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Abstract

Recently there has been great interest in identifying rare variants associated with common diseases. We apply
several collapsing-based and kernel-based single-gene association tests to Genetic Analysis Workshop 17 (GAW17)
rare variant association data with unrelated individuals without knowledge of the simulation model. We also
implement modified versions of these methods using additional information, such as minor allele frequency (MAF)
and functional annotation. For each of four given traits provided in GAW17, we use the Bayesian mixed-effects
model to estimate the phenotypic variance explained by the given environmental and genotypic data and to infer
an individual-specific genetic effect to use directly in single-gene association tests. After obtaining information on
the GAW17 simulation model, we compare the performance of all methods and examine the top genes identified
by those methods. We find that collapsing-based methods with weights based on MAFs are sensitive to the “lower
MAF, larger effect size” assumption, whereas kernel-based methods are more robust when this assumption is
violated. In addition, many false-positive genes identified by multiple methods often contain variants with exactly
the same genotype distribution as the causal variants used in the simulation model. When the sample size is much
smaller than the number of rare variants, it is more likely that causal and noncausal variants will share the same or
similar genotype distribution. This likely contributes to the low power and large number of false-positive results of
all methods in detecting causal variants associated with disease in the GAW17 data set.

Background
To date, genome-wide association studies (GWAS) have
been successful in unveiling many common single-
nucleotide polymorphisms (SNPs) associated with com-
mon diseases, including type 1 and type 2 diabetes,
rheumatoid arthritis, Crohn’s disease, and coronary
heart disease [1-3]. However, the results from recent
GWAS account for a relatively small proportion of the
heritability of those diseases. One possible explanation
of this limitation is that GWAS have focused mainly on
variants that are common (minor allele frequency
[MAF] > 5%), whereas many disease-causing variants

may be rare and therefore difficult to tag using common
variants.
The advent of next-generation sequencing technology

has offered great opportunities for discovering novel
rare variants in the human genome, associating these
rare variants with diseases, and increasing our biological
knowledge of disease etiology. In particular, as pointed
out by Choi et al. [4], protein-coding regions harbor
85% of the mutations with large effects on disease-asso-
ciated traits. As a result, whole-exome sequencing tech-
nology has emerged as a powerful paradigm for the
identification of rare variants associated with diseases.
This technology was used in the pilot3 study of the
1000 Genomes Project [5], from which the Genetic Ana-
lysis Workshop 17 (GAW17) mini-exome data were
generated.
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In the GAW17 mini-exome data set [6], most of the
SNPs are rare (MAF < 5% for 21,355 out of 24,487
SNPs) so that multimarker association tests are more
desirable than single-marker tests, such as the chi-square
test, because of the potential to increase power from mul-
tiple signals in a region. However, because of higher
degrees of freedom, multimarker association tests may
have reduced power. To overcome this problem, investi-
gators have recently proposed several multimarker asso-
ciation tests for which the test statistics have smaller
degrees of freedom. In this paper, we consider two types
of such association test procedures. The first approach is
based on collapsing multimarkers within a chromosomal
region to generate a reduced set of genetic predictors
[7-9]; the second approach correlates genetic similarity
among individuals across a set of markers by using a ker-
nel function with their phenotypic similarity [10-13]. We
describe these methods in the Methods section.
We apply these methods to each of the genes in the

GAW17 unrelated individuals data set to identify genes
associated with the given traits (Affected, Q1, Q2, and
Q4), adjusting for the effects of environmental covariates
(Smoke, Age, Sex, and Population). The results from
these methods are compared. In addition, for each given
trait, we use the Bayesian mixed-effects model to esti-
mate the phenotypic variance that can be explained by
the given environmental and genotypic data and to infer
an individual-specific genetic effect to use directly in
single-gene association tests.

