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The rates and properties of new mutations affecting fitness have implications for a number of outstanding questions
in evolutionary biology. Obtaining estimates of mutation rates and effects has historically been challenging, and little
theory has been available for predicting the distribution of fitness effects (DFE); however, there have been recent
advances on both fronts. Extreme-value theory predicts the DFE of beneficial mutations in well-adapted populations,
while phenotypic fitness landscape models make predictions for the DFE of all mutations as a function of the initial
level of adaptation and the strength of stabilizing selection on traits underlying fitness. Direct experimental evidence
confirms predictions on the DFE of beneficial mutations and favors distributions that are roughly exponential
but bounded on the right. A growing number of studies infer the DFE using genomic patterns of polymorphism
and divergence, recovering a wide range of DFE. Future work should be aimed at identifying factors driving the
observed variation in the DFE. We emphasize the need for further theory explicitly incorporating the effects of
partial pleiotropy and heterogeneity in the environment on the expected DFE.
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Introduction

The ultimate source of heritable variation is muta-
tion, and the characteristics of these arising mu-
tations define the range of possible evolutionary
trajectories a population can follow. Details about
the attributes of mutations affecting fitness define
central parameters in evolutionary theory and have
implications for a number of outstanding questions
in evolutionary biology. For example, the rate of
adaptation of a population is expected to depend
on the rate of mutation and on the distribution of
fitness effects (DFE) of the arising beneficial mu-
tations, as the presence of even a few large-effect
mutations can have a big impact on how quickly a
population moves toward its fitness optimum. On
the other hand, the DFE of deleterious mutations,
in particular the proportion of weakly deleterious
mutations, determine a population’s expected drift
load—the reduction in fitness due to multiple small-
effect deleterious mutations that individually are

close enough to neutral to occasionally escape se-
lection, but can collectively have important impacts
on fitness. The DFE of new mutations influences
many evolutionary patterns, such as the expected
degree of parallel evolution,1 the evolutionary po-
tential and capacity of populations to respond to
novel environments,2,3 the evolutionary advantage
of sex,4 and the maintenance of variation on quanti-
tative traits,5 to name a few. Thus, an understanding
of the DFE of mutations is a pivotal part of our un-
derstanding of the process of evolution.

Obtaining reliable estimates of mutation rates
and the effects of new mutations on fitness has been
historically challenging for a number of reasons.
Three factors conspire to make this a difficult em-
pirical endeavor. First, until recently, evolutionary
genetics theory typically assumed the existence of
heritable variation rather than modeling its origin.
Thus, we had very few theoretical expectations for
what the mutation rates and effects of new mu-
tations on fitness should be. Second, the rarity of
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mutations, especially mutations that are beneficial
for fitness,6,7 meant that it was experimentally diffi-
cult to obtain samples sizes compatible with test-
ing hypotheses relating to mutation parameters.
Third, until recently, it was technically very diffi-
cult to locate the molecular basis of new mutations
in genomes, and many empirical studies inferred the
occurrence of new mutations through their pheno-
typic effects instead of exhibiting the actual molec-
ular variants underlying observed fitness-associated
changes. Things have changed rapidly on these three
fronts, as (1) several theoretical models now make
explicit predictions regarding the fitness effects of
new mutations, (2) the experimental evolution ap-
proach has greatly expanded within evolutionary
biology, and (3) the advent of cost-effective high-
throughput sequencing makes molecular detection
of new mutations in genomes a routine procedure.

The goals of this review are to critically assess
the progress made on these three fronts and the
gains made in our understanding of spontaneous
mutations and their effects, with a special focus on
the properties of beneficial mutations. Our review
is organized broadly into three sections. We first
review existing theory for rates and effects of new
mutations affecting fitness. In particular, we com-
pare the relative merits of heuristic models relying
on purely statistical arguments and those explicitly
tackling the prediction of the phenotypic and fitness
effects of new mutations. Our review of the the-
ory is biased toward phenotypic fitness-landscape
models, as much progress has been made recently
on deriving theoretical expectations for DFE using
this modeling approach. We then review empirical
evidence from various types of experimental set-
tings that yield insight into the effect of new mu-
tations. We first review the studies that aim at di-
rectly isolating individual mutations and measuring
their effects. We then examine other experimental
strategies that seek to obtain insight into the oc-
currence and effect of mutations by monitoring fit-
ness trajectories of populations over time. Finally,
we review approaches that use observable levels of
standing genetic variation within a population and
divergence between populations to make inferences
about mutation rates and effects on fitness. We close
by discussing to what degree insights from both ap-
proaches can be reconciled and what outstanding
questions remain.

