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Abstract

Plant diversity is important to human welfare worldwide, and this importance is exemplified

in subtropical and tropical [(sub)tropical] African savannahs where regional biodiversity

enhances the sustaining provision of basic ecosystem services available to millions of resi-

dents. Yet, there is a critical lack of knowledge about how savannahs respond to climate

change. Here, we report the relationships between savannah vegetation structure, species

richness, and bioclimatic variables as recorded by plant biochemical fossils, called biomark-

ers. Our analyses reveal that the stable carbon isotope composition (δ13C) of discrete sedi-

mentary plant biomarkers reflects vegetation structure, but the isotopic range among plant

biomarkers–which we call LEaf Wax Isotopic Spread (LEWIS)–reflects species richness.

Analyses of individual biomarker δ13C values and LEWIS for downcore sediments recov-

ered from southeast Africa reveal that the region’s species richness mirrored trends in atmo-

spheric carbon dioxide concentration (pCO2) throughout the last 25,000 years. This

suggests that increasing pCO2 levels during post-industrialization may prompt future

declines in regional biodiversity (1–10 species per unit CO2 p.p.m.v.) through imminent habi-

tat loss or extinction.

Introduction

Observations and basic ecological theory provide corroborative support that diverse ecosystem

services in savannahs are maintained by plant diversity [1, 2]. Yet, decades of research still

leave some outstanding questions about African savannah dynamics during past intervals of

dramatic climate changes (e.g., deglaciation) [3–5], and the consequences of human activities

on regional biodiversity are a source of debate [6]. This debate continues, in part, because of

lacking (paleo)biodiversity proxies applicable across multiple scales and key geologic archives

[7]. For instance, although many (paleo)vegetation reconstructions employ pollen spectra as a

metric of biodiversity [8], uncertainties surrounding pollen dispersal dynamics [9] and

taphonomy [10] impose significant limitations on its use as a robust biodiversity proxy [7].

Additionally, pollen is largely reflective of fecundity as opposed to species abundance,
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distribution, and biomass [11]. As such, developing practical biodiversity proxies represents

an urgent task for scientists and legislators alike as anthropogenic climate change intensifies

[12].

Savannah vegetation communities are characterized by quick, nonlinear succession dynam-

ics and threshold transitions [13] among grasses, woody plants and forbs [14–16]. The domi-

nance of these coexisting plant functional types (PFTs) is reflected by physiognomic

classifications of African savannah ecosystem structure as related to woody plant (crown)

cover (c.f., Discussion A in S1 File), which defines understory gradients in resources [17], such

as water, nutrients, and light [18, 19]. Ecosystem structure in turn influences underlying plant

biodiversity patterns in savannahs [19, 20], but the nature of this influence is subject to differ-

ences in source accumulation area and time (i.e., scale) [21] and biogeographic variables, such

as ecoregion extent [22, 23].

Conceptually, plant biodiversity is a measure of both species abundance (richness) and dis-

tribution (evenness) at the regional, landscape, and local level [21]. However, plant species

richness (PSR) functions as a common index of biodiversity [1, 22] because of its strong posi-

tive relationships with resource-use differentiation [24] and functional trait divergence (e.g.,

growth habit) [14] among plants.

PFTs closely parallel functional trait divergence [25], which defines alternative strategies for

mitigating pervasive resource constraints on and during plant development [26]. Associated

functional traits include any phenotypic or chemical feature impacting plant fitness and their

interactions with the environment [27], and thus describe vegetation dynamics with respect to

ecophysiological factors [28] as opposed to strict taxonomic associations [14]. For instance, in

southeast African savannah vegetation communities, a combination of divergent life strategies

and taxonomic (i.e., species) richness account for most foliar chemical diversity [17], which in

turn strongly parallels contemporary plant biodiversity [29]. As such, PFT-based techniques

are reliably powerful for reconstructing plant biodiversity patterns alongside or in lieu of tradi-

tional taxonomic approaches (e.g., pollen spectra) [30].

