
adrenocorticotropic hormone (ACTH) levels. Additionally, the
effects of SDG on the behaviors of ovariectomized mice might be
related to modulation of the neuroendocrine-immune network
and neurotrophin factor expression (Ma et al., 2013). Three
flax cultivars with different contents of alpha-linolenic acid and
lignans significantly reduced blood pressure during frustrating
cognitive task-induced mental stress in postmenopausal women
with vascular diseases. The cultivar with the highest lignan
and lowest alpha-linolenic acid contents was associated with
the minimum increase in peripheral resistance and plasma
fibrinogen levels and the maximum reduction of plasma cortisol
levels during mental stress (Spence et al., 2003).

Effects on the Reproductive System
The potential effects of SDG on the reproductive system
were studied since lignans were reported to have estrogen

agonist or antagonist properties. Flaxseed had no effect on
rat pregnancy outcome; however, 10% flaxseed-containing diet
lowered the birth weight, compared to that of other treatments.
Additionally, it exhibited estrogenic effects, including greater
uterine and ovarian relative weights, earlier age and lighter
body weight at puberty in female offspring, as well as reduced
postnatal weight gain and greater sex gland and prostate
relative weights in males. However, 5% flaxseed-containing diet
reduced immature ovarian relative weight by 29%, delayed
puberty by approximately 5 days, and tended to prolong the
diestrus, indicating an antiestrogenic effect. Therefore, flaxseed
was shown to affect the development of the reproductive system
in offspring; thus, caution should be taken when consuming
flaxseed during pregnancy and lactation (Tou et al., 1998).
Exposure to lignans during lactation reduced the susceptibility to
mammary carcinogenesis later in life without adverse effects on
selective reproductive indices in dams or offspring (Chen et al.,
2003).

CONCLUSION

This review summarized the health beneficial effects of SDG,
the most predominant lignan in flaxseed, where it can protect
against several diseases, including cardiovascular diseases, cancer,
diabetes, and mental stress, and affect the reproductive system.
Additionally, we reviewed the biosynthetic pathways of SDG in
plants.
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