Models for the fitness effects of new
mutations

Many models of adaptation assume that some form
of genetic variation is present and are aimed at pre-
dicting the evolutionary response of a population
to natural or artificial selection. Some models will
assume an explicit amount of allelic variation is seg-
regating at a number of discrete loci underlying
genetic variation for fitness or any trait of inter-
est, whereas other models will only keep track of
a phenotypic variable and operate under idealized
conditions where the amount of genetic diversity
available is a fixed parameter (i.e., a certain amount
of genetic variance considered as fixed, see the mul-
tivariate breeder’s equation8). Other models aim to
make predictions both about (1) the origin of vari-
ation (through new mutations) and (2) how siev-
ing that variation through a natural selection filter
generates adaptation. These will be the focus of this
review, and we begin by reviewing models that make
predictions on the DFE of new mutations.

Modeling the origin of variation amounts to spec-
ifying a space of possible: how many mutations can
arise per generation and what is the range of their fit-
ness effects? The way we quantify the mutational in-
put is by defining a genome-wide mutation rate for
fitness (U) and by assuming that replication of each
new genome entails a variable number of mutations
that is stochastic and, more specifically, will follow a
Poisson distribution with mean U. The space of pos-
sible is then specified by characterizing the change
in fitness incurred by a new mutation relative to
a mutation-free reference genotype, and the fitness
difference between these two genotypes is defined
as the fitness effect s of the new mutation. In order
to account for a range of fitness effects, each new
mutation arising in the genome gets an associated
fitness effect s drawn at random from an underly-
ing distribution. Thus, we describe the DFE of new
mutations by characterizing (estimating) that un-
derlying distribution.

The family of statistical distribution chosen to
parameterize the DFE can reflect a merely sta-
tistical choice—either chosen out of pure conve-
nience or justified through heuristics, see below—
or can be derived using biologically plausible fit-
ness landscape models. Mathematical population–
genetic models can, in turn, make predictions on
observable quantities such as the rate of adaptation
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Figure 1. Hypothetical whole distributions of fitness effects.
The whole distribution of fitness effect can comprise, in prin-
ciple, a continuum of fitness effects ranging from lethal to
strongly or mildly deleterious to beneficial. Three distributions
are pictured here that comprise different amounts of deleterious
and beneficial mutations. The dotted and dashed distributions
are arbitrarily chosen, while the continuous distribution (solid
gray) is one of the type predicted by a Fisherian fitness landscape
(a displaced and reflected Γ distribution).

in experimental populations or the patterns of poly-
morphism/divergence within or among species. We
focus our review on both types of approaches and
how they have generated testable predictions about
the DFE of new mutations.

Heuristic models relying on extreme-value
theory (EVT)
If adaptation is seen as a fine tuning of genotypes to
their environment, an important intuition is that,
within a well-adapted population, most mutations
with detectable fitness effects tend to be deleterious.
This assertion is often implicit in many models that
consider only unconditional deleterious mutations
and their evolutionary consequences.9 Another im-
portant insight that follows from this assertion is
that if mutations that are beneficial (s > 0) are rare,
then surprisingly general predictions can be made.
In brief, the whole DFE might be very hard to predict
(some hypothetical DFE are illustrated in Fig. 1), but
if a population is well adapted to its current environ-
ment, and therefore if beneficial mutations are rare,
these can be seen as extreme events (draws from
the tail of a distribution or past a certain thresh-
old (Fig. 1)). An important insight from statistical

