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Abstract: Epithelial and mesenchymal transition mechanisms continue to occur during the cell cycle
and throughout human development from the embryo stage to death. In embryo development,
epithelial-mesenchymal transition (EMT) can be divided into three essential steps. First, endoderm,
mesoderm, and neural crest cells form, then the cells are subdivided, and finally, cardiac valve forma-
tion occurs. After the embryonic period, the human body will be subjected to ongoing mechanical
stress or injury. The formation of a wound requires EMT to recruit fibroblasts to generate granulation
tissues, repair the wound and re-create an intact skin barrier. However, once cells transform into a
malignant tumor, the tumor cells acquire the characteristic of immortality. Local cell growth with
no growth inhibition creates a solid tumor. If the tumor cannot obtain enough nutrition in situ, the
tumor cells will undergo EMT and invade the basal membrane of nearby blood vessels. The tumor
cells are transported through the bloodstream to secondary sites and then begin to form colonies
and undergo reverse EMT, the so-called “mesenchymal-epithelial transition (MET).” This dynamic
change involves cell morphology, environmental conditions, and external stimuli. Therefore, in this
manuscript, the similarities and differences between EMT and MET will be dissected from embryonic
development to the stage of cancer metastasis.

Keywords: EMT; MET; embryonic; tissue repair; tumorigenesis

1. Introduction

The embryonic development of metazoan organisms starts from a single layer of
cells [1]. These single-layer cells can be induced into pluripotent stem cells containing endo-
derm, mesoderm, and ectoderm [2]. These layers contain epithelial cells that play essential
roles in organ development, cell reprogramming, tissue damage repair, and cell mobil-
ity [3–9]. Under typical situations, growing cells always maintain tight junctions, adhesion,
cell–cell adhesion, and polarity [10]. Especially in the lung or small intestine, respiratory
cilia or intestinal villi can help organs perform the correct function [11–13]. During devel-
opment, epithelial cells undergo mesoderm formation [7], neural crest formation [14–16],
cardiac valve formation [17], secondary platelet formation, and somitogenesis [18], during
which EMT progression is necessary to create the mesoderm, neural crest, and heart valve,
and promote male Müllerian duct progression [19,20]. If there are any mistakes during
development, embryonic hypoplasia is observed. Therefore, identifying the key factors
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for the dominant cell’s pluripotency has always been an important issue. Scientists have
discovered that mature epithelium could be induced to form pluripotent stem cells by
overexpressing Oct4, Klf4, Sox2, and c-Myc [21,22]. However, the success rate of this
process has not yet achieved its goals for use in humans. Additionally, a similar processes
of EMT can be observed when internal organ damage occurs [23], and some epithelium
undergoes trans-differentiation to repair the damaged part [24]. When tissues are wounded,
these phenomena can easily be observed in the whole body or on the skin or body surface,
where epithelial trans-differentiation into mesenchymal cells with cell mobility occurs [25].
Mesenchymal cells come to the wound region to form an intact barrier and transform into
epithelial cells during the “wound healing process” [26]. Interestingly, these EMT-related
pluripotency genes are controlled strictly in differentiated cells, and they can be found to be
overexpressed in dysregulated cells, such as tumor cells, and usually accompanied by EMT
and stem-like ability [27]. In addition, not only in embryogenesis, the most frequently men-
tioned EMT in recent years is the critical process associated with tumor metastasis [28,29].
Tumor metastasis requires tumor stemness ability and EMT mobility [30]. Then, cells can
grow quickly and take host nutrition. However, the primary site of the tumor origin is
usually accompanied by mass necrosis or apoptosis that triggers tumor cells to migrate
from the original site to seek secondary sites to find nutrition, which is called the metastasis
process [31], during which the tumor cells can break the extracellular matrix and cross
the epithelium barrier, then extravasate into the blood vessels to form a colony in the
endothelial cells [32]. Once the colony is formed by intravasation into the secondary site, it
generates a secondary tumor, which may lead to cancer patient death [33,34]. Therefore,
this review used embryogenesis and cancer metastasis as a biological model to discuss the
related events on epithelial and mesenchymal transition.

2. The Principle of EMT and MET

Under normal circumstances, epithelial cells will keep forming a barrier or separate
space [35]. Under the skin tissues or when the barrier has been breached, the epithelium
transforms into fibroblast-like cells, which can be recognized by their cell morphology [36].
The epithelium forms flat and round cells. However, fibroblast-like cells look like a spindle
with a lamellipodia and filopodia structure [37]. During this transition, epithelial cells
transform into mesenchymal cells and gain the ability to move [38]. In addition, the wound
regions secrete cytokines and inflammatory substrates to attract immune and mesenchymal
cells for repair [39,40]. The processes can be dissected into the first step, whereby mes-
enchymal cells begin to form the wound edge, and then the cells will move forward into
the central part to fill out the damaged part. The cells concentrated at the site of damage
undergo epithelial-mesenchymal transition during the wound repair [41]. Unlike normal
cells, during MET progression, cells lose their tight junctions and polarity, accompanied
by increased CD44v and E-cadherin expression to maintain an epithelial phenotype [42].
Under the EMT process of the cell, motility can be confirmed by mesenchymal-related
markers, such as CD44s, N-cadherin, discoidin domain receptor 2 (DDR2), β-catenin,
vimentin, and α-Smooth Muscle Actin (α-SMA) [43]. A model EMT/MET transition is
shown in Figure 1. Furthermore, EMT and MET are an essential part of the wound healing
process [44] and create a cycle used for maintaining tissue volume [45–48].
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Figure 1. The regulation of EMT and MET. Epithelial cells can transform the original cell type from epithelial status to
mesenchymal status through the EMT process, and its ability to move, such as entering the circulation system and then
returning to epithelial status, through the conversion of MET. Therefore, the level of EMT and MET mobility and its
corresponding markers to distinguish the types of EMT and MET is described.

3. EMT and MET during Embryonic Development

In embryonic development [49], the processes involving EMT are somitogenesis,
nephrogenesis, carcinogenesis, cardiogenesis, and foregut development [18,50,51]. There
are three steps of EMT: primary, secondary, and tertiary processes [52]. Primary EMT,
including the formation of parietal endoderm, mesoderm, and neural crest delamina-
tion [53–55], and similar signaling occurs during gastrulation and neural crest forma-
tion [49]. A high degree of cooperation in the neural crest makes it plasticized during
the primary EMT. Secondary EMT mesodermal cells are subdivided [56] and somito-
genic [46,57,58], and endocrine cells migrate to the mesenchyme during pancreatic and
hepatoblast formation, which plays an important role in platelet and reproductive tract
development [3]. The tertiary step is cardiac valve formation [59–61]. In addition, meta-
zoan formation induced by Snail1/2 is crucial during vertebrate head development [62].
VE-cadherin is suppressed by Snail1, and inactivation of Hey2, Hey1, and Heyl induces
major congenital heart defects, combined with inactivation-induced ventricular septal and
pulmonary vale defects [63] (Figure 2).