Refractory plant biomarkers, such as most long-chain n-alkanes, in soils and terrestrial deposits

exhibit molecular and isotopic signatures that reflect bioclimatic conditions during plant develop-

ment [31]. Biomarker n-alkanes, in particular, are major molecular constituents of the waxy pro-

tective cuticle covering plant leaves [32, 33] that have characteristic odd-numbered C27–C33

homologue distributions in different PFTs [34]. High abundances of C33 n-alkanes (n-C33) char-

acterize many grasses and forbs in modern savannahs [32], and higher n-C27 and n-C29 abun-

dances characterize woody plants [33]. The stable carbon isotopic composition of biomarker n-

alkanes, expressed here as δ13C values, are also characteristic in different PFTs, wherein C4 grasses

have much higher values than woody plants and forbs with C3 photosynthesis [ca. –20‰ and –35

±5‰, respectively (S1 Table)]. Among plants with C3 photosynthesis, biomarker n-alkane δ13C

values decrease with higher resource availabilities and shade [35]. As such, biomarker n-alkane

δ13C values serve as a uniquely quantitative reflection of PFT dominance [35], and thus ecosystem

structure [16, 17], in savannahs across space and through time [36].

We report here on a new approach for estimating (paleo)biodiversity in savannahs, devel-

oped from new and literature data on biomarker n-alkane signatures in contemporary plants,

surface soils and terrestrial deposits derived from (sub)tropical African sources. This approach

builds on earlier studies relating plant biodiversity with (i) tree cover [20], (ii) PFT dominance

[15], and (iii) biomarker n-alkane signatures [35–38] to develop predictive relationships con-

necting plant species richness and biomarker n-alkane signatures in savannahs. Then, we

extend these contemporary predictive relationships to marine sediment biomarker n-alkane

records off the Zambezi River mouth (Fig 1) [39, 40] to reconstruct biodiversity patterns in

southeast Africa since ~25 thousand years ago (kya).

Isotopic variance among plant lipid homologues correlates with diversity patterns of their source communities
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Materials and methods

Contemporary plants

We compiled both new and literature data of C27–C33 n-alkane δ13C values in contemporary

plant leaves [n = 139 (Fig 2; S1 Table)] from at least 82 distinct species representative of the

Fig 1. Satellite-estimated fractional tree cover and locations of the samples used for surface-sediment biomarker analyses (black circles). A,

Satellite estimates of fractional tree cover (MODISfwoody) throughout (sub)tropical Africa [66]. Satellite data (available at landcover.org/data/) was

resampled from 30-m resolution at 0.05˚ in ArcGIS 10.2.1 for improved figure visualization. Lighter-to-dark shading (green) represents increased

fractional tree cover. Surface-sediment back-trajectories were constrained by geomorphological features, river discharge data, and Lagrangian

atmospheric circulation models (Discussion D in S1 File). The Zambezi River catchment is outlined in red. B, Zoom-in of fractional tree cover

estimates in the lower Zambezi sub-catchment (c.f., black dashed box in Fig 1A for map position). Black diamonds mark the marine sites used for

sediment biomarker analyses: GeoB9307-3 [18˚34.0‘S, 37˚22.9‘E (542 m water depth)] [39], GIK16160 [18˚14.5‘S, 37˚52.1‘E (1339 m water depth)]

[40].

https://doi.org/10.1371/journal.pone.0212211.g001
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commonest African savannah vegetation communities (Discussion B in S1 File) [14–16]. To

account for within and between-species isotopic variations caused by plasticity [41], appertain-

ing plants were assigned to one of three dominant PFTs based on photosynthetic pathway and

growth habit [15]: C3 woody plants (n = 42), C3 forbs (n = 22), and C4 grasses [n = 75 (Discus-

sion B in S1 File)].