theory is that many distributions that have a rather
different appearance have very similar tails. It can ac-
tually be shown, using results from EVT, that draws
from tails of virtually any distribution converge to a
unifying distribution (the generalized Pareto distri-
bution) characterized by a specific scale and, more
importantly, shape parameter10 (see Fig. 2 for ex-
amples of possible distributions from that family).
Knowing which type of limiting distribution charac-
terizes beneficial mutations can be, in turn, used for
predictions about the dynamics of adaptation.11 Be-
fore reviewing empirical evidence bearing on DFE,
we present another route to derive the expected DFE,
through the use of an explicit mapping for the phe-
notypic effect of mutation and, in turn, by specifying
what type of selection operates on phenotypes. This
approach then allows prediction of the whole DFE
(not just the DFE of beneficial mutations).

Explicit fitness landscape models
Fitness landscapes mathematically map the large
space of possible genetic differences to fitness dif-
ferences. A large variety of fitness landscape mod-
els have been devised. Here, we will focus on pre-
dictions from so-called phenotypic fitness landscape
models that consider the fitness effects of new mu-
tations by modeling their phenotypic effects on a
series of quantitative traits that together determine
fitness. Phenotypic fitness landscapes were origi-
nally proposed by Fisher as a means to argue for the
fact that beneficial mutations were of small effect.12

This argument was later refined by Kimura,13 who
also argued that mutations of very small effect were
unlikely to make much contribution to adaptation
because they had a relatively low probability of es-
caping genetic drift.

These models also have the potential to accom-
modate different initial levels of adaptation and,
possibly, different genetic architectures.14–16 These
are—together with, for instance, mutation rates and
population size—key parameters that we expect to
affect the supply of new adaptive mutations in a
population and, therefore, govern its speed of adap-
tation. These models assume that fitness is deter-
mined by n traits and that, in a given environment,
there is an optimal value for each of these traits.
Fitness decreases smoothly as the phenotypic values
get further from the optimum. Models differ in their
specific assumptions regarding the way that muta-
tions affect the underlying traits. Phenotypic effects
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Figure 2. Alternative distribution of beneficial fitness ef-
fects as predicted by extreme-value theory (EVT). All distri-
butions displayed here are specific cases of a generalized Pareto
distribution9 that differ by their shape. A shape of 1 corresponds
to an exponential distribution (gray), a shape parameter >1 will
yield a DFE with a much heavier tail (so-called Frechet domain,
in blue). Alternatively, a shape parameter <1 will yield dis-
tributions that decay much more rapidly than the exponential
(so-called Weibull domain), and the beneficial mutations cannot
exceed a maximum beneficial effect.

of mutations are modeled as being drawn in a multi-
variate normal distribution with mean 0 and covari-
ance matrix M (n∗n matrix when positing n dimen-
sion). Selection in this phenotypic space is specified
by a multivariate Gaussian fitness function (with
covariance matrix S), although different mappings
have also been explored.17 Models can either assume
that every mutation is fully pleiotropic and will af-
fect the phenotypes of all n traits14 or only partially
pleiotropic, thus only affecting m out of n traits.16

Finally, some models also model locus–locus het-
erogeneity by assuming a specific mutational ma-
trix M for each locus or class of loci in a genome.1 A
number of important predictions emerge from this
class of models: notably, the current distance to the
optimum of a genotype in the multivariate space, to-
gether with the M matrix, determines the complete
DFE of new mutations arising in that genotype and
the proportion of mutations that will be favorable.

These types of models have been explored ex-
tensively over the last decade. One of their main
merits is that an important biological intuition can
be formalized: the current level of adaptation of a
population to a given environment might strongly

influence the probability that a new mutation might
be beneficial in that environment. When a genotype
resides at the multivariate optimum, any new muta-
tion will move phenotypes away from the optimum
and, therefore, will be deleterious; but if a genotype
resides further from the optimum, a greater pro-
portion of mutations will entail phenotypic changes
that bring the resulting genotype closer to the opti-
mum and, thus, are beneficial for fitness. In that case,
a displaced reflected � DFE is predicted (Fig. 1).
Another benefit of that type of modeling is that
the model can also generate predictions for fur-
ther properties of mutations (beyond their DFE),
such as how mutations interact through either dom-
inance or epistasis to determine fitness.18 Last, but
not least, if one defines the complexity of an organ-
ism through the number of phenotypic dimensions
n, these models can also make predictions about
how differences in complexity will translate to dif-
ferences in the flux of beneficial mutations available
for further adaptation in a given environment.

