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Abstract: Background: In end-stage chronic liver disease, transplantation represents the only curative
option. However, the shortage of donors results in the death of many patients. To overcome this
gap, it is mandatory to develop new therapeutic options. In the present study, we decellularised pig
livers and reseeded them with allogeneic porcine mesenchymal stromal cells (pMSCs) to understand
whether extracellular matrix (ECM) can influence and/or promote differentiation into hepatocyte-
like cells (HLCs). Methods: After decellularisation with SDS, the integrity of ECM-scaffolds was
examined by histological staining, immunofluorescence and scanning electron microscope. DNA
quantification was used to assess decellularisation. pMSCs were plated on scaffolds by static seeding
and maintained in in vitro culture for 21 days. At 3, 7, 14 and 21 days, seeded ECM scaffolds were
evaluated for cellular adhesion and growth. Moreover, the expression of specific hepatic genes was
performed by RT-PCR. Results: The applied decellularisation/recellularisation protocol was effective.
The number of seeded pMSCs increased over the culture time points. Gene expression analysis of
seeded pMSCs displayed a weak induction due to ECM towards HLCs. Conclusions: These results
suggest that ECM may address pMSCs to differentiate in hepatocyte-like cells. However, only contact
with liver-ECM is not enough to induce complete differentiation.

Keywords: mesenchymal stromal cells; bioscaffold; decellularisation; extracellular matrix;
recellularisation; tissue engineering
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1. Introduction

According to the World Health Organization (WHO) estimates, liver failure-related
death have been growing exponentially in recent decades, with an annual increase of
50 million per year [1], and it is regarded as one of the most critical health problems in
the world [2,3]. To date, liver transplantation (LT) is widely indicated as the only effec-
tive therapy for end-stage liver disease with one-year post-LT survival above 85% [4,5].
However, LT is severely limited by the lack of organ donors. Although much effort has
been made to increase the pool of organs to be transplanted, including donation after heart
death or pushing the use of marginal livers [6], the need for an LT continues to rise, and the
limited liver supply remains the most crucial restrictive driver. In this context, alternative
approaches other than LT, as well as “bridge-to-surgery” approaches, are needed. One of
the alternative strategies is cellular therapy, such as hepatocyte transplantation (HT). HT
has been only used as a bridge-to-surgery solution for more severe patients waiting for an
LT, accompanied by relatively modest results and uncertain duration [7,8]. Indeed, HT has
rarely generated long-term therapeutic effects since the availability of high-quality hepato-
cytes is often limited by shortages of donor organs from which cells can be isolated [9,10].
In parallel, mature hepatocytes are difficult to expand in vitro [11]. Therefore, research
on alternative options is quickly progressing. Regenerative Medicine (RM) and organ
bioengineering (OBE) have been extensively explored to provide transplantable tissues or
whole organs with the final goal of creating a three-dimensional (3D) microenvironment
mimicking the organ’s native structure [12]. This approach may make the use of autologous
cells theoretically possible, eliminating the need for post-transplant immunosuppression.
According to the literature, an extracellular matrix (ECM)-based scaffold can be obtained
through a decellularisation process [13,14]. The ECM, composed of collagen, fibronectin,
laminin and several growth factors, not only represents appropriate mechanical support but
also provides a 3D bioactive microenvironment that helps cellular attachment, proliferation
and differentiation [15–18]. Mesenchymal stromal cells (MSCs) are considered a promising
cell source in organ bioengineering, able to repopulate ECM-based scaffolds [19–22]. In
fact, the MSCs ability to differentiate into multiple cell types giving rise to cells of all three
germinal layers, including hepatocyte-like cells (HLCs), has been reported [10,23–26]. In
the present study, we hypothesise that a decellularised liver scaffold, repopulated with
allogenic porcine mesenchymal stromal cells (pMSCs), could activate and promote the
differentiation of pMSCs to hepatocyte-like cells (Figure 1).