For new data, we collected fresh leaves and B-horizon soils during boreal summer of 2011

to complement the molecular and isotopic data reported by previous studies (S1 and S2

Tables). Fresh leaves [n = 44 (S1 Table)] were sampled from at Ngorongoro Conservation

Area and the surrounding park (3.5±0.5˚S, 35.0±1.0˚E) together with correlative soil B-hori-

zons [n = 11 (S2 Table)], which were sampled following protocols of Belsky et al. [17] from

depths of 0–2.5 cm underneath surface soil (O/A horizon) layers. Corresponding permits were

issued for regions around Olduvai Gorge (Arusha) by the Tanzania Wildlife Research Institute

(TAWIRI) through the Commission for Science and Technology (COSTECH). Freeze-dried

leaves or soils were mechanically powdered before accelerated solvent extraction (ASE) with

dichloromethane:methanol [DCM:MeOH (85:15 v/v)] in a sequence of three cycles of 5 min at

10.3 MPa and 100˚C with 70% flush volume [42]. Resultant total lipid extracts were evaporated

Fig 2. Compiled leaf-wax n-alkanes signatures of contemporary plants. Compiled leaf-wax n-alkanes signatures of

139 contemporary plants, which represent 82 distinctive species of (sub)tropical African savannah vegetation

communities (S1 Table). Plants were separated by photosynthetic pathway and growth habit into one of three

overarching plant functional types (PFTs): C3 woody (n = 42), C3 forbs (n = 22), and C4 grass (n = 75). Stable carbon

isotopic values of C27–C33 n-alkanes (δ13C#) are shown as medians with their median absolute deviation (±MAD).

Histograms depict the relative abundance of C27–C33 n-alkanes in each PFT (median±MAD).

https://doi.org/10.1371/journal.pone.0212211.g002
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to dryness under nitrogen, reconstituted in 50 μl of the extraction solvent, and then allowed to

evaporate in a second ASE packed with 1 g quartz sand, 2 g of 5% (w/w) silver-impregnated sil-

ica gel, and 6 g activated silica gel [42]. Once evaporated, the unsaturated hydrocarbons (e.g.,

n-alkanes) were separated from associated total lipid extracts via selective, sequential ASE with

hexane in one cycle of 1 min at 3.4 MPa and 50˚C with 30% flush volume [42].

Once separated, the unsaturated hydrocarbons were characterized first by gas chromatogra-

phy (GC) flame ionization detection on a HP 5890 [60-m HP5 (0.32 mm × 0.25 μm)]; GC tem-

perature was set to 60˚C for 1 min, ramped to 320˚C at 6˚C min-1, and held for an additional

20 min at 320˚C. Thereafter, unsaturated hydrocarbons were measured by gas chromatogra-

phy (combustion) isotope-ratio monitoring mass spectrometry on a Thermo TraceGC Ultra

[60-m HP5 (0.32 mm × 0.25 μm)] and Thermo DeltaV Plus connected via a continuous flow

interface using the same oven-ramp program as with GC-FID. Samples were injected in split-

less mode and turned to carbon dioxide via combustion over nickel and platinum wire in

helium at 1000˚C. Stable carbon isotopic values are expressed in standard permil (‰) notation

relative to Vienna Pee Dee Belemnite (VPDB):

d
13C ¼ 1000

Rsample

Rstandard
� 1

� �

; R ¼
13C
12C

Within-run precision (1σ) and accuracy were determined from co-injected lipids of known

concentration and isotopic composition (c.f., Schimmelmann Standard B4) and have values of

0.11‰ and 0.10‰ (n = 88), respectively.

Soils and terrestrial deposits

We also compiled biomarker n-alkane δ13C values (n = 40) for (sub)tropical African samples

of terrestrial-derived fine-grain materials often incorporated into sedimentary geologic

archives [i.e., sediments, soil, litter and dust; hereafter, “surface sediments” (S2 Table)]. These

surface sediments were selected to reflect the major source-to-sink transport histories of bio-

marker n-alkanes (Discussions C and D in S1 File) [43] for (sub)tropical Africa and its spec-

trum of diverse savannah ecosystems, spanning grassland to woodland [16].