Below, we review the empirical evidence avail-
able for the DFE of mutations. We cover both stud-
ies where an experimental evolution approach has
been used, and these studies are therefore heavily
based on microbial organisms. We then review how
patterns of polymorphism and divergence can also
be used to infer the DFE of new mutations. Here,
we tend to focus on mutations occurring explicitly
in protein-coding regions and focus on the DFE of
nonsynonymous mutations. Throughout, our dis-
cussion is biased toward studies that analyze more
quantitative data bearing on the DFE using the the-
oretical expectations sketched above.

Empirical studies from experimental
evolution

In the past, experimental studies have made esti-
mates of the DFE of mutations using two main
methods. The first method obtains direct measure-
ments of fitness from a collection of (presumably)
single-step mutants. In the second method, infer-
ences are drawn about the fitness effects of new
mutations from changes in population fitness or
trait measures under conditions where the selec-
tion regime (or lack of selection) is known. Both
methods have their advantages and limitations, and
we discuss each of them in turn, along with the
general patterns and insights drawn from these
data. It is important to point out that, while many
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studies attempt to characterize the DFE of muta-
tions by statistically rejecting one type of distribu-
tion in favor of another, studies focusing on the DFE
of beneficial mutations often have very little power
to do this, simply because the number of beneficial
mutations recovered is usually very small. A crucial
aspect of these experimental approaches for charac-
terizing the DFE is the quantification of changes in
fitness. This task is not straightforward and contin-
ues to be an area for discussion in evolutionary bi-
ology (e.g., Ref. 19). Thus, we touch on it briefly be-
fore moving on to the details of empirical studies of
DFE.

In studies with multicellular organisms, fitness
is usually estimated by either measuring a com-
ponent of fitness (e.g., viability20) or measuring a
trait known to be correlated with fitness (e.g., body
size21). In microbes, fitness is generally quantified
using either a growth assay or a competitive fit-
ness assay. With a growth assay, the strain of in-
terest is grown in the environment of interest and
repeated measures of cell density are obtained over
time. Fitness is usually estimated from the exponen-
tial growth rate of the strain.22 With a competitive
growth assay, the strain of interest is grown in cocul-
ture with a comparison strain (usually the ancestral
strain), and repeated measures of the frequency of
the two types are obtained over time. Fitness is es-
timated from the change in relative frequency of
the two types.23 While fitness estimates using these
two types of assay are usually positively correlated,24

the two types of fitness measures can only be equal
when both density- and frequency-dependent se-
lection are negligible.25 Competitive assays can be
a comprehensive and appropriate way to estimate
fitness when one is interested in, for example, the
fitness of a mutant arising in an isogenic population
of wild types. However, in cases where the appropri-
ate competitor with which to compete is unclear or
difficult to obtain (for example, a mutant arising in
a diverse population or community), growth assays
may be the best, albeit not truly accurate, choice.
Unless the mutations of interest alter the relation-
ship between what is measured and the true value
of fitness, the specifics of the method employed are
unlikely to affect the shape of the inferred DFE from
any given experiment. Although quantitative com-
parisons of fitness-effect sizes across studies can be
difficult, there are ways to minimize these potential
problems.25

Directly measuring the fitness effects of
mutations
In order to directly measure the fitness effects of
mutations, a collection of mutants must first be cre-
ated. There are two main methods used for gen-
erating mutant collections: (1) a fluctuation assay
procedure and (2) site-directed mutagenesis.