Figure 1. Schematic representation of the experimental design for decellularization/recellularization
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phases. Bone marrow and porcine liver were collected in sterile conditions under anaesthesia. Liver
segments were cut into cubic portions (d = 10 × 10 × 2 mm). The decellularization procedure was
performed by 48 h orbicular shacking in sterile 0.15% SDS solution (A = native; B = partially decel-
lularised and C = decellularised). Efficacy evaluation of the decellularisation procedure and ECM
integrity were verified by different staining (Haematoxylin/Eosin, Masson’s Trichrome, Picrosirius
Red, Alcian Blue and DAPI) and DNA extraction and quantification. Porcine BM samples (20–40 mL)
were collected from the posterior iliac crest. Porcine MSC (pMSC) were isolated, expanded and
characterized following the minimum criteria of mesenchymal stromal cells. ECM scaffold recellu-
larization with pMSC was performed by static seeding. Cells (1 × 106/50 µL) were seeded drop by
drop to cover the liver ECM scaffold. Scaffolds’ repopulation was evaluated by histology, imaging
and gene expression.

2. Materials and Methods
2.1. Animals

Large White six-month-old piglets (n = 3; 30 ± 5 Kg BW, mean weight ± SD) from a
disease-free barrier breeding facility were housed in fully air-conditioned rooms (24 ◦C
room temperature, 50% relative humidity) for a minimum of seven days and allowed
fasted for 12 h before surgery with ad-libitum access to water. The experimental protocol
received approval from the National Animal Care and the Institutional Ethics Committee
of the University of Pavia. All animal care and procedures were conducted following the
guidelines established by Italian and European legislation (Italian Directives 1992/116;
European Directives 86/609/EE and 2010-63UE).

2.2. Porcine Liver Retrieval

Animals were pre-medicated with an intramuscular injection of tiletamine hydrochloride-
zolazepam hydrochloride (10 mg/kg). Subsequently, the marginal vein of the ear was
cannulated, and the anaesthesia induction was performed with propofol (0.2 mg/kg
EV). Anaesthesia was maintained during surgery with a continuous infusion of propofol
(10 mg/kg/h EV). The surgical procedure was carried out in sterile conditions. Through
a midline vertical laparotomy, the liver was retracted ventrally and superiorly, and the
posterior diaphragmatic attachments of the liver were divided to fully mobilise the organ.
The hepatic hilum, the IVC and the aorta were isolated. After an intravenous injection
of heparin (100 U/kg), the aorta was clamped just under the diaphragm, and 0.9% NaCl
solution was infused in the aortic cannula while the suprahepatic IVC was transected. After
4000 mL perfusion, the liver was removed by sectioning the hilum and divided into lobes.
The liver’s segments were placed in sterile organ bags and frozen at −80 ◦C until further
processing. Animals were euthanised with a bolus of pentobarbital 100 mg/Kg IV.

2.3. Liver Decellularisation Procedure

Liver segments were thawed at 4 ◦C for 24 h and then precision-cut into tissue cubic
portions sizing 10 × 10 × 2 mm3. Samples were transferred into 50 mL tubes, and residual
blood was removed by continuous 12 h of orbital shaking (Heidolph, Schwabach, Germany)
(120 rpm) in 0.9% NaCl solution added with heparin (5000 UI/mL). Liver specimens
decellularisation was then performed by 48 h of orbital shaking in sterile deionised H2O
(dH2O) containing 0.15% Sodium Dodecyl Sulphate (SDS), an anionic detergent (Sigma-
Aldrich, Milan, Italy). The solution was changed every 12 h. To remove the detergent,
six washes with 0.9% NaCl solution supplemented with 1% amoxicillin/clavulanic acid
(Ibigen, Aprilia, Italy) and 1% fluconazole (Bioindustria, Novi Ligure, Italy) were used.
Acellular scaffolds were stored in 1% amoxicillin/clavulanic solution at 4 ◦C. All procedures
were performed at room temperature in sterility.
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2.4. Histological Analysis and DAPI Staining

