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Abstract

Predicting population extinction risk is a fundamental application of ecological theory to the prac-
tice of conservation biology. Here, we compared the prediction performance of a wide array of
stochastic, population dynamics models against direct observations of the extinction process from
an extensive experimental data set. By varying a series of biological and statistical assumptions in
the proposed models, we were able to identify the assumptions that affected predictions about
population extinction. We also show how certain autocorrelation structures can emerge due to
interspecific interactions, and that accounting for the stochastic effect of these interactions can
improve predictions of the extinction process. We conclude that it is possible to account for the
stochastic effects of community interactions on extinction when using single-species time series.

Keywords

Autocorrelation, community effects, extinction, first passage time, moving-average model, PVA,
time series.

Ecology Letters (2014) 17: 251–259

INTRODUCTION

One of the most important modelling applications in conser-
vation ecology is predicting future population abundances.
The practice of population viability analysis (PVA) connects
stochastic population models to data and is used to under-
stand the factors limiting population growth and to assess risk
of extinction or falling beneath a certain abundance (e.g.
Shaffer 1981; Staples et al. 2005). Despite a body of well-
developed theory on population regulation, there has been rel-
atively little work validating quantitative predictions of PVA
models and methods (but see attempts by Brook et al. 2000;
Lindenmayer et al. 2003). This is of particular importance for
species of conservation concern where little data may be in
hand regarding life-history details and knowledge of the
underlying biological processes is limited. In these cases, ecol-
ogists often rely on very basic populations models of growth,
density dependence, and variability to make predictions.
Characterising the extinction process has been an important

goal for theoretical ecology (Lande & Orzack 1988; Dennis
et al. 1991; Foley 1994). Classic results have provided useful
scaling laws for the time to extinction (e.g. Ludwig 1976;
Leigh 1981), rules of thumb for dealing with the types of vari-
ation that can drive populations to extinction (e.g. Boyce
1992; Lande 1993); as well as the effects of age (Lande & Or-
zack 1988) and spatial structure (e.g. Holt 1985; Hanski &
Gilpin 1997) on extinction. Despite the broad scope of current
extinction theory, determining the impacts of community
interactions on extinction risk remains an elusive task.
Although a small handful of PVA studies have taken a multi-
species approach when assessing population viability (as
reviewed in Sabo 2008), we know of no work that has
attempted to explicitly incorporate the effects of interspecific

interactions on extinction when only single-species time-series
data are available. Thus, developing modelling methods that
include these effects is an important step in extending the
application of extinction theory to real ecological systems
where available data are often limited.
Microcosm experiments can facilitate the essential task of

anchoring theoretical predictions with experimental observa-
tions. Although microcosm experiments have been argued to
greatly oversimplify ecological systems (Carpenter 1996), they
also offer a test bed for theory that is unambiguous. Past
experimental tests of extinction have primarily focused on
testing qualitative differences between predictions, rather than
quantitative predictions, thus potentially limiting their
applicability (Griffen & Drake 2008).
It is not clear whether standard models of population vari-

ability will adequately account for ecological interactions, such
as predation and competition, as these interactions are likely to
induce structured variation (Royama 1981; Boyce 1992; Stens-
eth et al. 1998; Abbott et al. 2009). Here, we examined the abil-
ity of a suite of unstructured and structured variance models to
predict extinction times observed in an experimental micro-
cosms of Daphnia pulicaria. At the same time we assessed the
effects of a number of common model assumptions, including
the particular form of density dependence, the model for the
variance of the growth rate and the transition probability distri-
bution of the discrete growth process. Importantly, the nature
of the experimental data sets that we used allowed us to test the
ability of these model variations to predict the extinction pro-
cess for two different classes of dynamics often dealt with in
PVA analyses. In the first set of experiments, the populations
fluctuate around a steady state, whereas in the second experi-
ment population tends to decline over time. Thus, the scenarios
tested allow our results to be extended beyond this study.
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MODELS & METHODS