Side effects of beneficial mutations with conspic-
uous fitness effects. The classic Luria–Delbruck
fluctuation assay26 was originally conceived as a
method for estimating spontaneous mutation rates
in bacteria. In this procedure, a number of parallel
cultures are initiated with identical wild-type cells.
After some period of growth in a permissive medium
(often overnight), each culture is then transferred to
a selective medium (often solid agar with an antibi-
otic). Any cells in which a resistance mutation arose
during the permissive growth period are then able to
grow on the selective media, whereas cells with the
wild-type genotype perish. The arising mutants are
usually assumed to be single-step mutants because
of the short period of time during which they arise,
although the probability of this being the case for a
given experiment can be explicitly estimated.27 The
distribution of the number of mutants arising in
these parallel cultures can then be used to estimate
mutation rate.26,28 Further details about the muta-
tions arising, including their DFE, can be obtained
by collecting the mutants and assaying their fitness
under whatever conditions are of interest. Although
mutants generated in this way are all beneficial in the
selective media on which they were isolated, the as-
sumption is that they represent a random collection
of fitness effects (deleterious, neutral, and poten-
tially beneficial) in other unrelated environments.

This method has been used to make inferences
about the DFE of beneficial mutations in bacte-
rial systems (Table 1). Kassen and Bataillon27 and
MacLean and Buckling29 characterized the DFE of
beneficial mutations in environments where wild-
type fitness is high (i.e., close to the fitness opti-
mum) and showed that the observed DFE is not
significantly different from an exponential distribu-
tion. Bataillon et al.30 later assayed a set of favor-
able mutants in a large set of very simple environ-
ments (95 different carbon sources). Although in
each environment, small sample sizes were available
for testing distributions, overall the null hypothesis
of an exponential DFE for beneficial mutation was
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Table 1. DFE inferred from experimental studies relying on the isolation of individual mutations

Strategy used to

isolate

mutations Organism

Mutational

target

Number of

beneficial

mutations

Mutations

character-

ized DFE inferred References

Resistance to

antibiotic

Pseudomonas

fluorescens

gyrA and

others

18 Beneficial Exponential 27

Resistance to

antibiotic

P. aeruginosa rpoB 15 Beneficial Exponential 29

Reporter

construct

P. fluorescens 11 genes total 100 Beneficial Normal 31

Increased

growth rate

ssDNA bacte-

riophage

Id11

WG 9 Beneficial Weibull 34

Novel host

growth

RNA phage �6 P3 (host

attachment

gene)

16 Beneficial Weibull 34

Site-directed

mutagenesis

VSV (RNA

virus)

WG 16 (A) Beneficial (A) �,

significantly

leptokurtic

16

(B)

Deleterious

(B) log-normal

+ uniform

Site-directed

mutagenesis

RNA bacterio-

phage Q�;

ssDNA bac-

teriophage

�X174

WG 0 All �, but � and

exponential

also fit well

72

Site-directed

mutagenesis

RNA virus

pTEV-7DA

WG 0 Viable

mutations

only

�, but all dis-

tributions

tested were

significant

38

Site-directed

mutagenesis

ssDNA bacte-

riophage

f1

WG 2 All Log-normal or

Weibull

73

Site-directed

mutagenesis

E. coli �-lactamase

TEM-1

0 All �; biophysical

model of

protein

stability

39

Site-directed

mutagenesis

Salmonella ty-

phimurium

rpsT and rplA 0 All � 36

Site-directed

mutagenesis

(EMPIRIC)

iG170D S.

cerevisiae +
plasmid

w/Hsp90

9 AAs in

HSP90

0 All Bimodal

(nearly

neutral +
deleterious)

37

Tn insertion E. coli WG 0 All � + uniform 23

WG, whole genome.
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strongly rejected, and point estimates of the shape of
the DFE consistently pointed toward distributions
that are bounded to the right (i.e., in the Weibull
domain (Fig. 2)).

MacLean and Buckling29 also characterized the
DFE of beneficial mutations in environments where
wild-type fitness is low, and in those cases they
rejected the exponential distribution. McDonald
et al.31 used a modified version of the fluctuation
assay procedure involving a reporter construct to
characterize the DFE of beneficial mutations in an
environment where wild-type fitness is low, and
found that a normal distribution provided the best
fit to their data.