Efficacy evaluation of the decellularisation procedure as well ECM integrity were
verified via Haematoxylin/Eosin (H&E), Alcian Blue, Masson’s Trichrome and Picrosirius
Red stainings (all from Bio-Optica, Milan, Italy). Three different native and decellularised
fragments from the same liver were fixed in 4% paraformaldehyde (PFA, Sigma-Aldrich)
for 24 h at room temperature, rinsed with PBS solution (pH = 7.2), dehydrated with a
gradient alcohol series (30%, 50%, 70%, 90% and 100% v/v), cleared in xylene and horizon-
tally embedded in paraffin. ECM-sections (8 µm) were obtained using a microtome (Leica
Biosystems, Nußloch, Germany) and prepared for histological stains. Samples were exam-
ined under a light microscope (Axiophot Zeiss, Zukunftspreis, Germany) equipped with a
digital camera. To assess the presence of nuclear materials, nuclear-specific 4,6-diamidino-
2-phenylindole (DAPI, Sigma-Aldrich) staining was also performed. ECM samples marked
with DAPI solution were observed at Confocal Microscope (Leica, Nußloch, Germany).

2.5. DNA Residuals Evaluation

Dry decellularised scaffolds (n = 5) were weighed and digested using TNE buffer (Tris
10 mM, NaCl 150 mM and EDTA 10 mM) containing Proteinase K (10 mg/mL, Invitrogen,
United States) and 20% SDS. After 4 h at 56 ◦C incubation, TNE-saturated Phenol solution
(Sigma-Aldrich) was added to each sample according to the manufacturer’s instructions.
Samples were centrifugated, and the aqueous top layer was recovered. An equal amount
of phenol-chloroform solution (1:1) was added. After centrifugation, the aqueous top layer
was recovered. Phenol-chloroform-isoamyl alcohol (25:24:1; Sigma-Aldrich) was added in
equal amounts to each sample and centrifuged at 8000 rpm for 5 min. Ethanol was added,
and the solution was kept at 4 ◦C for 12 h. Samples were centrifugated to remove ethanol.
Finally, the extracted DNA was eluted in 50 µL of DNA-free H2O and was quantified
using spectrophotometric NanoDrop (Thermo Scientific, Milan, Italy). For all the assays,
normalisation was performed with respect to native tissue weight.

We applied the same DNA extraction procedure for fresh liver samples (n = 5) after
dissociation by GentleMACS Dissociator (Miltenyi Biotec, Bologna, Italy) following the
manufacturer’s instructions. As a positive control, we considered the DNA obtained by
extraction of scaffold added with known DNA concentrations. Positive controls were
treated parallel to every dye cycle.

DNA Electrophoresis was used to detect the length of residual DNA fragments present
on ECM scaffolds after the decellularisation protocol (n = 3). A 2% agarose (Sigma- Aldrich)
w/v gel was prepared, containing TAE buffer (Tris-acetic acid-EDTA, Euroclone, Milan,
Italy). DNA samples were mixed with loading Dye (5:1 ratio, Gel Loading Buffer; Sigma
Aldrich). Electrophoresis was performed at a voltage gradient of 5 V/cm for 30 min. Frag-
ments were detected by staining the gel with the intercalating dye (SYBR Safe, Invitrogen,
Monza, Italy), followed by visualisation/photography under UV light (Syngene Europe,
Cambridge, UK). In order to quantify the different DNA fragment base pair (bp) sizes, a
DNA ladder was inserted for scaling purposes.

2.6. SEM Analysis

ECM scaffolds were washed twice with Sodium Cacodylate Buffer (SCB; 0.1 M, pH
7.4). Scaffolds were fixed with 2% glutaraldehyde (GDA, Sigma-Aldrich) in SCB. After
fixation, ECM scaffolds were rinsed with SCB. Critical-point dehydration was carried out
using a graded series of ethanol (30%, 50%, 70%, 90% and 100% v/v). Dehydrated samples
were mounted on an aluminium stub and platinum sputtered. They were finally imaged
by Field Emission Scanning Electron Microscopes (FE-SEM-Mira3, TESCAN, Roma, Italy)
and Scanning Electron Microscopy/Energy Dispersive Spectroscopy SEM/EDS (Zeiss,
Zukunftspreis, Germany).
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2.7. Scaffold Immunogenicity In Vitro Evaluation

The immunogenicity was evaluated after decellularised scaffold lyophilisation by
in vitro assay using human peripheral blood mononuclear cells (PBMCs) from one healthy
adult subject. Briefly, after ECM enzymatic digestion at 37 ◦C for 24 h, the solution was
lyophilisated (KrosFlo® Research 2i system, Spectrum Laboratories, Milan, Italy) and freeze-
dried, obtaining ECM powder that was preserved at −80 ◦C until use [27]. As a positive
control, lyophilised powder from native liver cubic portions was used.