Results

Contemporary plants

Altogether, contemporary plants show significant differences in associated C27–C33 n-alkane

δ13C (δ13C27–33) values within and between dominant PFTs (Fig 2). In contrast, the average

range of δ13C27–33 values in individual leaves is about 1.9‰ for all the dominant PFTs (S1

Table). To represent this isotopic range across a homologous series of compounds, we intro-

duce an index called LEaf-Wax Isotopic Spread (LEWIS):

LEWIS ¼ maxjd13Cx� yj � minjd13Cx� yj

Here, δ13Cx–y is representative of the δ13C values in a regular series of homologous compounds

with x through y carbons (e.g., δ13C27–33 represents n-C27, n-C29, n-C31, and n-C33). In essence,

associated LEWIS values represent the distribution-weighted PFT differences in carbon iso-

tope discrimination among principle sources of biomarker n-alkanes in a sample [44], which

is ideal for addressing plant functional trait divergence and biodiversity questions in complex

ecosystems [45]. Although our study focuses on n-alkanes, in concept, LEWIS likewise could

be applied to related homologous n-alkyl biomarkers, such as alcohols and fatty acids [37].

Isotopic variance among plant lipid homologues correlates with diversity patterns of their source communities
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Soils and terrestrial deposits

Surface-sediment δ13C27–33 values show an inverse relationship with satellite and biomarker-

estimated fractional tree cover of their source-vegetation communities (Fig 3). At first, δ13C27–

33 values were compared to estimates of MODerate-resolution Imaging Spectradiometer

(MODIS) derived fractional tree cover of their inceptive source-vegetation communities in

(sub)tropical Africa [MODISfwoody (Fig 1 and Discussion D in S1 File)]. Although estimates of

fractional tree cover show a significant linear relationship with the δ13C values of C27–C33 bio-

marker n-alkanes as individual homologues (S2 Table), the relationship is strongest with δ13C

values of n-C31 [δ13C31 (r = –0.939; p< 0.0001)]. Yet, the regression residuals of this relation-

ship create a distinctive unimodal distribution, which tracks the characteristically quadratic

rise of C3 forb biomass [19, 35] at intermediate levels of tree cover in savannahs [46]. To

account for the effects of forbs on surface-sediment biomarker n-alkane signatures, we used

δ13C31 values to derive more representative estimates (i.e., reconstructions) of fractional tree

cover [31fwoody (Fig 3A and Discussion E in S1 File)]. Biomarker reconstructions of fractional

tree cover show a much stronger correlation with satellite-estimated fractional tree cover as

compared to individual δ13C27–33 values (Fig 3B):

31fwoody ¼ 0:940 MODISfwoody þ 0:014ðr2 ¼ 0:927Þ

Combined, these regression analyses indicate surface-sediment δ13C31 values reflect frac-

tional tree cover in savannahs at timescales of biomarker n-alkane accumulation and turnover

[47].

Surface-sediment LEWIS values show a wide range [~1.5–4.5‰ (Fig 3C and 3D)] that

belies the consistent δ13C27–33 values of individual leaves (Fig 2). Associated LEWIS values

show a distinctive unimodal relationship with δ13C31 values (Fig 3C) and MODISfwoody estimates

(Fig 3D) that further indicates surface-sediment LEWIS does not simply parallel trends in

reciprocal C3/C4 dominance or savannah fractional tree cover, respectively (Discussions E–G

in S1 File). Considered together, such nonlinear relationships indicate surface-sediment

LEWIS tracks an ecological threshold in savannah vegetation communities [13] related to eco-

system structure via canopy–gap gradients in carbon [35], water [48], and light [17, 19], which

together can drive substantial differences in absolute δ13C27–33 values of individual leaves even

within monospecific communities [49].

The unimodal relationship present between surface-sediment LEWIS values and fractional

tree cover resembles closely patterns in resource variance (e.g., patch-scale spatial heterogene-

ities in carbon, water and light) along grassland-forest transitions [50]. In savannahs, resource

variance increases with increased tree cover until it reaches a critical threshold [13]. Thereafter,

resource variance decreases with further crown closure [19] alongside successive reductions in

canopy–gap spatial heterogeneity [17, 50]. Although ecological thresholds are dynamic [16],

resource variance in savannahs usually peaks at fractional tree cover of 0.25–0.45 [19, 24].

Given resource variance shows close correspondence with biodiversity patterns [16], it comes

as no surprise that plant species richness in savannahs also usually peaks at fractional tree

cover of ~0.35±0.10 (Figure A in S1 File) [19, 51].