Mutations generated using a fluctuation assay
can, in principle, arise anywhere in the genome;
however, in practice these mutations very often arise
in a handful of genes known to be important in
whatever selective medium was used. This can be
beneficial, as it can facilitate explicit identification
of mutations through targeted sequencing.29 On the
other hand, it also suggests that the types of muta-
tions that are collected using this method may be
idiosyncratic, as they tend to arise only in particu-
lar types of genes. Furthermore, the size of a bac-
terial genome—106 base pairs—and the measured
genome-wide mutation rates for fitness of U around
0.00332 make it very difficult to ensure that strategies
for isolating single-step mutants based on fluctua-
tion assays reliably yield only single-step mutations.
In fact, further scrutiny of large mutant collections
collected using this strategy sometimes reveals a siz-
able portion (up to 20–30%) of genomes carrying
a second-site mutation affecting fitness.30 Although
the presence of these second mutations is not fatal to
tests of the theory, it might complicate/compromise
the initial goal of these studies: direct inference
on DFE before the biasing effects of selection and
drift.

Another potential bias in this type of data can
arise if fitness in the selective environment is corre-
lated with fitness in the environment in which the
DFE is being characterized. This is because only mu-
tants with conspicuous fitness effects are detected
and isolated during the mutant selection process,
and so the class of mutations with weakly benefi-
cial effects (translating into slower growth) in the
selection environment is undersampled. If this class
of mutation also tends to have weakly beneficial
fitness effects in the environment of interest, the

result may be an observed peaked distribution11,33

(Fig. 1), while the real DFE might be more L-shaped.
This could be the reason McDonald et al.31 detect a
normal DFE for beneficial mutations; however, the
authors find no correlation between fitness in the
selective and test environments, suggesting that
the peaked distribution reflects real properties of
the system.

This potential bias is realized to its fullest extent
when the DFE of beneficial mutation is tested in the
environment from which the mutants were origi-
nally collected. Rokyta et al.34 characterize the DFE
of beneficial mutations using two virus data sets
with this potential bias—mutants were both iden-
tified and their fitness was tested by growth on a
particular host bacteria. However, the authors ac-
knowledge this potential bias and use a statistical
approach suggested by Beisel et al.,10 shifting the
data with the aim of characterizing just the tail of
the DFE, instead of the entire data set.

Systematic gene-by-gene mutagenesis. Mutage-
nesis is the other widely used method for generat-
ing collections of spontaneous mutants. This can be
a targeted or an untargeted process. Elena et al.23

used untargeted mutagenesis to generate a set of
Escherichia coli mutants through the random inser-
tion of transposon (Tn) elements throughout the
genome. Of the distributions tested, the authors
found a compound �+ uniform distribution was
the best fit to the DFE of all mutations (no bene-
ficial mutations were detected). The authors note,
however, that the high frequency of large-effect dele-
terious mutations that they observed may be an ar-
tifact of the particular type of mutants generated.
Insertions (used in this study) may be more likely
to result in gene loss of function compared to point
mutations, and so it may be that the DFE of all
random mutations is closer to a � distribution.

Site-directed mutagenesis removes some of the
potential biases inherent to fluctuation assays and
some untargeted mutagenesis methods by system-
atically generating a known set of mutations. This
method has been used to examine the DFE of mu-
tations in a number of viral, bacterial, and yeast
systems. Most of these studies have recovered few
to no beneficial mutations and so characterize the
DFE of all mutations combined instead of focusing
on beneficial ones. A study by Sanjuán et al.35 is
an exception, separately characterizing the DFE of
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beneficial and deleterious mutations. Here, the DFE
of beneficial mutations best fits a � distribution,
skewed toward small-effect mutations and signifi-
cantly leptokurtic.