PBMCs (1 × 105/well) were cultured in triplicate in RPMI (Euroclone) supplemented
with 10% FBS (Euroclone) with or without different concentrations (30, 15 and 7.5 mg/mL)
of lyophilised ECM and native liver. After five days of incubation, cultures were pulsed
with 3H-thymidine (37 kBq/well, Perkin Elmer, Waltham, MA, USA) and harvested after
18 h. 3H-thymidine incorporation was measured by Topcount (PerkinElmer). Results
were expressed as Stimulation Index (SI = counts per minute of PBMC cocultured with
lyophilisated powder/counts per minute of PBMC alone).

2.8. Isolation and Expansion of pMSC

Heparinized BM samples (20–40 mL) were collected from the posterior iliac crest using
standard BM aspiration kits with a 15-gauge needle (Medax Mod Cage, Mantova, Italy).
Porcine mononuclear cells (pMNCs) were isolated and expanded following a previously
described protocol [28]. Cultures were propagated in complete medium: D-MEM Low
Glucose (Gibco, Milan, Italy) supplemented with 10% Mesencult (Voden, Milan, Italy) until
passage 4 (P4).

2.9. Characterisation of pMSC

pMSC were characterised by flow cytometry using anti-porcine specific or cross-
reactive antibodies as previously described [28]. In particular, anti-CD45 (LifeSpan Bio-
sciences, Seattle, Washington), CD29 (Acris Antibodies, Herford, Germany), anti-CD90,
anti-CD11b and anti-CD105 (all from Abcam, Cambridge, UK) were used. Cells were tested
for their ability to differentiate into osteoblasts and adipocytes at early passages (P3), as
previously described [28].

2.10. Recellularisation

ECM scaffolds were placed in a 48-well plate and incubated overnight in a complete
medium at 37 ◦C and 5% CO2. pMSC (1 × 106/50 µL) were seeded by releasing cells drop
by drop on each scaffold and incubated at 37 ◦C 5% CO2 for 30 min to allow cells spread
on the samples completely. 1 mL of complete medium was finally added. The medium was
changed twice a week. Seeded ECM scaffolds were evaluated by histological staining at
different time points (3, 7, 14 and 21 days of culture).

2.11. Metabolic Viability Based Assay(MTT)

After recellularisation, cell viability was estimated by 1-(4,5-Dimethylthiazol-2-yl)-3,5-
diphenylformazan (MTT) assay (Sigma-Aldrich). After 3, 7, 14 and 21 days, the culture
medium was removed, and MTT solution (5 mg/mL in DMEM-Low Glucose) was added
to the removed medium and incubated for 4 h at 37 ◦C 5% CO2. Supernatants were
removed, and 0.1% HCl in isopropanol was added to dissolve blue formazan crystals.
The optical density of the solution was measured at 570 nm by ELISA Microplate Reader
(Microplate Reader Model 680, Sunrise, Tecan, Männedorf, Switzerland). The intensity of
the blue/purple product is proportional to the number of cells. Four replicates for each
time point were performed, and data were expressed as OD mean ± SE. A number of cells
(mean ± Standard Error, SE) was extrapolated from a standard curve obtained with 2D
culture pMSCs ranging from 1 × 106 to 15 × 103 cells.
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2.12. Periodic Acid Schiff (PAS) Staining

Repopulated ECM samples were cut in sections (8 µm) for each time-point, fixed in 4%
PFA and then stained using Periodic acid Schiff (PAS) staining kit (Bio-Optica) following
manufacture instructions. Samples were examined under a light microscope (Axiophot
Zeiss, Zukunftspreis, Germany).