Surface-sediment LEWIS values show a significant linear correlation (r = 0.849; p< 0.0001)

with literature estimates of PSR (Ssource) [22] for ecoregions of their main source-vegetation

communities (Fig 4A and Discussion D in S1 File). Yet, the interpretive significance of this

straight-line relationship is not immediately clear, as surface-sediments differ in “integration

scale”, defined by generalizable average areas [i.e., accumulation extent (km2)] and times [i.e.,

sedimentation interval (kya)] for specific surface-sediment types [43, 52]. Therefore, we

rescaled Ssource estimates using predictive models of the species-time-area relationship (STAR)

Isotopic variance among plant lipid homologues correlates with diversity patterns of their source communities
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[23] for modern savannahs (Discussion F in S1 File), which functions as a standardization

method for species richness in samples (i.e., sediment types) with incommensurate integration

scales [53].

Fig 3. Bivariate relationships shared between surface-sediment LEWIS, δ13C31 values and fractional tree cover (MODISfwoody) estimates of (sub)tropical

African source-region vegetation communities. Larger circle sizes and darker shading (green) both represent increased fractional tree cover (c.f., Fig 1). Light

blue shaded bounds indicate empirical 90% confidence intervals as calculated from a Monte Carlo method [92]. Asymptotic significance (p-value) is less than

0.0001 for all the relationships shown. A, Biomarker reconstructions of fractional tree cover (31fwoody) were calculated from δ13C31 values with a nonlinear

equation [35]:

31fwoody ¼ fsinð� 1:8353 � 0:08538� d
13C31Þg

2

B, Biplot between satellite-estimated fractional tree cover (MODISfwoody) and biomarker-reconstructed fractional tree cover (31fwoody). C, Relationship shared

between surface-sediment LEWIS and δ13C31 values. Also shown are median values and the median absolute deviation of dominant PFTs (S1 Table) [15]: C3

woody plants [n = 37 (white diamond)], C3 forbs [n = 22 (double diamond)], and C4 grasses [n = 84 (black diamond)]. D, Relationship shared between surface-

sediment LEWIS values and fractional tree cover (MODISfwoody) estimates.

https://doi.org/10.1371/journal.pone.0212211.g003

Isotopic variance among plant lipid homologues correlates with diversity patterns of their source communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0212211 February 27, 2019 7 / 17

https://doi.org/10.1371/journal.pone.0212211.g003
https://doi.org/10.1371/journal.pone.0212211


Rescaled Ssource estimates–called SSTAR−have a weaker correlation with surface-sediment

LEWIS values as compared to simple ecoregion estimates of PSR (Fig 4B). Yet, the strength of

this relationship grows much stronger after using partial bivariate regression models [54] to

account for common covariance with fractional tree cover estimates [i.e., MODISfwoody

(Figure C in S1 File)], which in turn co-varies with bioclimatic variables such as rain and fire

regime [18]. The consistent linear correlations shared between surface-sediment LEWIS values

and PSR, despite differences in respective integration scales [43] and transmission dynamics

[52], support the premise that LEWIS functions as a semi-quantitative index of biodiversity

patterns.

Discussion

With a calibration surface-sediment LEWIS framework established, we sought to reconstruct

Afrotropical biodiversity patterns during previous intervals of far-reaching global warming,

such as the last deglaciation [~21–7 kya]. Therefore, we examined previously reported δ13C27–33

values in correlative marine cores recovered from off the mouth of the Zambezi River (Fig 1B)

[39, 40], which is southern Africa’s second largest river system. Once combined, these records

offer complementary perspectives on the developing plant biodiversity of the lower Zambezi

sub-catchment (Discussions G–I in S1 File) throughout the last ~25 kya that transcends any

particular record taken alone (Fig 5A and 5C).