Figure 2. EMT progression of development in the first, secondary, and tertiary embryo stages. EMT plays an essential role
in embryonic development and is closely related to the movement of different germ layers to specific locations for further
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differentiation. During embryogenesis, the embryo can undergo three major EMT processes. First, once the zygote is formed,
the cells will move to a specific location to distribute three primary germ layers, endoderm, mesoderm, and ectoderm, called
primary EMT. The second EMT can be observed in the epithelial structure among the mesoderm, notochord, neural tube,
and somite, which undergo processes such as endocrine cell formation. Finally, the formation of mesenchymal cells, such as
cardiac cushions as cardiac valve precursors, is the most appropriate model to describe tertiary EMT. OFT = Outflow Tract;
RV = Right Ventricle; PRA = Primitive Right Atrium; PLA = Primitive Left Atrium; LV = Left Ventricle.

4. EMT in Tissue Repair

In a regular situation, tissue can be damaged by a wound [64]. Many steps are included
in the wound healing process, such as hemostasis, inflammation, and remodeling of the
injured tissue [65]. These steps include numerous cell types, including macrophages, ker-
atinocytes, fibroblasts, platelets, and endothelial cells [66]. The related signaling pathways
include the epidermal growth factor (EGF), transforming growth factor-β (TGF-β), fibrob-
last growth factor (FGF), and hepatocyte growth factor (HGF) signaling pathways [67].
Once the skin barrier is breached, it creates a wound, and EMT starts. Cells begin migration,
intracellular dissociation, and matrix degradation and trigger the release of FGF, EGF, and
TGF-β, as well as the HGF signaling pathway, to heal the wound [68]. Reepithelization is
the process by which keratinocytes migrate from the wound edge to the central region [69].
A granulation site is observed under the wound center. The keratinocytes around the edge
can separate and be individually transformed from flat, adherent cells into spindle-like
cells [70]. Cells with a mesenchymal-like phenotype gain motility and dissociation and
move to the central zone during wound healing [71]. The tissue can be healed by the mov-
ing cells, maintain homeostasis, and then finally transform back into epithelial cells [72]
(Figure 3).

Figure 3. Wound healing progression. The diagram shows wound healing progression. Different signal transmissions
interact with neighboring cells through EMT when the tissue is damaged to repair the wound. The related signaling,
such as FGF, EGF, TGF-b, and HGF, can induce cell migration by redefined epithelial, mesenchymal, and secret matrix
metalloproteinase to remodel extracellular components. In addition, cells, such as Keratinocyte and fibroblast, can undergo
the EMT and cellular proliferation process to participate in wound healing-related processes.

5. Differentiation and De-Differentiation between EMT and MET

During embryogenesis, the processes of EMT allow pluripotent cell movement to
exact position within an appropriate time to undergo cells’ specification and differentiation,
which would be a process of differentiation potential loss [38]. In addition to the cells’
differentiation, de-differentiation has also been involved in repairing cell stress, and is
mediated by the EMT or MET [3,73]. Such processes can be easily found in the transition
of myofibroblasts and fibroblasts [25]. Multiple cell resources have been identified to
be able to transform into myofibroblasts under cell stress or injury. The differentiated
myofibroblast can be formatted from the differentiation of the fibroblast, de-differentiation
of smooth muscle cells, and EMT transformation of the epithelium or endothelium [74].
Even the smooth muscle, adipocyte, and pericyte can trans-differentiate into the cancer-
associated fibroblast [75]. The TGF-β1 has been considered as a dominant factor of related
events by regulating the ALK5/Smad3 axis [76,77]. Tissue injuries, such as exposure to a
radiation environment, can quickly induce the expression of TGF-β1 [78], which results in
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extracellular matrix deposition and drives EMT-mediated fibrosis processes [79]. Related
markers, such as FSP1, α-SMA, and collagen 1, have been used [80–82]. Mathison et al.
showed that the artificial manipulation of the EMT-related axis, GATA4/SNAIL, could
reduce cellular differentiation in cardiac fibrosis [83]. In addition, overexpression-specific
factors, including GATA4, FOXA3, HNF1A, and HNF4A, can reprogram myofibroblasts
into hepatocytes [84]. A similar phenomenon was observed in cancers. The tumor cells
can increase the population of myofibroblasts by secreting TGF-β to transform surround-
ing cells components, such as the cancer-associated fibroblast [85,86], and consequently
promoting the EMT and chemoresistance. Moreover, TGF-β was found to regulate cells
from an epithelial phenotype into partial-EMT or hybrid EMT cells, which were found
with multiple features under this heterogeneous transient population, such as collective
migration or stem-like abilities [87]. Interestingly, under this partial-EMT transient status,
cells can maintain epithelial markers, but also with mesenchymal ability, such as stem-like
and collective motility, as compared to epithelial status, consequently promoting survival
under diverse strict conditions or metastasis ability [87]. Most importantly, in addition to
the related biological process, the differentiation and de-differentiation status, as well as
related markers, can be applied for clinical diagnosis [88,89].

6. EMT at the Primary Tumor Site
6.1. Primary Tumor

Regular cells transformed into malignant cells which proliferate more than normal
cells [90]. The cancer niche contains cancer-associated fibroblasts, cancer cells, tumor-
associated macrophages, extracellular matrix, and endothelium [91,92]. The primary tumor
will secrete Vascular endothelial growth factor (VEGF) to attract endothelial cell migration
to the tumor to supply oxygen and nutrition [93,94]. In addition, microvessels can also
increase the metabolism rate and enrich the tumor growth [95] (Figure 4).

Figure 4. Primary tumor. The tumor microenvironment contains tumor stem cells and tumor-
associated extracellular components, such as immune cells. Mainly, cancer cells, such as tumor-
associated macrophages, tumor-associated adipocytes, tumor endothelial cells, and tumor-associated
fibroblast, can change the characteristics of neighboring cells in various ways and further interact
with each other to increase the degree of tumor heterogeneity.
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6.2. Primary Tumor Extravasation

Once the tumor cells’ gain of proliferation ability can boost growth quickly, the size of
the primary tumor increasing to more than 1 cm3 can induce tumor central zone necrosis
and hypoxia and then release cytokines [96,97]. In the primary tumor site, tumor cells
have E-cadherin, tight junctions, cell adhesion junctions, and desmosomes [98,99]. When
cells undergo the EMT process, the cells experience cytoskeletal reorganization [100]. The
extracellular matrix is degraded with extra metalloproteinase (MMP) secretion, and the
cells can invade the basal membrane [101]. Epithelial markers such as ZO-1 or E-cadherin
are lost [102]. Mesenchymal markers and transcription factors are expressed [57,58,103].
These cells migrate individually or coordinate together and migrate in a similar direction
at the same speed to invade the basal membrane near vessels [104]. The primary tumor
can also be recruited to microvessels, causing tumor cells to invade the circulation [105]
(Figure 5).

Figure 5. The progression of extravasation. Cancer cells can migrate from carcinoma in situ through blood vessels to other
parts of the body through the extravasation process. Under this process, the hypoxia environment can stimulate tumor cells
to secret chemotactic factors, such as growth factors, cytokines, and angiogenesis-related factors, stimulating epithelial cells
for blood vessel interaction through angiogenesis. In such cases, tumor cells will develop intravasation into the blood vessel
and the extravasation process to uptake more nutrients. Up arrow means upregulation.