2.13. RNA Extraction, Retrotrascription and Real-Time PCR

For each time point, total RNA from seeded scaffolds was extracted using PureZOL
(Bio-rad, Hercules, CA, USA). A reverse Transcriptional M-MLV RT kit (Promega, Madison,
WI, USA) was applied on 1 µg of RNA to reverse transcribed into complementary DNA
(cDNA). cDNA was quantified using NanoDrop (Thermofisher, Milan, Italy). Real-time
PCR for albumin (ALB), alpha-fetoprotein (AFP), cytochrome 450 subfamily 1A1 (CYP1A1),
7A1 (CYP7A1), 3A29 (CYP3A29), CYP3A46 (CYP3A46), glucose-6-phosphatase (G6PC),
hepatocyte nuclear factor 4a (HNF4α), multidrug resistance protein 2 (MRP2), Serpine 1
(SERPINA1), cytokeratin 18 (Krt18), desmin (DES) and vimentin (VIM) was performed (all
from Bio-rad). The assay master mix was prepared with iTaq Universal Probes Supermix
2× (Bio-Rad), primer and fluorogenic probes for each gene tested. 100 ng of cDNA per
condition was added to each well. Fresh liver samples were used as a positive control.

Real-time PCR was performed on the Real-Time PCR instrument (AB 7500 Standard
System). Data analysis was performed by 7500 fast Real-time PCR systems (Applied
Biosystems, Waltham, MA, USA). Expression levels for each gene were calculated using
the RQ method. The glyceraldehyde 3 phosphate dehydrogenase (GADPH) was used as
endogenous internal control and hepatocytes calibrator.

2.14. Statistical Analysis

Stata software (Version 16.1, StataCorp, College Station, TX, USA) was used for sta-
tistical analysis. Technical replicates were averaged, and all the statistical analyses were
performed using independent biological replicates. Quantitative results are reported as
means ± standard deviation (SD). Group comparisons were performed using a two-sample
Wilcoxon rank-sum (Mann-Whitney) test. Two-tailed p-values below 0.05 were considered
statistically significant.

3. Results
3.1. Liver Decellularisation

Porcine livers were successfully retrieved using a surgical technique similar to those
used for multi-organ explants in a deceased donor. During the decellularisation, the
macroscopic appearance of the liver specimens shifted, from dark red to translucent white,
confirming the progressive cellular removal. The decellularisation protocol resulted in
a complete cell removal, but the preservation of key ECM components was confirmed
qualitatively by histological staining. In Figure 2, differences between native and decel-
lularised livers are reported. In particular, standard H&E staining proved the absence of
cells and the presence of collagen on liver scaffold-ECM, as well as the preservation of the
ECM micro-architecture integrity (Figure 2B vs A). Masson’s Trichrome and PicroSirius
red staining revealed the preservation of collagen structures through the portal tracts and
vessel walls and the absence of linear collagen fibres in the parenchymal space (Figure 2D
and F vs C and E, respectively). By Alcian blue staining, preservation of acid mucins in
liver scaffold-ECM was highlighted (Figure 2H vs G). In all samples, it was evident that the
structural collapse of the lobular architecture was due to cellular removal. DAPI staining
showed the absence of nuclei on the ECM scaffold (Figure 2J vs I). Decellularized scaffold
showed a ratio of DNA level/dry weight (mean ± SE) significantly lower than native liver
(20.3 ± 1.9 ng/mg and 1907 ± 206.2 ng/mg, respectively; p < 0.05) (Figure 2K). Moreover,
decellularised samples contained residual DNA fragments smaller than 100 bp (Figure 2L).
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Figure 2. Structural characterisation of porcine liver scaffolds. Panel A–J. Histological and DAPI
staining of native liver and decellularised ECM scaffold. Histological staining revealed the preser-
vation of the ECM structures. In particular, Haematoxylin/Eosin (H&E) (A,B), Masson’s Trichrome
(C,D) Picrosirius Red (E,F), and Alcian Blue (G,H) (magnification 4×). DAPI (I,J) confirmed the
absence of nuclei and residual nuclear material (magnification 10×). Scale bar: 200 µm for each. Panel
(K). DNA level in native and decellularised scaffolds. Values represent mean ± SE of five samples for
each group (p < 0.05; n = 5). Panel (L). DNA Electrophoresis. Fragments were detected by staining the
agarose gel with SYBR Green, followed by visualisation/photography under UV light. In order to
quantify the different DNA fragment bp sizes, a DNA ladder was inserted for scaling purposes. DNA
Electrophoresis on three ECM samples (D1, D2 and D3) showed residual DNA fragments smaller
than 100 bp. Panel (M). Native liver and decellularised ECM immunogenicity in vitro evaluation. No
immunogenic effect was observed at the three different concentrations for decellularised ECM. As a
positive control, lyophilised native liver was used at the same concentrations. Results are reported as
SI. Values represent the mean ± SD of five replicates. Black bars: lyophilised decellularised ECM;
grey bars: lyophilised native liver.