Experimental data

The data sets re-analysed in this study come from previous
work by Grover et al. (2000) who followed experimental
populations of D. pulicaria for nearly 2 years (Fig. 1). The
original experiment discarded the first 140 days of data to
exclude the initial transient phase of population dynamics
and we followed the same practice. We considered two of
their experimental treatments where each treatment had
three replicates. In one treatment, population abundances
fluctuated around the steady state, displaying quasi-station-
ary dynamics, whereas in the other treatment abundances
displayed a decline towards extinction. These different
dynamics correspond to the small-population paradigm and
the declining-population paradigm as defined by Caughley
(1994). Both scenarios are of interest for management and
conservation purposes.
The experimental conditions consisted of three replicates of

simple community microcosms and three replicates of complex
community microcosms. Simple communities were composed
of consumer–resource interactions between D. pulicaria feed-
ing on green algae (Scenedesmus acutus, Scenedesmus quadric-
auda and Chlorella sp.) and other indigenous microorganisms,
whereas complex communities were composed of the con-
sumer–resource system plus additional grazers (Simocephalus
vetulus and Cypridopsis obesa). While D. pulicaria and the
S. vetulus are filter feeders and have been shown to compete
in microcosm experiments (Frank 1952), C. obesa is a scraper
(Roca et al. 1993). Sampling occurred every 4 days. In each
sample approximately 58% of the microcosm was recorded by
video-camera and animals were counted. D. pulicaria display

a generation time of 10–50 days at the temperature used
(15�Celsius). More experimental details are provided in
Grover et al. (2000).

Population models

Single-species models
Our analysis was based on a derivation for the mean and vari-
ance of a discrete-time abundance model with demographic
and environmental variance. A full derivation of the mean
and variance for abundances is provided in Appendix A,
although some details are presented here. Throughout the text
we use the convention that random variables are denoted
using capital letters, such as Nt, whereas realisations of the
random variable are lower case (e.g. nt). In what follows, Nt

denotes the random population abundances at time t.
We start by assuming that every individual gives birth on

average to k offspring per generation with a variance given by
/2, the demographic variation in reproduction (see Appendix
A for more details regarding the assumptions of this variance
model). Next, we assume that k can vary randomly over time
with variance given by φ2, the environmental variation in
reproduction. After reproduction offspring and parents sur-
vive with probability pt�1 = p0p(nt�1), where p0 is the density-
independent survival and p(nt�1) is the density-dependent
survival. We note that the individual parameters of survival
and reproduction in the product kp0 are non-identifiable (as
shown in Appendix A), therefore we define r = kp0. Following
these assumptions, the expected value and variance for current
abundances as a function of the previously observed abun-
dances are as follows:

E½NtjNt�1 ¼ nt�1� ¼ rnt�1pðnt�1Þ ð1Þ

Var½NtjNt�1 ¼ nt�1� ¼ ½rpðnt�1Þð1� pðnt�1ÞÞ þ /2pðnt�1Þ2�nt�1

þ ½nt�1pðnt�1Þ�2u2:

ð2Þ
The first term in eqn 2 is a factor of nt�1 and is referred to as
the demographic stochasticity. This expression comes from
computing the average variability in the reproduction and
survival process (see Appendix A). Thus, this variance compo-
nent corresponds to the overall contribution of demographic
variance to the total population variance, always scaling like
nt�1 regardless of the particular form of the reproduction and
survival. Note that only in the case of density independence,
when p(nt�1) = 1, the demographic variance of the population
process is exactly proportional to nt�1. When survival is
density dependent, the demographic stochasticity will scale as
a more complex function of nt�1 (Saether et al. 1998; Drake
2005).
The second half of eqn 2 scales by n2t�1 and is referred to as

the environmental stochasticity. This term comes from
computing the variability over time of the average number of
offspring produced that survive to the next generation
(Appendix A). This explicitly accounts for temporal fluctua-
tions in the reproduction process, thus translating the concept
of the environmental variability into an analytical variance
component of the population growth process.
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Figure 1 Population time series for replicates of different experimental

conditions. Simple communities included a consumer Daphnia pulicaria

and planktonic resource. Complex communities included the consumer

and resource along with competitors.
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Interspecific interaction models
Previous work has shown that autocorrelation can be induced
through population interactions that are subjected to variabil-
ity (Royama 1981; Abbott et al. 2009). A simple model of
two interacting species on the log-scale (X(t) ≡ ln Nt) can be
written as:

X1ðtÞ ¼ c1 þ b11X1ðt� 1Þ þ b12X2ðt� 1Þ þW1ðtÞ ð3Þ
X2ðtÞ ¼ c2 þ b21X1ðt� 1Þ þ b22X2ðt� 1Þ þW2ðtÞ: ð4Þ

The b11 and b22 terms correspond to density-dependence regu-
lation terms, the b12 and b21 terms correspond to interactions
between life-history stages or species and the W(t) terms rep-
resent demographic and environmental stochasticity. This sys-
tem can be viewed as a linearised approximation to more
complex functional responses (Ives et al. 2003). The system of
equations (eqns 3 and 4) can be re-expressed as a univariate
autoregressive- moving-average (ARMA) model for the spe-
cies of interest, either X1(t) or X2(t), obtaining an ARMA(2,1)
model (see Appendix B for derivation). In this work we refer
to the AR(1) component as the density-dependence model,
whereas we refer to the AR(2) component as simply an AR
autocorrelation model, consistent with an extensive literature
on the effects of environmental autocorrelation (e.g. Royama
1981). This AR(2) term also has been called the lagged density
dependence by Turchin (1990).
This approach can be further generalised such that the uni-

variate stochastic dynamics for a species in a community of n
species will follow an ARMA(n, n � 1) model (Abbott et al.
2009). In the two species case, the magnitude of the autore-
gressive (AR) component is the difference between interspe-
cific interactions and intraspecific interactions, b12b21�b11b22.
The sign and magnitude of the AR parameter gives a measure
of the balance between interspecific interactions (b12b21) and
growth and intraspecific interactions (b11b22) in the system. In
contrast, the moving-average (MA) component that is gener-
ated is a function of how well the interspecific interaction
propagates perturbations. The MA parameter is maximised
when the species interacting with the focal species follows a
random walk, such that perturbations from equilibrium are
propagated by the interacting species, rather than being
dampened by a density-dependent response (Appendix B, eqn
B5). In our model formulation, the autocorrelation compo-
nents effect both the demographic and environmental vari-
ances, and we limit ourselves to fitting one AR component (in
addition to the density dependence) and one MA component
based on time-series diagnostics presented in Appendix C.

Model comparisons

We considered a number of possible assumptions that might
be made when conducting a PVA to construct a realistic
but tractable set of models. The effects of each model
assumption identified were assessed independently. These
assumptions are as follows: (1) the form of the density
dependence, (2) the distributional form of the transition pdf,
(3) the form of the autocorrelation and (4) the variance
model of the process error. For each of the assumptions, we
considered a handful of explicit alternative specifications and

evaluated the inferential consequences of considering each
of these components, one at a time. Thus, four sets of inde-
pendent comparisons were done. The comparisons are sum-
marised in Table 1.
In comparison 1 (see Table 1), we varied the model of den-

sity dependence while other components were fixed using
functional forms for p(nt�1) in eqs 1 and 2 that represent dif-
ferent hypotheses about the underlying population dynamics.
These forms may be strictly interpreted as different hypothe-
ses about population regulatory mechanisms (such as the form
of interspecific competition), or as statistical models that
approximate complex underlying population regulatory
mechanisms. In any case, the form of density dependence
controls the rate at which new individuals are added to the
population as a function of abundance. We considered the

overcompensatory Ricker (pðnt�1Þ ¼ e�bnt�1 ) and logistic
(p(nt�1) = 1 � bnt�1) models, as well as the undercompensa-

tory Beverton–Holt (pðnt�1Þ ¼ 1
1þbnt�1

) and Gompertz

(pðnt�1Þ ¼ e�b ln nt�1 ) models. We also included the density-
independent (p(nt�1) = 1) model of population growth as a
‘null hypothesis’. Although primarily associated with the
mean response of the population, this term also affects the
variance (eqn 2). All forms of density dependence were
required to be bounded between 0 and 1, therefore we imple-
mented boundary constraints on parameters when necessary
(e.g. for the logistic model). When comparing each of these
density-dependence models, the transition distribution was
assumed to be gamma and the variance to have demographic
and environmental terms with no autocorrelation.
For comparison 2 (see Table 1), we examined the properties

of the transition pdf while other components were fixed. We
tested the impact of the higher moments of a distribution and