Most site-directed mutagenesis studies that look
at the DFE of all mutations across a range of muta-
tional targets report � or unimodal similarly shaped
distributions (Table 1). Even a comparison of syn-
onymous and nonsynonymous mutations suggested
that the fitness effects of both categories of muta-
tions followed � distributions, although the mean
effect size of the synonymous mutations was less
than that of the nonsynonymous ones.36 However,
Hietpas et al.37 report a clear bimodal DFE of muta-
tions, comprising a set of nearly neutral mutations
and a set of highly deleterious mutations; in fact, a
closer look indicates that many site-directed muta-
genesis studies reporting �-like DFE of mutations
do actually see bimodal DFE if they include the set
of lethal mutations.38 Jacquier et al.39 found that
a � distribution fit their data reasonably well, but
suggest that a mechanistic approach to fitting the
data is more appropriate. The authors used protein-
stability estimates to predict the fitness effects of
mutations in their experiment and found that this
provided a better fit than all the classical distribu-
tions tested.

Site-directed mutagenesis can provide an unbi-
ased and extremely thorough look at the DFE of
mutations. However, for logistical reasons, its use
has been restricted to examination of the DFE of
mutations in very small genomes (i.e., viruses), a
few genes, or even particular regions within a given
gene. For this reason, the development of high-
throughput methods for generating mutations37

is very exciting, potentially greatly extending the
power of this method of DFE characterization.

Inferring the rate and fitness effects of new
mutations from fitness trajectories over time
The DFE of new mutations can also be inferred from
changes in fitness (or a trait closely related to fitness)
of a collection of populations over time. These fit-
ness changes can be observed in populations where
selection has been relaxed (mutation-accumulation
experiments) or in large populations under selec-
tion (adapting populations). Under these different
conditions, different sets of mutations are observed.
In mutation-accumulation experiments, mutations
accumulate at the rate at which they appear, while in

adapting populations, we expect that virtually only
beneficial mutations will persist.

Mutation-accumulation experiments. Muta-
tion-accumulation experiments have historically
been the approach for estimating the characteristics
of spontaneous mutations in eukaryotes. In these
experiments, selection is relaxed by propagating
populations at as small an effective population
size as is feasible. Much work has been done
characterizing mutations in this way, beginning
with Drosophila melanogaster40,41 and expanding
over the years to a range of other species.42 A major
benefit of this method is that the characteristics
of mutations affecting fitness can be estimated
without having to directly identify the mutations
involved. Classic methods for analyzing mutation-
accumulation data assume equal unidirectional
mutation effects and so only give estimates of
mutation rates and mean fitness-effect size. Newer
methods tend to assume that the DFE is � dis-
tributed and then find � distribution–parameter
estimates that best fit with the observed changes in
the mean and variance of fitness among replicate
populations.

It is important to note that mutation accu-
mulation inference methods only make predic-
tions about mutations that have moderate fitness
effects—mutations with weak fitness effects are dif-
ficult to detect, and neutral mutations are impos-
sible to detect. Another potential bias is that al-
though selection is relaxed in these experiments, it
is very difficult to eliminate it completely. For exam-
ple, Estes et al.43 found that even in Caenorhabditis.
elegans populations made up of only three individ-
uals, selection was able to maintain fitness at high
levels relative to populations of size one. Relaxing
selection is even more difficult in microbial pop-
ulations, because although the populations can be
bottlenecked to a single individual, selection can still
occur during colony growth phase (albeit at a much
reduced level).

We do not discuss in detail characterizations of
DFE from mutation-accumulation experiments, as
Halligan and Keightley42 have recently reviewed
mutation-accumulation studies and, in doing so,
have summarized predicted DFE of mutations from
this method (see Table 2 in Ref. 42). In general,
they saw that estimates of DFE tended to be more
fat-tailed (platykurtic) than the exponential
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Table 2. Summaries of studies inferring mutational properties through fitness/marker trajectories over time

Method Organism

Sample size (# of

mutations) DFE

Beneficial

mutation rate References

Marker frequencies E. coli 66 Exponential or � 4 × 10−9 74

Marker frequencies E. coli 30 Peaked, unimodal 5.9 × 10−8 44

Marker frequencies E. coli 72 Exponential,

uniform, and

Dirac �

2 × 10−7 46

Marker frequencies E. coli 75 and 87 � 10−5 64

Marker frequencies E. coli K43N: 81;

K88E: 102

K43N: cannot

reject

log-normal

(Weibull

domain)

K43N: 5 × 10−5;

K88N: 4 × 10−5

45

K88E: � (reject

Weibull)

Marker frequencies P. fluorescens 68 Weibull 3.8 × 10−8 75

Mean fitness over

time

A. nidulans 260 Unimodal,

positively

skewed

– 65

Mean fitness over

time

P. aeruginosa 288 Unimodal for one

genotype,

bimodal for the

other two.