Taken together, and in accordance with criteria defined by Crapo et al. [29], the data
confirm that the decellularisation method was able to remove the resident cells whilst
overall preserving the biochemical and structural properties of liver ECM. Moreover, to
evaluate the immunogenicity of decellularised ECM we set up an in vitro model testing
the activation of human PBMCs in the presence of lyophilised ECM or native liver. We
could demonstrate that the decellularised ECM produced by our technique did not induce
in vitro proliferation of human PBMCs, showing no immunogenic effect (Figure 2M).

3.2. 3D Architecture and Ultrastructure

Scanning electron microscopy of the liver scaffold revealed that our decellularisation
protocol preserves hepatic ECM microanatomy and ultrastructure associated with main-
taining key hepatic features, including the honeycomb-like arrangement and the presence
of an organised network of ECM fibrils of liver lobules (Figure 3).
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Figure 3. Upper panel: Scanning Electron Microscopy (SEM) of the native and decellularised scaffold
at different magnifications (300×, 2k× and 10k×). SEM analysis of the acellular ECM showed a
rough surface and preserved three-dimensional structures characterised by highly interconnected
porosity (arrows = vessel tracts). Lower panel (A–F): SEM images of decellularised ECM-scaffold
slides showing the complete cellular removal and the 3D preservation of the ultrastructure after
decellularisation (arrows = vessel tracts). Details are highlighted (G,H).

3.3. Mesenchymal Stromal Cells Isolation and Characterisation

pMSCs were successfully isolated and expanded in vitro from all porcine BM samples.
As already reported [27], cells were plastic adherent and showed the typical spindle-shaped
morphology. pMSCs were positive for CD90, CD29, CD105, and negative for CD45 and
CD11b and were able to differentiate toward adipogenic and osteogenic lineages. Results
are reported as supplementary data in Figure S1.

3.4. ECM Scaffold Recellularisation

pMSCs were able to adhere, grow and infiltrate the ECM, as demonstrated by H&E
and DAPI staining (Figure 4A–H). The MTT assay confirmed that cells on the scaffold
increased progressively and remained viable for 21 culture days, reaching an approximate
total of 697.000 ± 180.000 cells (mean ± SE), increasing between 5 and6 fold the number of
seeded cells (Figure 4I).
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Figure 4. ECM scaffolds repopulated by pMSC. Upper panel: H&E (A–D) and DAPI (E–H) staining
demonstrated that adherent cells increased progressively, reaching almost a complete scaffold cover-
age (scale bar: 200 µm for each). The viability of pMSCs seeded on scaffolds was confirmed by MTT
assay (I). Lower panel (J–O): The degree of repopulation was also evaluated by SEM analysis. SEM
images showed the formation of intracellular junctions and the development of a new extracellular
matrix (arrows).

We confirmed the presence of pMSCs and their degree of repopulation also by FE-SEM
analysis (Figure 4J–M).

Furthermore, no signs of cell suffering as morphological alteration or cell detachment
were present after 21 days, suggesting that ECM represents a suitable microenvironment
for cell growth and survival. We also could observe the formation of intracellular junctions
and the development of a new extracellular matrix, representing a positive step for the
recellularisation (Figure 4N,O).
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Differentiation of pMSCs

The expression of 11 genes associated with different phases of hepatic development
was compared between 2D and 3D cultured pMSCs. After culture, pMSCs seeded on
ECM showed significantly higher levels of ALB (p < 0.0001 for each timepoint), CYP3A29
(p < 0.0001 for each timepoint), CYP7A1 (p = 0.008, p = 0.0002, and p = 0.01 at 3, 7 and
14 days, respectively), G6PC (p = 0.017and p = 0.003, at 3 and 7 days, respectively), Krt18
(p < 0.005 for 3 and 7 days) and MRP2 (p = 0.01 and p = 0.001, at 3 and 7 days, respectively)
gene relative expression than in 2D cultured pMSCs evaluated at the same time points
(Figure 5A–G). While no significant difference was observed for CYP3A46. Additionally,
the analysis of MSC-specific markers such as DES and VIM showed an early and significant
decrease of DES after three days of culture maintained at each timepoint (p < 0.0001 for
all). At the same time, a slight reduction was observed for VIM after 21 days of culture
(Figure 5H,I).