Table 1. Fixed and varied components in model comparisons

Comparison

1

Comparison

2

Comparison

3

Comparison

4

Density

dependence

Ricker Ricker Ricker Ricker

Beverton–
Holt

Gompertz

Exponential

Transition

distribution

Gamma LN Gamma Gamma

NB

Gamma

Autocorrelation None None None None

AR

MA

ARMA

Variance D + E D + E D + E D + E

None

E only

D only

For each model-set comparison we varied one assumption out of the four

model components while fixing the others. Components that were varied

are in bold. For entries that were fixed, we used the Ricker model of den-

sity dependence, the lognormal (LN) transition distribution and the demo-

graphic and environmental (D + E) model of stochasticity. Additional

abbreviations used are negative binomial (NB), environmental variation

only (E only) and demographic variation only (D only).
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lattice (rounding) errors on predictions. Although the impact of
the first two moments (the mean and variance) on extinction
predictions has been studied using diffusion approximations
(Ludwig 1976; Lande 1993) and simulations (Drake 2005; Mel-
bourne & Hastings 2008), the impact of higher moments on pre-
dictions has not been considered. Thus, we varied the higher
moments by fitting gamma, log-normal and negative binomial
distributions to the data. Also, we tested for the presence of
lattice effects by comparing predictions from the discrete-
state, negative binomial distribution to gamma distribution, a
similar continuous-state distribution. Lattice introduced in the
approximation of an integer value variable by a continuous
variable can appear in discrete-state models, and can have
potential impacts on predictions (Henson et al. 2001). More
details on how we matched the mean and variance of eqns 1
and 2 to the parameters of these distributions is provided in
Appendix C. For the different transition pdf’s in comparison 2,
we assumed a Ricker model of density dependence and a
demographic and environmental variance model with no
autocorrelation.
In comparison 3 (see Table 1) we tested the impact of the

autocorrelation structure in the variance model while the
other model components were fixed. Although eqn 2 is shown
as conditional on nt�1, ecological interactions may induce
other dependencies not properly captured by the density-
dependence model. Both MA and AR autocorrelation models
have been shown to capture information about interspecific
and intraspecific interactions in ecological systems (Abbott
et al. 2009). It has also been shown that MA models also arise
due to measurement error (Dennis et al. 2006). AR and MA
models can be combined into the ARMA correlation model
to include effects of both models simultaneously (Shumway &
Stoffer 2006). We incorporated AR, MA and ARMA correla-
tion structures into the variance model and tested their impact
on predictions of the extinction process. For all models in
comparison 3, we assumed a gamma transition distribution, a
Ricker model of density dependence and a demographic and
environmental variance model.
For comparison 4 (see Table 1), we examined several

assumptions about the demographic and environmental terms
in the variance model while fixing other model components.
We tested whether purely demographic or environmental vari-
ance terms improved predictions over the full demographic
and environmental model. The form in eqn 2 assumes that
populations are subject to both demographic and environmen-
tal processes, an assumption that is not always made (e.g. Ell-
ner & Holmes 2008). We also tested the impact of removing
the density dependence in the demographic variance of the
population growth rate Rt = ln (Nt/Nt�1) similar to a test
performed by Drake (2005). This led to the variance model
V½NtjNt�1 ¼ nt�1� ¼ rnt�1pðnt�1Þ/2 þ n2t�1pðnt�1Þ2u2. Under
the comparison 4 model set, we fixed the transition distribu-
tion to be gamma, the form of density dependence to be Rick-
er and had no autocorrelations in the error structure.

Parameter estimation

To fit the data we used the likelihood functions defined in
Appendix C, where the joint probability of the observations is

given by the product of the one-step transition distribution of
the population process. The likelihoods of the transitions were
constructed by matching the moments of eqns 1 and 2 to the
mean and variances of the transition distribution (details pro-
vided in Appendix C). All models were fit to data using maxi-
mum likelihood estimation in the R statistical software
environment (R Development Core Team 2012).