Methods
Let Xi denote the vector of given environmental covari-
ates such as Age and Sex, and let Yi denote the vector
of a quantitative or qualitative trait for individual i (i =
1, 2, …, 697). Our general framework can be described
as follows. For a binary trait,

logit P Y X h Gi i
T

ik( ) ( ),= = +1 b (1)

and for a quantitative trait,

Y X h G ei i
T

ik ik= + +b ( ) , (2)

where Gik is a vector of minor allele counts for SNPs
within gene k for individual i. In this framework, h(·)
represents the genetic effect, adjusting for the effects of
covariates Xi. Then our main focus is on hypothesis
testing for h(·) = 0 for each gene k.

Collapsing-based methods
The collapsing method was first introduced by Li and Leal
[7] for detecting disease associations. In this method, rare
variants (MAF < 0.05) in gene k are collapsed so that one
genetic variable gik is obtained from Gik using an indicator

function for the presence of rare variants in this gene for
each individual i. Morris and Zeggini [8] extended this
idea into a linear regression framework for quantitative
traits and also introduced an alternative genetic variable
gik, based on Gik, defined by the proportion of rare var-
iants. In a groupwise association test procedure proposed
by Madsen and Browning [9] a new genetic variable gik is
defined through a weighted sum of the mutation counts
based on their MAFs. As shown in Eqs. (1) and (2), we
would like to take into account environmental covariates
in our testing models; these covariates are not included in
the testing procedures just described [7,9]. Therefore we
borrow all the coding schemes of gik for each Gik and
model h(Gik) as h(Gik) = b · gik. Then association testing is
reduced to testing for b = 0.
As suggested by Li and Leal [7], markers can be

divided into subgroups on the basis of predefined cri-
teria. In this analysis, by using functional annotation
information, we divide variants into synonymous and
nonsynonymous groups. In this grouping scheme,
ambiguously annotated SNPs (labeled unknown or
empty) are combined with synonymous SNPs. By using
the weighted sum of the mutation counts, we obtain
genetic scores for nonsynonymous and synonymous
groups and apply the models in Eqs. (1) and (2) to those
two scores, that is,

h G g gi i ns ns i syn syn( ) ., ,= +b b (3)

Then we perform association testing for bns = bsyn = 0.

Kernel-based methods
An alternative powerful multimarker association test is
the kernel-based association test (KBAT) [10,11].
KBATs are based on flexible high-dimensional data ana-
lysis techniques called the least-squares kernel machine
(LSKM) for quantitative traits and the logistic kernel
machine (LKM) for binary traits. Liu et al. [12,13] pro-
posed the LSKM (LKM) method to relate continuous
(binary) outcomes with covariates and the pathway
effect of multiple gene expressions. For quantitative
traits, b and h are estimated by maximizing the pena-
lized likelihood function:

J h y X h G hi i
T

ik

i

n

( , ) ( ) ,b b l= − − −⎡
⎣

⎤
⎦ −

=
∑1

2
1
2

2

1

2 (4)

where l is a tuning parameter. The representer theorem
by Kimeldorf and Wahba [14] shows that the solution to
the nonparametric function h(·) can be expressed as:

h G K G Gi ik

i

n

( ) ( , )=
=
∑a

1

(5)
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for a given kernel function k(·, ·). Then the estimates
of b and a (equivalently, h) can be easily obtained by
plugging the h(G) obtained from Eq. (5) into the pena-
lized likelihood function (Eq. (4)). For more details on
the estimation, see Wu et al. [11]. The relationship
between the LSKM and linear mixed models leads to
the assumption that h(·) ~ N(0, τK), where τ is a scalar
and K is an n × n matrix whose (i, j)th component is K
(Gik, Gjk). As a result, testing hypothesis h = 0 is simply
reduced to testing τ = 0. For the hypothesis testing for τ
= 0, a score test statistic proposed by Zhang and Lin
[15] can be used. This method has also been extended
to case-control data by using the LKM approach [11].
KBAT methods are just the extension of the LSKM and
LKM for multimarker associations.
Note that a prespecified kernel function K(Gik, Gjk)

measures the genetic similarity between two individuals
i and j on the basis of their genotypes at the SNPs in
gene k. If:

ˆ( ) ˆ ( , ),h G K G Gi ik

i

n

=
=
∑a

1

(6)

then â j = 0 implies that the genetic similarity to indi-
vidual j does not influence ˆ( )h ⋅ and thus estimates trait
ŷ . In this analysis, we use a kernel function based on
the number of alleles shared identical by state (IBS) by
two individuals i and j at the SNPs within gene k. If Gik

= (M1ik, …, Msik), where Mrik denotes the genotype of
individual i at SNP r in gene k, then a weighted IBS ker-
nel can be defined by:

K G G
w M M

sik jk

sk lik ljk
l

s

( , )
( , )

,= =∑ IBS
1

2
(7)

where wlk is a weight based on qlk, the MAF of SNP l
within gene k, and is defined by:

w
q

lk
lk

= 1
1 2/ (8)

here. For an unweighted IBS kernel, wlk is replaced by a
constant, say, 1. The underlying idea behind the weighted
IBS kernel is that similarity in rare alleles is more infor-
mative than similarity in common alleles for the trait
similarity between two individuals so that the IBS kernel
weights similarity in rarer alleles more.

Bayesian mixed-effects model to estimate genetic
effects of traits
We propose a Bayesian mixed-effects model to jointly
analyze 200 simulation replicates. The main idea of our
Bayesian mixed-effects model is to treat the genetic

effect for each individual as a random effect and the
environmental effect as a fixed effect. For disease status,
we consider the logistic regression framework:

logit P Y X gik ik
T

E i( )= = +1 b (9)

and use the linear regression framework for Q1, Q2,
and Q4, that is,

Y X g eik ik
T

E i ik= + +b , (10)

where eik ~ N(0, s2), k = 1, …, 200, is the index for
replicates and i = 1, …, 697 is the index for individuals.
In both models, gi is the genetic effect of individual i
and Xik

T
Eb is the environmental effect. To complete the

Bayesian model, we specify the prior distribution for the
model parameters as follows: gi ~ N(0, s g

2 ) and bE ~ N
(0, Σb), in which Σb is a diagonal matrix. The diagonal
elements of Σb, s g

2 , and s2 are further assigned nonin-
formative inverse gamma distributions. For each trait,
we fit the model using the Markov chain Monte Carlo
algorithm.

Results
Variance of different traits explained by genetic effects
During the first round of association tests for different
traits, we noticed a dramatic difference in the number
and magnitude of significantly associated genes and
environmental variables. Therefore we suspect that the
variance in different traits that can be explained by the
provided genotype data and environmental components
may vary.
To estimate the upper limit of the explainable propor-

tion of variance, we proposed a Bayesian mixed-effects
model and compared the posterior means of Σb, s g

2 ,
and s2. We found that Q1 is affected by both given gen-
otype data and environmental variables; in contrast, Q2
is mainly affected by genetic but not environmental vari-
ables, and Q4 is not affected by any given genotypic
data (Table 1).
Although this procedure was performed without

knowing the GAW17 simulation answers, the observed
pattern agrees well with the answers. Because Q4 is
obviously not affected by any genotypes, we did not
consider Q4 further in gene-level association tests.

Table 1 Proportion of phenotypic variance explained by
environmental variables and genotypic data

Trait Variance explained
by genotypic data

Variance explained by
environmental variables

Residual
variance

Q1 0.206 0.161 0.633

Q2 0.124 0.008 0.868

Q4 0 0.787 0.213
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Investigation of top genes associated with disease status
from different methods
Using the genetic effects gi estimated from the Bayesian
mixed-effects model as responses, we applied three well-
established collapsing methods and a kernel-based
method to the GAW17 data set of 697 unrelated indivi-
duals and conducted gene-based association tests. To
incorporate functional annotation information, we also
separated nonsynonymous from synonymous SNPs in
all methods and applied the modified versions too.
Table 2 lists the top 10 genes associated with disease