Figure 5. RT-PCR analysis of hepatic genes. The expression levels of the seven hepatic genes showing
an increase during the culture on ECM are reported (A–G). Desmin and Vimentin were used as
MSC-specific markers (H,I). The downregulation of desmin represents the staminality loss. Results
were expressed as RQ, normalising the gene expression of interest, with GAPDH as an endogenous
internal control. As a calibrator, hepatocytes were used for hepatic-specific genes and pMSC for
MSC-specific genes (vimentin and desmin). Results are represented as median ± SE (n = 4). * indicate
a significant difference 3D vs 2D cultured pMSCs. The exact p values are reported in the text.

Moreover, PAS staining for glycogen, as a marker of functional differentiation towards
hepatocytes, was performed on the bare and cultured scaffolds at each time point. As
shown in Figure 6, no positivity was detected.
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Figure 6. Functional evaluation of pMSC seeded on ECM scaffolds. PAS staining was used to identify
glycogen. No deposits of glycogen/polysaccharides that should result in pink/red were observed at
the four different time points after PAS staining. In the figure, cells/ECM resulted in dark purple.
PAS staining of the native liver is also reported for comparison. (Magnification 40×, scale bar: 200 µm
for each).

4. Discussion

Organ transplantation is severely restricted by the lack of donors, the insufficient
organ supply the most crucial restrictive driver. OBE has been extensively explored in the
last few years to provide transplantable tissues or organs with the final goal of recreating a
3D structure mimicking the native function. In this context, towards the clinical translation,
one of the most critical issues to get over is to obtain a relevant-sized hepatic scaffold to
repopulate [30]. Different studies show how a 3D-culture condition could improve cellular
growth [31–33]. To date, the comparison between synthetic or biological scaffolds led
controversial results [30]. However, several studies on the extracellular matrix reveal a state
of dynamic reciprocity between cells and ECM. It is well reported that the surrounding
environment may address cells towards proliferation and differentiation by responding to
local signals.

For ECM-scaffold technology, porcine organs are considered an optimal source. They are
very close in size to human counterparts, becoming a good acellular and non-immunogenic
3D surface suitable for repopulating with human cells. In the preclinical setting, three main
phases are to be taken into account: the organ decellularisation strategy, the recellularisation
process and the interactions between cells and ECM. In this study, we set up a porcine
liver decellularisation methodology. Then, we evaluated the feasibility of repopulating
ECM with pMSC and the possible influence in promoting the differentiation of pMSC
towards hepatocyte-like cells. In literature, specialised decellularisation procedures are
developed to remove cellular components by combining physical, chemical and enzymatic
methods [34–38]. We optimised a standardised protocol used in our group for kidney
decellularisation [39]. A multi-step decellularisation protocol was applied to the organs,
including organ freezing/thawing and SDS treatment. It was well demonstrated that a
single cycle of freezing/thawing could enhance the detachment of the native cells without
damaging the structure of ECM [29]. The second step of decellularisation was based on the
use of SDS, a detergent that lyses cell membranes and causes interruption of noncovalent
bonds between ECM structural proteins [40]. After this procedure, the evaluation of resid-
ual materials within the decellularised scaffolds is mandatory to avoid in vitro cytotoxicity
or in vivo adverse host responses during the reintroduction of the organ [12,41–43]. In
the present study, the presence of nuclear material was qualitatively and quantitatively
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evaluated after decellularisation, resulting in compliance with the reported criteria [29].
By histological and DAPI staining, no evidence of cellular nuclei was found, and an intact
cellular matrix was observed. The decellularised scaffold displayed very small quantities
of DNA fragments, compatible with an optimal decellularisation process, with only 3.5%
of the total DNA extracted from the native liver still present. Moreover, by SEM, the
decellularised scaffold appeared as a rough surface, with a preserved three-dimensional
network of the vascular structures of the native organ. In some points, it was also possible
to observe some gaps compatible with a single hepatocyte dimension. Thus, the preserved
continuity of the ECM and the absence of alterations suggested that the ECM architecture
was maintained, giving a 3D structure adequate for the recellularisation phase.