First passage time simulations

After parameters were estimated, we used simulations to
examine the consistency of our models with the observed
extinction process. The metric we used to characterise extinc-
tion was the first passage time (fpt), defined as the time it
takes for a population to first reach a quasi-extinction abun-
dance n from some initial abundance n0. The distribution of
fpts is denoted as TðnÞ :¼ minft � 0 : NðtÞ � njN0 ¼ n0g
(Taylor & Karlin 1984). The likelihood of the fpt was calcu-
lated by determining the probability of obtaining the observed
quantity s(n) from the distribution of fpts predicted by model
M, written as TMðnÞ, where our notation emphasises the fact
that predictions are made conditional on a particular model.
The s(n)’s were obtained for all observed abundances, and 105

simulations were used to obtain the distribution, TMðnÞ, for
each microcosm population. Because the fpt for these models
is a discrete random variable, the probability of observing s
(n), PðTMðnÞ ¼ sðnÞÞ, was set equal to the proportion of sim-
ulations which display a predicted fpt equal to the observed
fpt. For the ith microcosm we used the likelihood of all si
observed fpts for each community type. Because there were
three microcoms per community type this likelihood is given
by

Q3
i¼1

Qsi
j¼1 PðTMðni;jÞ ¼ sðni;jÞÞ for all observed ni,j.

The fpt likelihoods for each model and each data set were
used to calculate values of the Akaike information criterion
(AIC), which were then used to select between models for
each model-set comparison. The number of parameters, k,
used in the AIC calculation was the number of parameters fit
in the one-step transition likelihood. Models with lower AIC
values were interpreted as doing a better job of explaining the
extinction process. Using the FPT, rather than the raw abun-
dances, can lead to different predictions as the FPT is a differ-
ent summary of the data and may provide different
information. We also calculated the BIC criterion for all mod-
els and found that all our conclusions were robust to the form
of criterion used.
Finally, to obtain an absolute measure of the predictive

error we calculated the root mean square error (RMSE),

defined as RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1

Psi

j¼1
ðsi;j �E½TMðni;jÞ�Þ2P3

i¼1
si

s
. This measure

gives an absolute measure of the error associated with the
mean fpt predicted from model M, E½TMðni;jÞ�, rather than a
relative measure of evidence provided by AIC values.

Measurement error

We tested the impact of measurement error on parameter esti-
mates to determine if the observed MA parameter estimates
were due purely to measurement error. The effects of
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measurement error were tested by simulating 100 time series
using parameters from the Ricker density-dependent, demo-
graphic and environmental variance model with no autocorre-
lation for each of the three simple microcosm experiments.
We rescaled the observations by 1/0.58 to account for the
unobserved volume in each microcosm (Grover et al. 2000).
A binomial sampling model was then applied to the simulated
data where the probability of detection was 0.58. We esti-
mated model parameters for the resulting observed time series,
and the average and standard error of the moving-average
parameter was calculated for each set of microcosm simula-
tions. We compared these estimates to values observed from
the microcosm experiments. If sampling error explained the
moving-average parameter estimated in the simple community
microcosms, then the observations should fall within approxi-
mately 2 standard errors from the estimated mean.

Moving-average models

To test the potential impacts of non-measurement error MA
processes on population persistence, we simulated abundance
time series with parameters estimated from the model with
Ricker density dependence, environmental and demographic
stochasticity, and an MA autocorrelation model in microcosm
1. We then varied the MA parameter while keeping the other
parameters fixed over 20 equally spaced values from �0.9 to
0.0. We calculated the mean time to extinction (MTE) by sim-

ulating until the time series reached 1 individual or less. We
repeated this procedure 10 000 times to obtain stable esti-
mates of the MTE.

RESULTS

Model selection

In the simple community experiment 2 of 3 populations per-
sisted the entire duration of the experiment suggesting that
these populations were stable, but subject to stochastic extinc-
tion events over longer timescales (Fig. 1). In contrast, all the
complex community populations went extinct over the course
of the experiment as abundances tended to decrease over time,
suggesting that extinctions were due to deterministic pro-
cesses. A model with Ricker density dependence and a gamma
error structure containing both demographic and environmen-
tal stochasticity with no autocorrelation appeared statistically
consistent with the data for all microcosm experiments
(Fig. 2); however, when comparing model fits with the fpt
AIC further model improvements were apparent.
The form of density dependence had a moderate effect on