identified by the different methods. The true causal
gene PIK3C3 was identified by all methods, probably
because of its relatively large effect size and MAF. The
true causal gene PIK2B was identified by methods con-
sidering both synonymous and nonsynonymous SNPs
but dropped off the top 10 list for methods considering
only nonsynonymous SNPs. Interestingly, the combined
multivariate and collapsing (CMC) synonymous method,
which examined only noise variables, also reported
PIK2B in the top 10 gene list, indicating that some
synonymous variants in PIK2B also contain association
signals. Indeed, we found that a noncausal synonymous
SNP (C8S886) in PIK2B had an identical genotype dis-
tribution with a causal SNP (C5S5156) in FLT4 (a causal
gene for Q1 that indirectly affected disease status).
Some false-positive genes were often identified by

multiple methods for similar reasons. For example, the
false-positive gene NOTCH2NL contains a SNP
(C1S6297) that is identical with C18S2475 in PIK3C3.
The false-positive genes PRH1, PRR4, and TAS2R48 are
colocated on chromosome 12 and share SNP C12S717,
which has the same genotype distribution as C7S5144, a
causal variant for Q2. The false-positive gene SUSD2
contains the SNP C22S929, which is identical with cau-
sal variants C1S3181 in ELAVL4 (associated with Q2)
and C6S5448 in VNN3 (associated with disease status).
The false-positive gene KIT contains C4S1839, which is
close to and identical with the causal variant C4S1873
in KDR. Some other commonly identified false-positive
genes (e.g., MUSK and ZNF91) share similar but not
exactly the same genotype distributions with causal
genes (e.g., PRKCA and PTK2B), and their genetic
scores are highly correlated (p < 2.2 × 10−16).
In summary, there are many confounded signals in the

GAW17 data set. We found 1,494 SNPs sharing exactly
the same genotype distribution with at least one of the
160 causal SNPs. This posed a big challenge in the identi-
fication of causal genes, especially for traits with a large
number of underlying causal variants, such as disease sta-
tus. This may be a common problem in rare variant asso-
ciation studies because the sample size is usually much
smaller than the number of variants. When most variants

have extremely low MAFs, it is likely that their genotype
distributions will coincide.

Comparison of collapsing- and kernel-based methods
After obtaining the simulation answers from the GAW17
meetings, we analyzed 200 simulated data sets and then
counted how many causal genes and false-positive genes
were identified by each method at different significance
thresholds, and we plotted receiver operating characteris-
tic (ROC) curves for all methods (Figures 1, 2, 3). From
the plots, we found that all methods lacked power to
identify disease causal genes (Figure 1). However, these
methods were able to identify some true signals for Q1
(Figure 2) and Q2 (Figure 3). Methods considering only
nonsynonymous variants (dashed lines in the ROC plots)
performed consistently better than their counterparts
using both nonsynonymous and synonymous variants;
this was expected because the simulation model involved
only nonsynonymous SNPs. This is probably true for real
data as well because nonsynonymous SNPs are more
likely to change protein structure and to have larger bio-
logical effects.
Another pattern revealed by the ROC plots for Q1

and Q2 is that the weighted-sum and CMC methods
that assign more weight to rarer variants performed
worse than other methods for Q1 and comparable to
other methods for Q2. This is probably because the
“lower MAF, larger effect” assumption does not hold for
Q1. We checked the correlation between MAF and
effect size (b) of causal variants for Q1 and Q2 and
found that correlation for Q1 (−0.17) is not significantly
different from 0 (p = 0.3), whereas correlation for Q2
(−0.23) is only marginally significant (p = 0.05). Interest-
ingly, the kernel method using a weighted IBS kernel
did not suffer much power loss in Q1, although it also
assigned more weight to rarer variants. It performed
favorably and at least as good as two baseline methods
(collapsing and weighted-sum) no matter whether the
assumption was true or not. In real data, when we do
not know whether rarer variants have larger effect sizes,
the kernel-based method is preferable.