7. EMT in the Circulation System

During circulation, tumor cells can be induced by platelet-produced TGF-β/
Smad [106–108], and insufficient nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) promotes cell adhesion and extravasation [109]. Migrating cells adhere to the
endothelial cell wall in vessels, and the cells then circulate throughout the body [110]. The
blood flow across the cells can create a sheath force, and the cell cannot attach to the sur-
face without adhesion [111,112], so the cells cannot sustain growth and proliferation [113]
unless they can attach to the endothelium cell wall and recruit other cells to form a cell
plaque, including fibroblasts, endothelium cells, and myeloid progenitor cells [114,115].
These initiated cells will form tumor lesions in vessels and grow in the secondary site [116]
(Figure 6).
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Figure 6. Metastasis progression. The illustration shows how cancer cells obtain more nutrients through angiogenesis and
grow outwards. Through extravasation, they can transfer to other parts of the body for further expansion. The original
tumor cells can undergo EMT and intravasation and circulate in blood vessels. Under the EMT process, cells survive in
strict circumstances and through extravasation metastasis to distinct tissues, such as the brain, kidney, lung, liver, and bone.

8. EMT in the Metastatic Site

On the front edge of EMT, cells can develop intravasation into secondary regions [117].
Some cancer stem cell theories call it a niche, while others indicate that the cells can
form a plaque and increase the cells’ intravasation into the basal membrane to create a
secondary metastasis [89]. In previous research, cancer-associated fibroblasts, such as bone
marrow-derived mesenchymal stem cells, have been identified [118]. The other question
is whether the primary migrating cells with invasion gain other abilities, like cancer stem
cells transforming into vessels or lymphatic cells to promote cells with more aggressive
motility [119]. Invaded cells in secondary sites and secondary metastasis represent the
most common reasons for cancer death and are not easily identified [115,116,120].

9. Colonization between EMT and MET

The invading cells migrating into the secondary site will require MET to colonize the
metastatic region [121]. Spindle-like cells transform into epithelium-like cells and lose mo-
bility, which is called MET [122]. The cells can attach to the organ or cells with cytoskeleton
changes allowing for expansion and outgrowth, which is necessary for colonization [123].
Nevertheless, it has also been demonstrated that Twist-1 is upregulated in EMT and after
colonization and Twist downregulation is associated with stemness ability, but it does not
activate proliferation [124]. The other type is the Paired Related Homeobox 1 (Prrx-1) type,
in which EMT activates Prxx-1 activity but suppresses stemness ability. After colonization,
Prxx-1 is downregulated and activates stemness to promote colonization [125] (Figure 7).
Cancer stem cells are embedded among tumor cells [126]. However, these findings indicate
that the MET process is the most crucial issue in colonization. Table 1 lists the genes that
are related to EMT and MET.
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Figure 7. The theory of cancer stem cells. Changes in Twist and Prrx1 between EMT and MET explain the possible
conversions between cell type and function. When overexpressed tumor cells twist, cells with more EMT phenotypes and
undergo cell motility; once cells metastasize to the proper location, the related twist will be downregulated, and the MET
process enables cell colonization. However, such a process was distinct to the cell’s stemness ability. Instead, the expression
of Prxx1 could be activated by EMT but suppressed stemness. Moreover, the MET process ability stemness activity increased
in colonization, in which Prxx1 was downregulated. Up arrow means upregulation. Down arrow means downregulation.

Table 1. EMT- and MET-related markers. Currently, multiple markers are used to distinguish the process of cells undergoing
EMT or MET, and these specific signatures can be recognized with related gene expression, transcriptional factor activity,
and cell morphology.

EMT MET

Gene Increased Transcriptional
Factor Increased Morphology Gene Increased Transcriptional

Factor Increased Morphology

OPN
vimentin
matrix

metallopro
teinase2

Snail
Slug
Smuc

ZEB1/2
Twist1/2
CDH1
FoxC2
TCF4
XBP1

Spindle-like

E-cadherin
Tight

junction
proteins

Claudin-4

Ets-1
Pax

family
members
HIF1-α

Epithelium like

Note: The table does not contain the noncoding RNA, protein kinase.

10. Defined EMT Molecules in Cancer

At present, the critical EMT or EMT molecules discovered in cancer have been identi-
fied [127] (Tables 2 and 3). These molecules participate in cancer’s tumor-initiating ability,
invasiveness, stemness, and drug resistance [128–130]. Of note, they also have other bi-
ological functions [131]. Interestingly, these molecules are involved in cancer-initiating
ability, invasiveness, stemness, and drug resistance. These established molecules can be
seen to have biological functions of adhesion of embryonic cells by in silico simulation
assays (Figure 8). In addition, these molecules participate in many essential canonical
pathways related to cancer progression. Therefore, these common molecules can not only
serve as prognostic markers, but they also activate signaling pathways and can be used to
understand how cancer cells convert from the epithelial type to the mesenchymal type. The
following correlations are proposed based on the simulated results shown in Tables 2 and 3.
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Table 2. EMT and MET hallmarks involved in the canonical pathway. Molecules participated in EMT or MET processes,
and specific canonical pathways were found to cause a possible molecular interaction.

Canonical Pathways Related Factors

Hepatic Fibrosis/Hepatic Stellate Cell
Activation

ACTA2, CCN2, COL11A1, COL12A1, COL16A1, COL1A1, COL1A2,
COL3A1, COL4A1, COL4A2, COL5A1, COL5A2, COL5A3, COL6A2,

COL6A3, COL7A1, COL8A2, CXCL8, FAS, FGF2, FN1, IGFBP3, IGFBP4,
IL6, LAMA1, MMP1, MMP2, MYL9, PDGFRB, SERPINE1, TGFB1,

TIMP1, TNFRSF11B, VCAM1, VEGFA, VEGFC

GP6 Signaling Pathway
COL11A1, COL12A1, COL16A1, COL1A1, COL1A2, COL3A1, COL4A1,

COL4A2, COL5A1, COL5A2, COL5A3, COL6A2, COL6A3, COL7A1,
COL8A2, ITGB3, LAMA1, LAMA2, LAMA3, LAMC1, LAMC2

Hepatic Fibrosis Signaling Pathway

ACTA2, CCN2, COL1A1, COL1A2, COL3A1, COL5A3, CXCL8, FGF2,
FZD8, ITGA2, ITGA5, ITGAV, ITGB1, ITGB3, ITGB5, JUN, LRP1, MMP1,

MYL9, MYLK, PDGFRB, RHOB, SERPINE1, SPP1, TGFB1, TGFBR3,
TIMP1, TNFRSF11B, VCAM1, VEGFA, VEGFC, WNT5A

Tumor Microenvironment Pathway
CD44, COL1A1, COL1A2, COL3A1, CXCL12, CXCL8, FAS, FGF2, FN1,