Biomarker records from marine [39, 40] and lake sediments [55] suggest there was a grad-

ual long-term expansion of trees and bushes in southeast Africa during the LGM–Holocene

transition. In contrast, pollen records and beta diversity patterns suggest that the community

phylogenetic structure of Zambezian ecoregions remained the same or similar since at least 25

Fig 4. Bivariate relationships shared between surface-sediment LEWIS values and the corresponding plant species richness (PSR) of their source-region

vegetation communities. Larger circle sizes and darker shading (green) both represent increased fractional tree cover (MODISfwoody) estimates (c.f., Fig 1). Solid

lines represent linear regression models. Blue shaded bounds indicate empirical 90% confidence intervals as calculated from a Monte Carlo method [92].

Asymptotic significance (p-value) is less than 0.0001 for all the relationships shown. A, Biplot between surface-sediment LEWIS values and the ecoregion

estimates of PSR (Ssource) [22] for their main source-region vegetation communities (Discussion F in S1 File). B, Biplot between surface-sediment LEWIS values

and (re)scaled PSR estimates using predictive models of the species-time-area relationship (STAR) [23] for modern savannahs [SSTAR (Discussion F in S1 File)].

Note, we used log-transformed PSR for our analyses to improve data normality, minimize heteroscedasticity, and foster consistent linear relationships across

disparate scales and datasets [1, 21, 23].

https://doi.org/10.1371/journal.pone.0212211.g004
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Fig 5. Downcore records of environmental change in southeast Africa over the last 25 kya. A, Sediment LEWIS

(Discussion G in S1 File) for correlative marine cores recovered from off the Zambezi River mouth [GeoB9307 (filled

circles) [39]; GIK16160 (open circles) [40]], which reflect the changing plant species richness of lower Zambezi

Isotopic variance among plant lipid homologues correlates with diversity patterns of their source communities
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kya [56–59]. In part, this seeming paradox may reflect the varied taxonomic resolution inher-

ent to many pollen spectra [30]; though higher rank biodiversity parallels species richness

under certain conditions, contemporary pollen spectra reflect (paleo)vegetation dynamics

across a range of disparate area and time scales [60]. Consequently, pollen records can obscure

important biodiversity patterns [53] and functional trait divergence at lower rank [61] that

biomarker signatures can reveal by proxy [11, 55, 62]. This said, in our study, plant biodiver-

sity is defined by published literature estimates of the observed taxonomic richness in specific

(sub)tropical African ecoregions, which might demarcate expressly quantitative interpreta-

tions of LEWIS because ancient African savannahs might have differed in composition or

structure as compared to modern analogues [5, 59]. Even still, the strong positive relationship

species richness shows with sediment LEWIS forges a conceptual link between existing pollen

and biomarker records, which allows us to differentiate changes in community production

(e.g., plant biomass), ecosystem structure and biodiversity.

During glacial termination, about ~25–17.5 kya, reconstructed fractional tree cover

(31fwoody) estimates of 0.25±0.10 (Fig 5C) occur in conjunction with high pollen abundances

among grasses and highland taxa (e.g., Podocarpus [Fig 5E]) [56]. High sediment LEWIS val-

ues also occur throughout this interval (Fig 5A) that, together with high corresponding palyno-

logical diversity (Dmg) [63], denote species-rich vegetation communities with irregular crown

cover and highly productive understory grasses, characteristic of African miombo woodlands

[64].

High sediment LEWIS values and Dmg continued from ~17.5–15 kya (Fig 5A and 5B,

respectively), but fractional tree cover estimates skewed to more extreme values (Fig 5C and

Discussion H in S1 File). Amid Heinrich Stadial 1 [HS1 (17.5–14.7 kya)], the increasing pollen

abundances of deciduous woodland taxa (e.g., Uapaca [Fig 5E]) [57, 58] indicate a shift toward

Zambezian woodland-like vegetation communities [64], which are characterized by patches of

dry-deciduous woody plants surrounded by grasses. Then, a dramatic decrease in sediment

LEWIS values and Dmg occurs at the HS1–Bolling-Allerød (BA; 14.7–12.9 kya) transition

alongside smaller increases in reconstructed fractional tree cover and the abundance of tropi-

cal forest taxa (e.g., Macaranga-type pollen) [58] together suggest the sudden expansion of less

species-rich vegetation communities, such as mopane woodlands [22, 64].