predictions, and removing density dependence greatly wors-
ened predictions. We found that the Ricker model of density
dependence minimised the DAIC value in simple communities
though the Beverton–Holt also performed well (DAIC = 0.91),
whereas in the complex communities the Gompertz model
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performed best overall (Table 2). The undercompensatory
dynamics displayed by the Gompertz model may be capturing
the weak consumer–resource coupling in the complex commu-
nity, whereas stronger compensation of the Ricker model bet-
ter captured the strong coupling in the simple communities.
Because the Gompertz model is less sensitive to density than
the other models considered here, it may be a better model
for populations embedded in complex systems where extrinsic
factors play a significant role in regulation processes. Consis-
tent with this interpretation, previous work has shown that
concave forms of density dependence such as the Gompertz
model are generally found in time series of natural popula-
tions (Sibly et al. 2005). In all microcosms, density-dependent
models greatly outperformed the density-independent expo-
nential growth model (Table 2).
When using the Ricker model and assuming independently

distributed observations with both demographic and environ-
mental variability, the range of DAIC values among transition
distributions had approximately the same magnitude as differ-
ences among density-dependence models. This suggests that
the choice of transition distribution is a potentially important
consideration when building models for extinction risk assess-
ment, but one that is rarely tested. The gamma distribution
predicted s(n) best in the simple communities, whereas the
log-normal was best in the complex communities (Table 2).
The weak performance of the negative binomial model rela-
tive to the continuous models implies that lattice effects may
not be an important factor when modelling these populations.
When removing the assumption of independent error struc-

tures, MA models outperformed other models in the simple
community experiment, whereas the ARMA model performed

best in the complex community (Table 2). As discussed in the
Models sections, ARMA model terms measure the magnitude
of inter- and intraspecific interactions and the tendency for
interspecific interactions to dampen stochasticity. A negligible
AR term in the simple community is indicative that inter- and
intraspecific forces are balanced, whereas the presence of all
negative AR terms in the complex communities indicates that
intraspecific interactions are weaker than the intraspecific
growth and interaction terms. The importance of the MA term
in both simple and complex communities is indicative of weak
regulation in the prey population and a corresponding tendency
for perturbations in the predator population to be propagated
by the prey population. Pure AR models performed relatively
poorly in both community types, a surprising result due to
the emphasis of previous work on this and similar models (e.g.
Halley 1996; Cuddington & Yodzis 1999; Morales, 1999).
Comparing model variances, we found that demographic and

environmental stochasticity were both important for predicting
s(n). Removing the density-dependent term in the demographic
variance did not appear to lead to a difference in the simple
communities (DAIC = 1.64), although it did in the complex
communities (DAIC = 3.41). Interestingly, when looking at
AIC values for the abundances (Appendix C, Table C1), rather
than s(n), our results are consistent with previous work that
suggests that including the density dependence in demographic
stochasticity is important (Drake 2005). The difference between
s(n)’s and abundances may be due to the fact that the density-
dependent term in the demographic variance becomes approxi-
mately 1 at low abundances. For abundance time series, low
population sizes are relatively rare and the estimates will tend
to be dominated by the region where most abundance observa-
tions occur, whereas in the s(n)’s low abundances will tend to
have a larger relative effect because observations are more
evenly dispersed across the range of observed abundances.
Finally, the results from the RMSE calculation (Table 3)

differed in some ways from the AIC values (Table 2). This is
likely due to the fact that the RMSE only considers the mean
response of the predicted s(n)’s rather than the whole distribu-
tion as in the AIC. Despite these differences, the overall best
RMSE models were the same as the AIC comparison. The
simple community had a RMSE in s(n) of 19.58 days,
predicted by the Ricker density-dependence model with demo-
graphic and environmental variability and a MA autocorrela-
tion model. The minimum RMSE for the complex community
was better than the simple communities at 5.91 days, pre-
dicted by the Ricker density-dependence model with demo-
graphic and environmental variability and an ARMA
autocorrelation model. The inclusion of a suitable autocorre-
lation model improved the overall RMSE by about 20% in
the simple community and by about 30% in the complex
community.