IL6, ITGA5, ITGB3, JUN, MMP1, MMP14, MMP2, MMP3, SPP1, TGFB1,
TNC, VEGFA, VEGFC

Inhibition of Matrix Metalloproteases ADAM12, LRP1, MMP1, MMP14, MMP2, MMP3, SDC1, TFPI2, THBS2,
TIMP1, TIMP3

Axonal Guidance Signaling
ADAM12, BDNF, BMP1, CXCL12, FZD8, ITGA2, ITGA5, ITGAV, ITGB1,

ITGB3, ITGB5, MMP1, MMP14, MMP2, MMP3, MYL9, PFN2, SLIT2,
SLIT3, VEGFA, VEGFC, WIPF1, WNT5A

Leukocyte Extravasation Signaling ACTA2, CD44, CXCL12, EDIL3, ITGA2, ITGB1, MMP1, MMP14, MMP2,
MMP3, THY1, TIMP1, TIMP3, VCAM1, WIPF1

Regulation of Actin-based Motility by Rho ACTA2, ITGA2, ITGA5, ITGAV, ITGB1, ITGB3, ITGB5, MYL9, MYLK,
PFN2, RHOB, WIPF1

EMT Regulation Of The Epithelial Mesenchymal
Transition By Growth Factors Pathway

CDH2, FGF2, FOXC2, ID2, IL6, JUN, MEST, MMP1, MMP2, PDGFRB,
SNAI2, TGFB1, TNFRSF11B, VIM

Signaling by Rho Family GTPases ACTA2, CDH11, CDH2, CDH6, ITGA2, ITGA5, ITGAV, ITGB1, ITGB3,
ITGB5, JUN, MYL9, MYLK, RHOB, VIM, WIPF1

ILK Signaling ACTA2, FERMT2, FLNA, FN1, ITGB1, ITGB3, ITGB5, JUN, MYL9,
RHOB, SNAI2, VEGFA, VEGFC, VIM

Role of Tissue Factor in Cancer CCN1, CCN2, CXCL1, CXCL8, ITGAV, ITGB1, ITGB3, MMP1, PLAUR,
VEGFA, VEGFC

HIF1α Signaling FGF2, IL6, JUN, MMP1, MMP14, MMP2, MMP3, SAT1, SERPINE1,
TGFB1, VEGFA, VEGFC, VIM

Wnt/β-catenin Signaling CD44, CDH2, DKK1, FZD8, GJA1, JUN, LRP1, SFRP1, SFRP4, TGFB1,
TGFBR3, WNT5A

RhoGDI Signaling ACTA2, CD44, CDH11, CDH2, CDH6, ITGA2, ITGA5, ITGAV, ITGB1,
ITGB3, ITGB5, MYL9, RHOB

Regulation of the Epithelial-Mesenchymal
Transition Pathway

CDH2, FGF2, FOXC2, FZD8, ID2, LOX, MMP2, NOTCH2, PDGFRB,
SNAI2, TGFB1, WNT5A

Glioma Invasiveness Signaling CD44, ITGAV, ITGB3, MMP2, PLAUR, RHOB, TIMP1, TIMP3

Actin Cytoskeleton Signaling ACTA2, FGF2, FLNA, FN1, ITGA2, ITGA5, ITGAV, ITGB1, ITGB3, ITGB5,
MYL9, MYLK, PFN2

Integrin Signaling ACTA2, ITGA2, ITGA5, ITGAV, ITGB1, ITGB3, ITGB5, MYL9, MYLK,
PFN2, RHOB, WIPF1

Colorectal Cancer Metastasis Signaling FZD8, IL6, JUN, LRP1, MMP1, MMP14, MMP2, MMP3, RHOB, TGFB1,
VEGFA, VEGFC, WNT5A

IL-17 Signaling CXCL1, CXCL8, IL15, IL6, JUN, MMP2, MMP3, TGFB1, TNFRSF11B,
VEGFA, VEGFC

Bladder Cancer Signaling CXCL8, FGF2, MMP1, MMP14, MMP2, MMP3, THBS1, VEGFA, VEGFC
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Table 2. Cont.

Canonical Pathways Related Factors

Regulation of the Epithelial-Mesenchymal
Transition Pathway FGF10, FGF7, FZD7, HGF, SMO, WNT2B, WNT4, WNT5A, WNT9B

Role of NANOG in Mammalian Embryonic
Stem Cell Pluripotency BMP4, FZD7, LIF, SMO, WNT2B, WNT4, WNT5A, WNT9B

Basal Cell Carcinoma Signaling BMP4, FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B
Factors Promoting Cardiogenesis in

Vertebrates BMP4, FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B

Human Embryonic Stem Cell Pluripotency BMP4, FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B
Regulation Of The Epithelial Mesenchymal

Transition In Development Pathway FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B

Colorectal Cancer Metastasis Signaling FZD7, SMO, STAT1, WNT2B, WNT4, WNT5A, WNT9B
Ovarian Cancer Signaling FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B

Glioblastoma Multiforme Signaling FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B
WNT/β-catenin Signaling FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B

Molecular Mechanisms of Cancer BMP4, FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B
Axonal Guidance Signaling BMP4, FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B

Mouse Embryonic Stem Cell Pluripotency BMP4, FZD7, LIF, SMO
Hepatic Fibrosis Signaling Pathway FZD7, SMO, WNT2B, WNT4, WNT5A, WNT9B

Adipogenesis pathway BMP4, FZD7, SMO, WNT5A

MET

Tumor Microenvironment Pathway FGF10, FGF7, HGF, TNC
Note: The EMT hallmark was downloaded from the GSEA websites, and the molecular network was analyzed by Ingenuity Pathway Analysis.

Table 3. Upstream regulators of both EMT and MET. Transcription factors involved in EMT, MET, or EMT/MET processes
were listed as switch factors. The identified upstream regulators were based on molecular interactions, as shown in Table 2
and Figure 8.

EMT

VDR, CREB3L1, Pou3f1, FEZF1, YBX1, PAX7, BTG2, MEF2D, SOX7, SALL1, SP7, KDM5B, FOSL2, PPP1R13L, TAF4B, MTA2,
CITED2, EP300, NKX2-5, MITF, ID3, MEN1, RFX5, ZEB1, MED4, CARM1, ERG, HLTF, TAF6, RCOR1, SMAD2, GSC, FOXQ1,
PML, CBFB, BATF2, ZNF580, IRF1, NOSTRIN, RBCK1, MAX, SOX4, HOXA1, GATA3, BRCA2, PAX4, NFIA, TEAD1, HHEX,
TSC22D1, HDAC4, BRCA1, ELK1, RUNX3, MECP2, SP100, NFATC4, PDLIM1, ETV3, HIC1, SQSTM1, MTA3, FOXK2, FEV,
NFATC1, FOXO4, HES1, ID4, ATF3, TBX5, FOXP3, SPI1, ZNF581, NFIB, RBM14, MDM2, HOXB4, TBXT, LHX4, MAML1,

BTG1, NCOR2, CBL, IKZF1, HIF3A, MED7, MIB2, RING1, TFAP4, IRF2BP1, HOXD10, BRMS1, ZFP36L1, FOXM1, ZBTB48,
NKX3-1, EZH2, JMY, HTT, HES6, HDAC5, FOXA1, CREB1, HDAC7, PDX1, NEUROG3, FOXA2, SMAD1, ARNT, DDIT3,