In literature, different stem cells have been proposed as an ideal cell source for scaffold
repopulation [19,20]. Among these, MSCs have been taken into account thanks to their
ability to differentiate in different lineages, even into hepatocyte-like cells [23–25,44–46]. In
our study, we proceeded to recellularisation using MSCs isolated from porcine BM. The
ability of pMSCs to grow on ECM scaffolds was evaluated qualitatively and quantitatively
at different time points, concluding that pMSCs, and in general MSC, may represent a good
cell population for the recellularisation of ECM scaffolds.

In liver-specific regenerative medicine, the maintenance and gain of HLCs functions
are a significant challenge. Recent studies in organ bioengineering have shown that the
preservation of ECM induces stem cells to differentiate into tissue-specific cells. Several
approaches have been investigated in the literature, such as different cell sources, types
of scaffolds and induction protocols [47–50]. In this regard, although the role of ECM in
the hepatic maturation of induced pluripotent stem cells (iPSCs) was not fully understood,
Park et al. [51] have shown that liver ECM, in addition to specific growth factors, may
enhance liver cells development and maturation. Li et al. [31] demonstrated that the
presence of rat ECM increased hepatic gene expression in HLCs derived from human MSC.
Kim et al. [50] developed a liver-specific gene expression panel algorithm that defines the
differentiation status or similarity degree between liver and differentiated cultured cells.

In order to assess the differentiation potential due to only ECM, we evaluated the
pMSC gene expression of different liver-specific markers without adding exogenous stimuli.
We selected 13 genes based on data reported in the literature evaluating the decellularised
ECM induction of MSCs towards hepatocyte-like cells [26,31,51–53].

We observed that only contact with liver-specific ECM was insufficient to induce a
complete differentiation of pMSCs in HLCs. However, we observed after culture a transient
upregulation of hepatic markers, validated by the finding of downregulation of DES ex-
pression, considered an MSC staminality marker. We believe that only liver ECM gives an
“input” toward hepatocyte differentiation; however, it is not enough to obtain a complete
HLC maturation. We know that the expression levels of liver-specific lineage markers can-
not provide complete information regarding cell differentiation status. We could consider a
limit of the present study, the lack of protein quantification and/or immunohistochemical
staining that could provide more reliable results. Since we did not reach a complete differ-
entiation of pMSCs toward HLCs, due to the only ECM scaffold, we cannot postulate an
action mechanism. However, as reported in the literature, we believe that the structure and
composition of the ECM favour the differentiation of cells through direct contact with organ
specific-matrix by an acellular network of macromolecules influencing cellular activities,
tissue properties and functions. Our results, pointing out the fundamental role of ECM,
support the need for specific stimuli in addition to ECM-seeded cells in order to lead to
complete differentiation.

5. Conclusions

The standardisation of scaffold production and ECM repopulation represent crucial
steps in the progression of OBE. The present study, investigating if acellular liver ECM alone
could influence/promote differentiation of pMSCs toward hepatocyte-like cells, supports
the role of ECM in organ reconstitution. We believe that our work presents some novelties.
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We described a “simple and reproducible” approach to produce an acellular scaffold that
effectively decellularised and preserved ECM micro-architecture and bioactive components.
Since MSCs are well-known for their proliferation and differentiation abilities in vitro and
can promote liver regeneration, we have focused on this type of cells. Access to an abundant,
high-quality supply of hepatocytes with therapeutic potential for cell transplantation
and extracorporeal support for patients with liver failure is an important issue. We can
postulate that our results may provide new insights toward a better understanding of cell
differentiation using ECM scaffolds, paving the way towards clinical translation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10112817/s1, Figure S1: Characterisation of ex-vivo
expanded pMSCs.
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