Measurement error

We tested the impact of a binomial sampling model on MA
parameter estimates with data simulated from the simple com-
munity experiment. We found that the magnitudes of the MA
parameter estimates due to measurement error were less
(mean, �0.04, �0.04, �0.06) than the MLE estimates of the

Table 2. DAIC values for each model and community type

Model M k

Simple

community

Complex

community

Ricker 4 26.72 400.86

Beverton–Holt 4 27.63 386.54

Logistic 4 79.92 271.38

Gompertz 4 68.93 245.04

Exponential 3 128.90 569.12

Log normal 4 45.81 355.11

Negative binomial 4 113.42 868.37

Gamma 4 26.72 400.86

No autocorrelation 4 26.72 400.86

AR 5 13.44 370.04

MA 5 0.00 21.76

ARMA 6 33.84 0.00

Demographic and

environmental

4 26.72 400.86

No density dependence

in variance

4 28.36 397.45

Environmental only 3 119.25 1231.23

Demographic only 3 37.20 1385.27

The number of parameters used per microcosm in the AIC calculation is

given by k and bold numbers represent the best model within a set of

comparisons. AIC, Akaike information criterion; AR, autoregressive;

ARMA, autoregressive moving average; MA, moving average.
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MA terms in the simple community experiment microcosms
[mean(SE), �0.23(0.012), �0.48(0.017), �0.11(0.015)]. These
results suggest that the MA terms present in the data are not
due to sampling error and that another mechanism was likely
responsible.

Moving-average model dynamics

We found that incorporating MA models into population
growth processes can dramatically affect the MTE of a species
(Fig. 3). As the magnitude of the MA parameter increased,
persistence increased over three orders of magnitude in a fas-

ter than power law relationship. These results are similar to
previous simulation studies exploring the impact of AR mod-
els on population persistence (Cuddington & Yodzis 1999;
Morales, 1999; Petchey 2000) having similar order of magni-
tude impacts on population persistence as previous studies on
AR models.
Given the potential importance of MA models in predicting

abundances it is worth further understanding the impacts of
these models on dynamics. In our formulation, the moving-
average affects the growth rate through the log-scale abun-
dances, and the magnitude of MA components is proportional
to magnitude of perturbations from the expected value of the
one-step transitions. The contribution to the growth rate by
the moving-average component can then be interpreted as a
rescaling of the log ratio of the observed and expected popu-
lation abundances, lnðnt�1=E½Nt�1jNt�2�Þ (Appendix C). When
the population is higher than the expected value, a negative
MA parameter (as found in all these microcosms) pulls the
population towards the expected value, increasing the strength
of population regulation (sensu Ziebarth et al. 2010) through
a restorative force.

DISCUSSION

In this study, we assessed the effects in the predicted extinc-
tion risks of four different population modelling assumptions
(the density-dependence form, the form of the transition pdf
and autocorrelation in the growth rate and the nature of the
process error variance model), but much remains to be done.
Despite a well-developed body of literature describing the
properties of population extinctions, very little has been done
to quantitatively test these predictions (Griffen & Drake
2008). Here, we used experimental data to show that species
interactions can be an important contributor to extinction risk
while successfully testing the ability of autocorrelation models
to account for these interactions. In addition, we demonstrate
how and why many of the common assumptions associated
with fitting population models to data can impact extinction
risk predictions in real ecological systems. Our approach sug-
gests that strong modelling tests – usually reserved only for
simulation studies – coupled with detailed experimental data,
can provide useful insights on modelling choices even in
relatively simple systems.
Our efforts suggest that combining empirical and analytical

methods can lead to a better understanding of the processes
governing population dynamics. However, as suggested by
Dennis & Taper (1994) the inference of ecological mechanisms
must be treated with caution. Both Wolda (1991) and Dennis
& Taper (1994) point out that it is impossible to distinguish
‘fluctuating equilibrium values’ from ‘fluctuating deviations
from those equilibrium values’ using simple time series of
abundance. We would attribute this variation to the environ-
mental variance for both cases, though they may have differ-
ent ecological and conservation implications. Despite these
limitations, the models we explored here have the potential to
incorporate extrinsic factors that can be used to explain varia-
tion in vital rates and improve predictive ability. However,
this information needs to be both available and resolvable,
which is not always the case. As shown by Knape & de
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Fig. 3. A log–log plot of the affect of a changing moving-average (MA)

parameter value on the mean time to extinction. All parameters other

than MA term were values estimated from microcosm 1.