LCOR, POU2AF1, FOS, PLAG1, MXD4, JUNB, ASCC1, SMARCA4, TSHZ3, FOXL2, ZNF300, BRD7, NFKB2, TEAD3,
HTATIP2, MEOX2, STAT5B, ID1, IRF5, ATF2, TFAP2C, SKI, ELF3, KLF17, KLF5, MEF2A, BARX2, APBB1, BORCS8-MEF2B,

Gm21596/Hmgb1, ZNF24, ESRRA, IRF3, CEBPG, H2AX, E2F1, TSC22D3, EBF2, SP2, NRIP1, ALX4, ETS2, PMF1/PMF1-BGLAP,
DAXX, EHMT2, Ncoa6, ATF1, MTDH, WTIP, ARID5B, TCF12, GLIS2, Yap1, WBP2, MYCN, TBX18, PSMD10, NFIL3, MXD3,
TFAP2B, IRF6, CIITA, NUPR1, HIF1A, MED21, LPXN, HOXA4, DTX1, MYBL2, BHLHE40, ID2, TCF4, TRIM28, RB1, MZF1,

STAT5A, ZNF350, HOXA9, NFYA, ZNF410, MESP1, ZEB2, CYLD, GRHL2, HEY1, DLX4, XBP1, CEBPA, TFAP2A, PBX1, IRF2,
NFKBIB, RUNX2, ERF, ASH1L, BATF3, SALL4, MAFB, NFE2L2, NOTCH4, KLF6, NRF1, HEXIM1, MECOM, E2F2, HDAC3,

BHLHE22, TWIST2, ZFP64, IFI16, TFEC, HOXD3, ATF6, PROX1, NFYC, TCF3, SSRP1, NEUROG1, NCOA3, WDR5, BACH1,
HOXB5, SOX9, SIM1, TGIF1, SATB2, REL, CEBPD, TEAD2, HOXB8, JUND, ZFP36, PHB2, PURB, SUB1, PRDM5, TCF21,
RELB, EGR2, ZNF281, SMARCA5, HNF1B, WWC1, MED24, SRA1, CREBBP, ZNF384, SMAD7, FHL2, TCF7L2, ZBTB16,

ATXN1, RFX1, CALR, HEY2, ETV5, HOXB9, NAB2, SIM2, GATA2, NFKBIZ, HAND2, MAF, TAF9, ZMIZ2, ETV4, FOXP1,
Cux1, ATN1, TCF20, HOXC5, NFYB, Hmgb1, EBF3, RBM39, NPAS4, CUX1, YAP1, NFKBID, BMI1, RAD21, LDB1, SOX17,

FOSB, ELF4, BCL3, ZKSCAN3, CARF, CCND1, SMARCA2, NOTCH2, ZNF613, HOXC8, ZNF740, TOX, SKIL, MKX, KLF12,
TGFB1I1, ARRB1, SIN3A, ECSIT, ZBTB7B, FLI1, CRTC1, CEBPZ, ZNF750, SREBF1, NFATC3, EPAS1, HOXC6, ESRRB, PHB,
FOXO3, TAF4, POU2F1, ELK3, TBP, RRP1B, SREBF2, STAT6, CDKN2A, UXT, ETV6, EOMES, GATAD2B, DNAJB6, TRPS1,

BCL10, HMGA1, HOXB7, ETV1, SUPT16H, BCL11B, NOTCH3, KEAP1, BACH2, MED16, ZFY, FANK1, SNAI2, KLF9, MESP2,
E2F3, ZBTB46, TWIST1, SP4, PAX5, POU2F2, ATF4, GPS2, FOXO1, MYBBP1A, FOSL1, RFXANK, PIAS1, MRTFB, SRF, MAZ,

PTTG1, PYCARD, GABPA, SIN3B, HMGB2, VAV1, CREB3L4, EVX2, RBL1, SMAD6, MYOCD, VHL, CREM, TFAP2E, HLX,
ING2, PRDM1, HDAC6, SF1, RFX2, ZNF224, HMGB1, TRIM24, MEF2C, ARNT2, DEPDC1, KLF3

MET
POU4F2, HOXD11, IKZF2, KMT2D, TBX4, CBX4, HIVEP2, HOXA2, MEOX1, OTX2, SIX5, PAX6, ZC3H8, MEIS2, PAX9,

HDAC8, ZMYND8, DLX5, NEUROG2, PAX8, LHX5, GFI1B, MED12, OTX1, FUBP1, PRRX1, DLX6, ZFPM2, HMX2, MEIS1,
NSD1, HOXC11, HSF4, IRX1, COMMD3-BMI1, CNOT7, TBX1, EAF1, ZFP90, TFCP2, SHOX2, ASCL1, NKX3-2, ONECUT2,

BHLHE41, ARID2, ZBTB32, PTF1A, HES3, PBX3, FOXG1

EMT/
MET

CLOCK, ACTN4, IRF4, SMARCD3, PKNOX2, EHF, SS18, KLF11, USF2, HOXA13, FOXC2, SP110, ATOH1, EED, NKX2-3,
DACH1, NFIX, SMAD3, SCX, DUX4, FOXE1, ZNF148, SP1, RBPJ, GATA6, HOXC9, PRDM16, FOXC1, SMARCB1, SPZ1,

SPDEF, MSX1, NPM1, MYF6, STAT4, HDAC2, MRTFA, FOXF1, ETS1, HNF4A, RELA, TP73, RUNX1, EGR1, HSF1, NFATC2,
GFI1, MSX2, USF1, SOX1, KLF4, MYOD1, YY1, SP3, PPARGC1A, WT1, SNAI1, LEF1, PITX2, GLI2, TP53, FOXL1, WWTR1,
NFKBIE, SOX3, KLF2, ELF5, HOXA10, LMO2, STAT3, GLI1, GMNN, ASXL1, PAX3, POU5F1, HDAC1, LMX1B, CTNNB1,

HOXA5, NFKB1, IRF8, SIRT1, SOX11, SIX1, EBF1, HOXA11, NFAT5, NFKBIA, PCGF2, FOXF2, KLF10, GABPB1, BCL6,
SMAD4, UHRF1, GLI3, VAV2, CEBPB, PAX2, NFIC, MYC, LHX2, JUN, KDM3A, Tcf7, NKX2-1, GBX2, NOTCH1, STAT1,

ARID1A, SOX2, TP63, GATA4, SMAD5, EAF2, TEAD4, MYB
Note: The upstream regulators of EMT/MET hallmarks were analyzed from the Ingenuity Pathway Analysis.
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 Figure 8. Simulated molecular network between EMT and MET. The simulation of molecular interactions between EMT or

MET hallmarks and the related biological functions of participation was conducted through prediction methods, in which
gene ontology is linked to cytoskeleton remodeling, metastasis, remodeling the microenvironment, and embryogenesis-
related process. (MET- or EMT-related molecules were downloaded from GSEA datasets, and the analyzed interaction map
results were output from the Ingenuity Pathway Analysis.).