Sediment LEWIS values and Dmg increase again around 12.9–11.7 kya [i.e., Younger Dryas

(YD)], but low sediment LEWIS values during the earliest Holocene mirror reconstructed

fractional tree cover and deciduous woodland taxa abundances [56, 57] that together are sug-

gestive of the Acacia-Combretum woodlands [64] common in the lower Zambezi today [65].

The end-Holocene reconstructed fractional tree cover of 0.43 (S1 Table) is consistent with

vegetation communities [39]. Shaded bold lines show a combined 250-yr Gaussian smoothed time-series. Shaded

bounds indicate empirical 90% confidence intervals as calculated from a Monte Carlo method [92]. B, Pollen-inferred

biodiversity patterns at Lake Malawi [57] as shown with Margalef’s Index (Dmg = [G– 1][ln N]–1 where G is the

cumulative number of taxa [e.g., genera] in a sample and N is the corresponding pollen sum) [63], which has a strong

positive correlation with species richness at landscape scales [58, 62]. C, Downcore records of δ13C31 values, which are

indicative of C3/C4 plant functional type dominance [35]. Associated δ13C31 values were also used to reconstruct

fractional tree cover [31fwoody (dashed lines)] through time (Discussion D in S1 File). D, Atmospheric carbon dioxide

concentrations (pCO2) and its stable carbon isotopic composition (δ13Catm) as recorded by polar ice [93], and the E,

Pollen abundance diagram of Podocarpus, which is an indirect temperature indicator, and Uapaca and at Lake Malawi

[57]. F, Downcore alkenone-estimates of the sea surface temperature (SSTUK) for at GIK16160 [94], which is

representative of temperature changes in the lower Zambezi sub-catchment [39]. G, Downcore records of the stable

hydrogen isotopic composition in water used by plants [31δDwater (Discussion E in S1 File)] reconstructed from n-

C31δD values in sediments at GeoB9307 (filled circles) [39] and GIK16160 (open circles) [40], representing

precipitation changes in the lower Zambezi sub-catchment [39]. Lower 31δDwater values are indicative of higher rainfall

related to changes in monsoon intensity [48]. Abbreviations are written as: Younger Dryas (YD); Heinrich Stadial 1

(H1); Bolling-Allerød (BA); Last Glacial Maximum (LGM).

https://doi.org/10.1371/journal.pone.0212211.g005
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recent MODIS tree cover estimates of ~0.40 for the lower Zambezi sub-catchment (Discussion

H in S1 File) [66, 67], and further supports our use of δ13C31 values as a reflection of PFT dom-

inance and fractional tree cover.

The maximum isotopic difference demonstrated between end-member abundance-

weighted δ13C29 and δ13C33 values of ~4.8‰ defines an internal benchmark of higher concep-

tual LEWIS index values apart from additional bioclimatic influences. Indeed, (micro)habitat

heterogeneities in ecoregion structure could lead to additional differences of 3–4‰ between

savannahs with homogenous PFT distributions as compared to relatively patchier ones [35].

This conceptual difference is corroborated by previous studies noting plant biodiversity paral-

lels increasing patchiness even in savannahs with identical fractional tree cover estimates at the

landscape scale (Discussion G in S1 File).

Beyond internal (micro)habitat influences on the carbon isotopic composition of leaf-

waxes, major climatic controls on savannah vegetation communities are related to changes in

rainfall, temperature, and pCO2 [68] though their relative importance can differ with observa-

tion scale [69]. For instance, equilibrium vegetation model (BIOME4) simulations [68] suggest

that lower Zambezi ecosystem structure was controlled by pCO2 during glacial termination

until ~10 kya (Fig 5D), but that temperature and, to a much lesser degree, rainfall together

controlled Holocene succession (Fig 5F and 5G). These respective simulations are corrobora-

tive with the moderate correlation strength apparent between reconstructed fractional tree

cover estimates (31fwoody) and: (i) pCO2 during glacial termination and ~10 kya (r = 0.647),

and (ii) reconstructed late-summer (austral) temperatures since ~10 kya (r = –0.714). Collec-

tively, pCO2 and temperature explains 61% of the downcore variance in reconstructed frac-

tional tree cover in a multiple regression model (Discussion I in S1 File).