Table 3. Root mean square error for each model and community type

Model M
Simple

community

Complex

community

Ricker 23.23 7.84

Beverton–Holt 22.51 7.18

Logistic 26.38 8.73

Gompertz 23.11 7.18

Exponential 36.91 13.05

Log normal 22.09 8.44

Negative binomial 23.66 12.07

Gamma 23.23 7.84

No autocorrelation 23.23 7.18

AR 23.28 8.02

MA 19.58 6.15

ARMA 20.93 5.91

Demographic and

environmental

23.23 7.84

No density dependence

in variance

23.30 7.74

Environmental only 23.46 12.23

Demographic only 27.71 8.18

Bold numbers represent the best model within a set of comparisons. AR,

autoregressive; ARMA, autoregressive moving average; MA, moving

average.
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Valpine (2010) even when time series of environmental
variables are available, resolving these complex non-linear
interactions is not a trivial task, although important excep-
tions do exist (e.g. Ponciano & Capistr�an 2011). In more com-
plex abundance models, even more difficulties exist. The
process of distinguishing among mechanisms translates into
uniquely identifying parameters from the available data. It is
possible, and surprisingly easy to introduce parameter non-
identifiability into stochastic models. Ponciano et al. (2012)
show how data cloning can be used as a diagnostic tool to
detect parameter non-identifiability. These complexities sug-
gest that testing the inferential limitations of time-series abun-
dance models for PVA will continue to be an important line
of research.
Our first finding was that the form of density dependence

for the same species differed depending on the community
composition in which it was growing, in a way that is consis-
tent with ecological theory. Thus, strong density dependence
(overcompensatory dynamics), implied by the Ricker model,
was found to be best in the simple community, whereas in the
complex community a weaker form of density dependence,
embodied by the Gompertz model, resulted in better predic-
tions. The discrepancy in optimal density-dependent models
for otherwise similar populations reflects community-level dif-
ferences between a strongly coupled consumer–resource sys-
tem and a more complex community with a number of biotic
and abiotic interactions. This result implies that the best
model for one population may simply not translate to other
populations of the same species when ecological forces differ
between communities (Murdoch & McCauley 1985), an
assumption that is often made when a particular system lacks
adequate data (e.g. Ferguson et al. 2012).
Although it is common practice to assume a log-normal tran-

sition distribution when fitting models to data of population
growth, there are plausible biological reasons under which this
distribution may not hold (Diserud & Engen 2000; Henson
et al. 2001). We found that the gamma distribution did best in
the simple community, whereas the log normal did best in the
complex community. In addition, both demographic and envi-
ronmental stochasticity were important for predictions in sim-
ple and complex microcosms. Predictions of quasi-extinction
often only include an environmental variance term (e.g. Holmes
et al. 2007), the dominant contribution at higher abundances.
However, for populations truly at risk of extinction, our results
suggest that this is not sufficient and that demographic and
environmental models of stochasticity should be used.
An important open question for conservation and manage-

ment is to identify when more complex multispecies process
models can be used to improve abundance predictions (e.g.
Sabo 2008). Our results show that accounting for interspecific
interactions in PVA’s may be possible in single-species time
series through the use of appropriate autocorrelation models.
The simplified statistical representation of species interactions
that are provided by autocorrelation structures can improve
predictions without the need for multispecies time-series data
making this a powerful and tractable approach.
When facing the pressing need of a quantitative assessment

of extinction risk, modellers and scientists rely by necessity on
a number of model assumptions and simplifications. Choosing

which simplifications and assumptions should be retained or
else, discarded, seems to be a key component of a modeller’s
savoir faire that all too often is taken for granted. As put by
Taper et al. (2008), models carry the meaning of science, and
this puts a tremendous burden on the process of model selec-
tion. In that sense, our study represents one of the first exam-
ples we are aware of that illustrates why the structural
adequacy (sensu Taper et al. (2008)) of ecological models
should be routinely and extensively explored. We hope that
our study represents a starting point for future explorations
of the variance scaling and decomposition of population
dynamics models with the goal of improving quantitative
predictions in conservation and management.
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