Biomedicines 2021, 9, 1265 12 of 28

10.1. Cytoskeleton Remodeling

Transformation of the epithelial-mesenchymal system can trigger the remodeling
of cell types [132]. The signals involved in EMT include Rho-regulated actin motility
signaling, and Rho GTPase signaling. These types of changes mainly regulate the binding,
polymerization, and stabilization processes to reorganize the cytoskeleton made up of
actin [133,134]. RhoGDP-Dissociation Inhibitor α (RhoGDIα) is an essential negative
regulator that interacts with small GTP-binding proteins, such as RhoA, Cell Division
Cycle 42 (CDC42), and Rac1, to control cell migration and it is responsible for the formation
of cells with multiple morphologies, such as membrane protrusions, lamellipodia, and
stress fibers [135]. Dysregulation of RhoGDIα is a prognostic marker in cancer, and it
has been found to be overexpressed in diverse cancer types, such as colorectal cancer
and nasopharyngeal carcinoma [136,137]. Overexpression of RhoGDIα can promote lung
metastasis in bladder cancer [138]. Loss of the interaction between RhoGDIα and CDC42
increases tumor metastasis [139]. A similar study reported that Ephrin B2 can stimulate
the interaction of RhoGDI and Ephrin B1, and then RhoA is released from RhoGDI to
facilitate cell migration [140]. Conversely, increased RhoGDI levels can also be observed to
decrease the stemness ability of tumor cells [141]. In addition, RhoGDI can be regulated
by interferon-gamma (IFN-γ) [142]. Therefore, it is predictable that targeting RhoGDI can
modulate tumor cell motility.

Integrin-mediated focal adhesion is the general way to control actin polymeriza-
tion [143–145]. Integrin has been reported to participate in cell motility through related
signaling pathways, such as Rho-regulated actin motility signaling, and Rho GTPase sig-
naling [146,147]. For example, Integrin Subunit Alpha 2 (ITGA2) was found to affect
cell motility in esophageal squamous cell carcinoma by regulating the focal adhesion
kinase/protein kinase B (FAK/AKT) axis [148]. Integrin α5 can regulate migration and
invasion through the FAK/STAT3/AKT axis, and it also contributes to cell resistance to
chemotherapy-related treatment [149]. Moreover, multiple molecules can be observed
to regulate cells by crosstalk integrin-related signaling, such as Myosin Heavy Chain 9
(MYH9), Rab11, and Wnt5a [150–152], especially the latter, as the paracrine factors in-
volved in EMT/MET have been found to modulate the ITGAV level in ovarian cancer [152].
Interestingly, the interaction of osteopontin and integrin αvβ3 can accelerate cellular up-
take of glucose to improve cell migration ability [153]. A similar study showed that the
interaction of these molecules could increase the resistance of lung tumor cells to gefitinib
treatment [154]. This indicates that the noncanonical pathway of integrin signaling con-
tributes to diverse biological functions and it requires more comprehensive exploration
in cancers.

Additional related stimulation factors of cells include growth factors, extracellular
matrix, and G-protein-coupled receptor (GPCR), in which the GPCR is a transmembrane
protein with rich G proteins, including Gs, Gi, Gq, and G12/13, that can regulate cell
functions through adenylyl cyclase, phospholipase Cβ, and the Rho family [155]. Yifan
Wang et al. showed that the expression of protease-activated receptor 1 (PAR1) was cor-
related with a poor prognosis of ER-negative breast cancer, in which PAR can regulate
the YAP/TAZ axis to increase cell motility and cancer stem-like activity [156]. In hepato-
cellular carcinoma, increased GPCR kinase interacting protein-1 (GIT1) in tumor tissues
is associated with a poor survival rate. However, in contrast to the canonical pathway,
GIT1 can regulate cell motility through ERK signaling [157]. A similar phenomenon was
observed in the Angad Rao et al. study, in which overexpression of GPR19 through the
ERK axis modulated cell migration and invasion ability [158]. However, some members
play tumor suppressor roles. In nasopharyngeal carcinoma, low apelin receptor (APLNR)
expression is correlated with a poor prognosis, and knockdown of APLNR can improve
cell motility [159]. Similarly, Aleena K S Arakaki et al. showed that α-arrestin domain-
containing protein 3 (ARRDC3) could affect tumor cell metastasis by modulating the Hippo
pathway [160]. Therefore, multiple inhibitors have been developed to restrict GPCR activity.
Sunitinib, a kinase inhibitor, was found to inhibit downstream CDC42 and RHO kinases 1
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(ROCK1) functions by targeting G Protein-Coupled Receptor Kinase 5 (GRK5) to modulate
the motility of triple-negative breast cancer cells [161]. Jan Stein et al. found that teleocidin
A2 can inhibit proteinase-activated receptor 2 (PAR2) in breast cancer [162]. Similarly, a
coenzyme Q10 analog, decylubiquinone, was found to inhibit brain angiogenesis inhibitor
1 in breast cancer, thus inhibiting metastasis [163]. Natural products such as yohimbine
have also been found to inhibit the activity of arginine vasopressin receptor 2 [164]. In
addition, the adenosine A2B receptor was found to have diverse mutation points. Xuesong
Wang et al. identified different selective inhibitors, such as NECA, BAY 60-6583, ZM241385,
and PSB603 [165].

Actin filament reorganization, which induces axon attraction, repulsion, and out-
growth, is an EMT process that also participates in axonal guidance signaling [166,167].
Multiple exon guidance-related molecules have also been found involvement in cancer
progression [168]. Artificial manipulation the expression of Neogenin-1 was found to
affect neuroblastoma metastasis [169]. Molecules related to neuronal migration, such as
semaphorin 4C, have also been found to regulate cell motility in breast cancer [170]. Similar
functions were also found by Smeester et al., who showed that semaphorin 4C can regulate
the migration of osteosarcoma to the lung by regulating p-AKT activity [171]. Addition-
ally, secreted molecules that play an essential role in developing cortical neurons, such as
Netrin-1, have been found to regulate the ERK/FAK axis in colorectal cancer to control
the axon outgrowth of cells [172]. However, in ovarian cancer, Netrin-1 was found to be a
tumor suppressor, modulating BMP signaling [173]. Interestingly, the overexpression of
Netrin-1-induced axonal guidance can suppress BMP4 expression, which was involved
in MET processes, indicated that Netrin-1 could dominate both the EMT and MET [173].
Similar functions can also be seen for semaphorin 3B, but it functions only in nonneuronal
cells. For example, in breast cancer, semaphorin 3B inhibits GATA3 to reduce cell migra-
tion [174]. In HER2-related drug-resistant breast cancer cells, it was also found that an
increase in neuropilin-1 can benefit cells, bypass drug inhibition, and promote cell growth
in the lung [175]. In addition, these stimuli are also accompanied by the activation of ILK
signaling, resulting in cell type changes that allow the cells to migrate [176–178].