Discussion
A key contribution of our work is the application of the
kernel-based method in the setting of association tests
with rare variants. Originally this method was proposed
in common variant association studies to enrich signals
from multiple genotypic markers and to reduce the
degrees of freedom in association tests. We found it sui-
table for rare variant association studies as well because
single-marker tests using rare variants have low power
as a result of the extremely low MAFs. To our knowl-
edge, the kernel-based method has not been widely
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Table 2 Top 10 disease-associated genes from different methods

Collapsing Weighted-
sum

Kernel
(weighted

IBS)

CMC (both synonymous
and nonsynonymous

SNPs)

CMC
(synonymous
SNPs only)

Collapsing
(nonsynonymous

SNPs only)

Weighted sum
(nonsynonymous

SNPs only)

Kernel (weighted IBS,
nonsynonymous SNPs

only)

CMC
(nonsynonymous

SNPs only)

Kernel (IBS,
nonsynonymous

SNPs only)

PIK3C3 PIK3C3 FLT1 FLT1 PRH1 FLT1 FLT1 MAP3K6 FLT1 OR2T3

FLT1 FLT1 TAS2R48 PRH1 TAS2R48 PIK3C3 PIK3C3 NOTCH2NL PIK3C3 OR2T34

PRH1 PRH1 PRH1 PIK3C3 ZNF91 KDR KDR FLT1 KDR HLA-A

PRR4 PRR4 PRR4 OR52E4 PTK2B KCNJ12 OR52E4 OR2T34 OR2T3 OR52E4

PTK2B PTK2B PIK3C3 TAS2R48 LOC645118 ZNF77 NOTCH2NL RGPD4 MAP3K6 FLT1

ZNF91 ZNF91 SUSD2 KDR INSR NOTCH2NL ZNF77 LRP1B HLA-L KCNJ12

NOTCH2NL NOTCH2NL KCNJ12 NOTCH2NL TERT OR9G1 BRCA1 PIK3C3 VNN1 PIK3C3

TAS2R48 TAS2R48 OR52E4 PTK2B EPHB1 OR2T3 OR9G1 VNN1 PATE SUSD2

MUSK MUSK HLA-B ZNF91 PRR4 EPHA5 OR2T3 MYO3A E2F2 HLA-L

KIT KIT PTK2B LRP1B TNK1 E2F2 MAP3K6 TACC2 C1ORF147 SSTR4

For the kernel-based methods, there are 43 genes (Kernel, weighted IBS) and 19 genes (Kernel, weighted IBS, nonsynonymous SNPs only) that have p-values less than 10−16 and thus are reported as 0. These genes
cannot be ranked effectively. Genes in bold and italic are causal genes for disease liability; genes in bold are associated with Q1 or Q2.
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Figure 1 ROC curves for Q1

Figure 2 ROC curves for Q2
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applied to rare variant association studies, and our sys-
tematic comparisons of this method with other well-
established collapsing methods provide a better under-
standing of its behavior and potential use in rare variant
association studies.
Another novel contribution we make is the application

of a Bayesian mixed-effects model. This procedure makes
use of all 200 simulation replicates and serves two pur-
poses. First, by comparing the posterior mean of Σb, s g

2 ,
and s2, we can estimate the proportion of phenotypic
variation that can be explained by environmental vari-
ables and given genotype data. Second, the posterior
mean of gi is treated as a new response without environ-
mental covariate effects and is directly used in association
tests with genotypic data. It provides the basis for a more
reliable comparison of different collapsing-based and ker-
nel-based association methods by evaluating the result
consistency across different replicates.

Conclusions
We have two major conclusions. First, collapsing-based
methods that assign more weight to rarer variants are
sensitive to the “lower MAF, larger effect size” assump-
tion, whereas kernel-based methods are more robust
and suffer less power loss, even when the assumption is
violated. Second, many false-positive genes identified by

multiple methods often contain SNPs with exactly the
same genotype distribution as the causal variants used
in the simulation model. When sample size is much
smaller than the number of rare variants, it is likely that
the causal and noncausal variants will share the same or
similar genotype distributions. This might lead to poor
power and a large number of false-positive results for all
methods in detecting causal disease-associated variants
in the GAW17 data set.
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