Sediment LEWIS values share a relationship with corresponding pCO2 (r = –0.940) that

does not become stronger in multiple regression models with a secondary predictor (Discus-

sion I in S1 File). This correlation cannot be a simple consequence of increasing pCO2 on

apparent C3 plant fractionation (Discussion G in S1 File) through the deglacial transition since

such increases should have a negligible influence on carbon isotope discrimination in coinci-

dent C4 plants [70]. Rather, we suggest increasing pCO2 prompted decreasing plant functional

trait divergence [71, 72] and, in turn, decreased biodiversity at the regional level [73]. For

instance, increasing pCO2 promotes increased C3 photosynthetic water use efficiency [74],

particularly plants with woody growth forms and forbs [75, 76], and thereby promotes

decreased levels of facilitative-competitive interactions vis-à-vis resource-use strategies (i.e.,

water, carbon and light) [28, 77]. Resource-use strategies underlay plant functional trait diver-

gence [77], which in turn underlies most differences in carbon isotope discrimination among

populations (intraspecific) and between species [78, 79]. All things considered, this mechanism

suggests increasing pCO2 prompts decreased LEWIS values as a consequence of decreased

functional trait divergence (i.e., decreased PSR) and its effects on carbon isotope discrimina-

tion [79], which are related to resource use [41, 78]. Such a mechanism is consistent with the

results of leaf-level function models [28], experimental data [80], and the consequences of

increasing pCO2 on savannah biodiversity under modelled business-as-usual future climate

scenarios within the next 100 years [81].

Even though these results indicate sediment LEWIS tracks changing plant biodiversity,

there are some important limitations in our approach. For instance, isotopic responses of dif-

fering plant types are consequent to interactive effects of bioclimatic variables [68, 82], and fur-

thermore are often species specific [83]. Indeed, plants show complex variation in their

ecophysiological, biosynthetic, and molecular responsiveness to changing pCO2 over a wide

range of timescales [76, 83]. These complexities underscore a caveat to our interpretations, as

does recent literature about C3 plants re-assimilating photorespired CO2 [84], since each could
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have unpredictable effects on apparent landscape-scale carbon isotope discrimination. Our

multivariate analyses also do not take into account the unpredictable effects of changing pCO2

on evolutionary processes [83] or environmental (historical) hysteresis [28], which can influ-

ence stable carbon isotopic composition of leaf biomass [82]. Even so, numerous studies sug-

gest Quaternary plant biodiversity patterns were dominantly guided by (paleo)environmental

influences on ecohydrological (functional) trait divergence [80, 85], suggesting post-LGM PSR

trends are explicitly predictable using paired bioclimatic constraints and LEWIS.

In recent decades, intense debate has arisen about tropical biodiversity patterns during peri-

ods of far-reaching global warming, such as during glacial terminations and future climate sce-

narios [83]. This research develops a novel tool for reconstructions and, theoretically,

projections of the species richness in savannah ecosystems at disparate area and time (i.e., inte-

gration) scales. Conservatively, pCO2 is modelled to reach 550–800 p.p.m.v. around 2050 and

2080, respectively [86]. The relative magnitude of this increase in concentration is comparable

with the increasing pCO2 between about 17 kya and 10 kya (Fig 5D) that featured dramatic

declines in species richness of Zambezi vegetation communities (Fig 5A and 5B). If the scaling

(power) relationship present between species richness as compared to surface-sediment

LEWIS (Fig 4) holds during past and future climate change events, anticipated impending

pCO2 jumps will drive an estimated local loss of 1000±750 Zambezian species of flowering

plants, which is at the extreme of terrestrial biodiversity privation estimates, on average, world-

wide [87, 88]. Considering plant biodiversity exerts a direct influence on organic carbon stor-

age [2] and terrestrial discharge [58] from drylands such as savannas [89], our results establish

further motivation for in-depth investigation of the effects of future anthropogenic emission

scenarios [81, 90]–particularly in relation to woody plant encroachment [91].
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