10.2. EMT to Metastasis

EMT regulation by growth factors and others also showed that extrinsic factors,
including IL-6, Tnf, TGF-b, Notch, Wnt, and receptor tyrosine kinase EGF, HGF, PDGF,
FGF, etc., can further enhance cell invasion ability and facilitate cells to secrete matrix
metalloproteinases (MMPs) to digest ECM [179–181]. Currently, approximately 23 MMP
members have been identified [181]. In cancer, MMP2 and MMP9, which are the most
commonly discussed, are classified as gelatinases (A and B) [182]. They are also regulated
by many EMT-related molecules, which in turn express and promote tumor invasion and
metastasis [183]. Interestingly, cancer cells are also stimulated by ECM to activate the
GP6 signaling pathway and integrin signaling [184]. GP6, also known as glycoprotein VI
or GPVI, is activated by many factors, such as extracellular matrix, including fibrinogen,
laminin, CRP, collagen, convulxin, and alborhagin. It is also found mainly in platelet plasma
membrane proteins [185]. Therefore, many studies have explored the role of the interaction
between platelets and tumors in tumor progression [186]. Mammadova-Bach et al. showed
that the interactions between GPVI in platelets and galectin-3 on tumor cells could promote
tumor cell extravasation, thereby inducing cell metastasis [184]. However, targeting GPVI
may cause disadvantageous side effects. According to the report by Tullemans et al., the
use of pazopanib, a selected tyrosine kinase inhibitor, can cause mild bleeding in patients
with renal cell carcinoma. The main reason may be that GPVI inhibition can cause Ca2+ to
increase and inhibit the function of phospholipid phosphatidylserine [187]. The calcium
level was associated with the actin polymerization and cell motility [188,189], in which
Wnt5a as a ligand of the Wnt-Ca2+ non-canonical pathway drives the calcium release to
modulate downstream PKC, calcineurin, and CaMK-II activity [190,191]. This is similar to
the vicious cycle that allows cancer cells to benefit from cell-cell interactions. Eventually,
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it is possible to see the activation of colorectal cancer metastasis signaling and glioma
invasiveness signaling in simulated results.

10.3. Remodeling the Microenvironment

The oxygen concentration determines the survival of cells [192]. Unlike regular cells,
cancer cells can survive in a low-oxygen environment [193]. The EMT can be related to the
activation of HIF-1α signaling, which promotes cell motility, contributes to the nutrient
metabolism of cells, and activates angiogenesis to increase the energy supply so that cancer
cells can survive in a harsh environment [194]. Otto Warburg proposed the relationship
between Hif-1α and cancer in 1923 as the “Warburg effect” to explain cells surviving under
hypoxic conditions. Hif-1α can act as a transcription factor to transactivate downstream
effectors to accumulate CUL4B levels in breast cancer, consequently suppressing epithelial-
related factors, such as E-cadherin and AXIN2, by cooperating with ZEB2 and Snail to
promote metastasis [195]. In addition, cells in an environment of hypoxia have changes
in their activity of metabolism-related enzymes [196]. In lung cancer, ALDOA, one of
the glycolysis- and gluconeogenesis-related enzymes, is activated by HIF-1α in a hypoxic
environment and it promotes lactate increases, consequently prolonging the protein half-
life of HIF-1α and forming a circuit regulation [197]. In addition to stimulating growth
factors, inflammation such as IL-17 signaling can also crosstalk with HIF-1α signaling [198].
Recently, studies have found that the interleukin-17 receptor B is positively associated
with the degree of migration [199]. In pancreatic cancer, the phosphorylation of tyrosine at
position 447 on the interleukin-17 receptor B can be used as a prognostic marker, promoting
metastasis when the corresponding ligand, IL17B, stimulates cells [200].

Once the cells extravasate to the outside of the tissues or organs, the tumor mi-
croenvironment is remodeled [201]. The most common cells surrounding tumor cells
are stromal cells, immune cells, mesenchymal stem cells, endothelial cells, adipocytes,
and fibroblasts. Recently, many stromal cells have been shown to be assimilated by tu-
mors [202,203]. As a result, these cells are redefined by new terms, such as tumor-associated
neutrophils (TANs), tumor-associated macrophages (TAMs), cancer-associated fibroblasts
(CAFs), tumor-associated bone marrow-mesenchymal stromal cells (BM-MSCs), and tumor-
associated adipose tissue-mesenchymal stromal cells (AT-MSCs) [204]. EMT can also affect
hepatic fibrosis/hepatic stellate cell activation and signaling pathways, and tumor microen-
vironment pathways [205]. This shows that tumor cells can create a distinct environment,
such as acidification. Fibroblasts are the most common extracellular stromal cells. Once
stressed, they will be activated and transform into the mesenchymal type or myofibrob-
lasts. The sources of activated fibroblasts may be local fibroblasts, vascular pericytes, bone
marrow-derived cells, endothelial cells, epithelial cells, etc. [206].

Recently, cancer-associated fibroblasts have also been found to be complementary to
cancer, helping tumors become resistant to drug treatment [207,208]. Recurrence caused by
drug resistance is currently one of the major factors leading to the failure of many drugs,
and Apicella reported the failure of chemotherapeutic drugs mediated by CAFs [209].
In this exciting project, it was first discovered that the content of cell metabolites, the
lactate content, and the resistance of cells to tyrosine kinase inhibitors, such as MET/EGFR-
related drugs, have a remarkable correlation. Despite its current clinical use, the drug
causes high-intensity damage to only a particular population of tumor cells. However,
due to the heterogeneity among cells, the tumor will gradually become resistant during
treatment, and this will lead to recurrence. Interestingly, when isolated drug-resistant cells
are repeatedly treated, similar results are obtained. Finally, the drug resistance of cells is
mainly derived from the communication between CAFs and tumor cells, in which tumor
cells that produce lactate will cause CAFs to feedback growth factors, such as HGF, to
strengthen cell resistance to drug treatment [209]. However, these complex interactions
need more research to clarify, and whether they are appropriate therapeutic targets is still
unknown. Additionally, CAFs and tumor cells interaction can switch the plasticity and
heterogeneity of cells. For example, Mosa et al. found that tumor cells and CAFs interaction
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drives high αSMA expressed in CAFs and secreted a high level of Wnt to promote tumor
growth, with the Wnt level as a switch factor, once interference with Wnt signaling can
drive more inflammatory-like CAFs and consequently promote EMT formation [210].
Therefore, identifying the critical factors for the dominant cell plasticity may uncover how
to switch between the EMT and EMT.

10.4. Upstream Regulators Contribute to Determining the EMT/MET in Cancers

The simulated analysis revealed the possible upstream factors involved in the EMT
and MET switch (Table 3). Their gene ontology is linked to both embryogenesis and cancer
progression (Figure 9), which are involved in well-known signaling, such as TGF-β, BMP,
growth factors, Wnt, Notch, Hedgehog, Integrin, and Hippo [211]. The simulated results
showed that both EMT or MET link to the cell differentiation and cell motility pathway.
These relationships match the criteria that cells switch the status between epithelial and
mesenchymal to possess related biological functions (Figure 9). During development,
mesenchymal progenitor disorder can cause divers syndromes, such as Job syndrome,
caused by abnormal immune or skeleton development, the reason for which is the mutation
of STAT3 resulting in the loss of Wnt/β-catenin-related transduction, and can be restored
by GSK3 inhibitors [212]. Lin et al. found that different position phosphorylation on STAT3
can switch the epithelial and mesenchymal to control cancer cell motility [213].

Moreover, to move to the correct position to conduct sub-population differentiation,
the progenitor cells can modulate the E-cadherin to upregulate SNAIL1/2 resulting in
partial EMT [214]. The expression of SNAIL1 can serve as an EMT hallmark in cell bi-
ology, especially in cancer progression. The expression of SNAIL1 can be regulated by
the STAT3/LIV-1 axis. This regulation controls the anterior migration of gastrulation in
embryogenesis [215] and contributes to the tumor invasion, stem-like motility and chemore-
sistance [216]. In addition, not only SNAIL1, the related EMT transcription factors such
as ZEB1 and twist1 were also found to be regulated by MET-related dominant molecules,
the OVOL1/2 [217–219], and GRHL2 [220,221], and such factors were involved in wound
healing and embryogenesis as well [222–224]. According to the report by Pienta et al.,
both OVOL1/2 serve as negative regulators in prostate or breast cancer, in which over-
expression of OVOL1 or OVOL2 can decrease ZEB1 to restrict cells EMT, consequently
suppressing metastasis [225]. Similar observations were described in another MET-related
factor, the GRHL2. In carcinoma or breast cancer, GRHL2 can suppress ZEB1 to block
TGF-β-mediated EMT and resistance ability [226]. Such reciprocal regulation may con-
tribute to the promoter binding regions. Cieply et al. demonstrated that GRHL2 could
directly bind to the ZEB1 promoter, and the interaction of GRHL2 and Six1 may accelerate
specific recognition for its promoter binding [226,227]. However, the controversial roles of
GRHL2 have been described in breast cancer, in which overexpression of GRHL2 drives
EMT phenotype via binding to ERBB3 promoter [228]. In agreement with other reports,
Faddaoui et al. found that GRHL2 was associated with cell growth and motility phenotype
in ovarian cancer [229]. Interestingly, ZEB1 can bind to the GRHL2 promoter as well [227].
Similarly, this regulation can be observed in the promoter regions of ZEB1 or twist1, which
were with the OVOL2 binding sites [225,230]. Therefore, such regulatory circuits provide
cells plasticity between the EMT and MET. Additionally, the epithelial-related molecule
E-cadherin has been considering as a β-catenin limiter. Under Wnt ligand stimulation,
β-catenin can translocate into the nucleus as a transcription factor to activate the TCF/LEF
axis [231]. Factors including TGF-β, growth factors, and Hedgehog mediate upstream
switch factors, such as Smad3/4, JUN, ETS1, NF-κB, and GLI1/2/3, with a similar phe-
nomenon regulation between the EMT and MET [232–236]. Furthermore, as transcription
modifiers, such as the HOTAIR regulatory pathway, long-noncoding RNA was found
to link the development and cancer [237]. All the possible networks are described in
Figure 9 and Table 3. Interestingly, most of these critical switch factors are involved in
pluripotent features.
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Figure 9. The upstream regulators of EMT/MET dominate both embryonic development and cancer progression. A
simulation of molecular interactions of EMT and MET hallmarks upstream regulators and the related biological functions of
participation was conducted through prediction methods.
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10.5. Stemness and EMT/MET

Stemness is an intermediate transition status to link reversible differentiation and
de-differentiation, which provide a sub-population of embryonic cells that undergo EMT
and MET to develop specific cells and can also be formed from the EMT of epithelial cells
or differentiated cells [73]. In cancer, stem-like features empower cells’ plasticity and are
considered a reason for the failure of chemotherapy [238,239]. The related stemness factors
can be transactivated under the transient EMT/MET processes, consequently promoting
the motility of cells and surviving in rigorous environments [240,241]. Subjected to this
switch, upstream factors between EMT and MET can be linked to self-renewal signaling
(Figure 9), the features of which can be observed in the partial EMT; similar heterogeneous
populations have been identified with unusual EMT characteristics, stemness and drug
resistance, consequently stimulating metastasis events [242–244]. The related stemness
factors can be observed in Table 3. There are multiple signaling molecules involved in cell
pluripotency and stemness, such as Sox2, Oct4, and Nanog, as the key pluripotency-related
genes [245], in which their expression activity can be regulated by EMT/MET-dominant
factors, including STAT3, Smad3/4 and β-catenin, to control the Jak–STAT, TGF-β, and Wnt
signaling pathways. In addition, these regulations contribute to ectoderm development
and the transcriptional regulatory network in embryonic stem cells, with related factors,
such as Pax6, Meis1, Lhx5, Otx1, and Neurog1. Mainly, this type of stem-like cell has an
unusual cell cycle compared to epithelial cells, and the related genes include RB1, SMAD,
Myc, and TP53. Myc is an essential transcription factor and is regulated by STAT3 and
β-catenin, which are involved in both development and tumorigenesis [246]. Das et al.
found that the related regulation of HIF2α, as a down-stream effector of Myc, can cause the
cancer stem cells to undergo self-renewal or differentiation, in which the interaction among
Myc, Sox2, and Nanog on the HIF2α promoter can modulate the level of p53, Glutathione
(GSH) and reactive oxygen species (ROS) to determine cell fate [247]. In addition, the
overexpression of Myc can induce EMT-related genes, such as SNAIL, ZEB, Twist, OPN and
SALL4 [248]. These regulations contributed to the partial EMT, drug-resistant or immune
escape abilities, consequently causing a relapse of cancer. Therefore, the identification of
the essential dominant stem-like factors may provide alternative targeting strategies for
cancer progression.

11. Conclusions

To the best of our knowledge, EMT and MET are essential to cancer [126]. Therefore,
cells that move and gain malignancy are important issues that need to be investigated.
However, under both regular and malignant conditions, EMT and MET always occur [249].
The molecular mechanism involves FGF, TGF-β, STAT3, and ER under normal conditions
to repair wounds. A similar molecular mechanism is also used by tumor cells to help tumor
cells occupy different organs and obtain nutrition for cell survival (Figure 10). Therefore,
understanding the molecular mechanism in tumors may identify significant therapeutic
targets for cancer therapy [250].
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Figure 10. The molecular mechanism of EMT/MET. To date, multiple essential embryogenesis factors have been proven to
contribute to EMT/MET by control diverse switch factor activity, in which the epithelial or mesenchymal status has been
well characterized, but among them, the intermediated status, partial EMT empower cancer stemness, drug-resistant, and
collective motility, such plasticity contribute to tumor heterogeneity of tumors.
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N_OF_MESENCHYMAL_TO _EPITHELIAL_TRANSITION_INVOLVED_IN _METANEPHROS_MO
RPHOGENE-SIS”, then subjected these hallmarks to the Ingenuity pathway analysis (IPA) (https://di
gitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualizati
on/qiagen-ipa/; accessed on 26 July 2021) to generate the related graphical summary, canonical
pathway, and upstream regulators. Additionally, the Venn diagram generated the identical factors
between EMT and MET.
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