6.6 × 10−8 22

distribution. The authors suggest that this tendency
does not agree with the long-held assumption that
the DFE of mutations is strongly leptokurtic,13 so
it could indicate that the � distribution does not
capture the true distribution, which may instead be
complex and multimodal.

Fitness trajectories in adapting populations.
With this method, beneficial mutations are char-
acterized as they arise in adapting populations. One
strategy is to detect the first (or first few) by moni-
toring the frequencies of competing strains that are
differentiated by neutral markers (e.g., antibiotic re-
sistance, colony color, microsatellite markers) over
a relatively short time period. Another strategy is to
estimate the fitness effects of fixed mutations from
changes in population fitness as those populations
adapt, usually over a longer period of time. Stud-
ies using this type of method are summarized in
Table 2.

This method identifies contending or fixed ben-
eficial mutations (depending on the details of the
particular experiment), as opposed to the full dis-

tribution of beneficial mutations, because weakly
beneficial mutations that may arise will be com-
paratively less likely to escape drift. Some studies
simply characterize the DFE of mutations that they
have identified while acknowledging this potential
bias.22,44 Other studies attempt to characterize the
tail of the distribution using a statistical approach:
the assumption is made that unobserved mutations
fall below some fitness threshold, but the fitness
effect of the smallest-effect mutation must be just
above that threshold. With this in mind, the data
can simply be shifted, and the DFE is character-
ized above that threshold.10,45 Since this approach is
based on EVT, it is only appropriate when the wild
type in question has high fitness (i.e., the DFE of
beneficial mutations is adequately modeled as the
tail of a distribution). Another approach is to com-
pare the fitness or marker dynamics generated by
population genetic models with different underly-
ing DFE and to try to identify the type of DFE that
generates dynamics most closely resembling that of
the observed data. While it can be difficult to distin-
guish between alternate types of DFE when fitting
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short time series of marked strains that typically only
track the initial spread of a favorable mutation,46

these difficulties can be alleviated by collecting ad-
ditional types of data spanning longer evolutionary
time periods.47,48

Population genomic studies and
estimation of DFE

Since the first empirical data on patterns of nu-
cleotide polymorphism (within species) and diver-
gence (between species) were available for natural
populations, a large fraction of population genetics
studies have been devoted to speculating verbally or
sometimes testing more quantitatively theories re-
garding which evolutionary mechanisms drive these
empirical patterns.49,50 A fraction of the studies have
the primary goal of exhibiting instances of adapta-
tion where the footprints of natural selection are
detectable at the molecular level of polymorphism
and divergence.51 Others are aimed at solving the old
riddle of what accounts for differences in polymor-
phism between species.52 Here, we do not attempt
to review that very active field comprehensively, but
instead focus on studies that explicitly aim at infer-
ring the DFE from this type of empirical data.

We first provide some intuition for why patterns
of polymorphism and divergence can inform us—
albeit indirectly—about the DFE. We then review
the available methods, their working assumptions,
and the results obtained so far on a handful of
model organisms. We close by sketching directions
in which the current methods could/should be ex-
tended to provide further information on the DFE
and genome-wide mutational parameters. Review-
ing these methods is timely, given that the democ-
ratization of sequencing methods has opened the
way to carry out population genomics surveys for
nonmodel organisms.53 We can therefore expect, in
the near future, to be able to provide insights into
patterns of polymorphism and divergence, and thus
potentially the DFE, for a much broader range of
organisms.

Why does polymorphism data contain
information on DFE?
A key insight is that deleterious mutations might
contribute to polymorphism as low-frequency alle-
les, but rarely to divergence. A strongly deleterious
mutation will only be found at a low frequency and
will virtually never go to fixation because natural se-
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Figure 3. Expected amounts of polymorphism and divergence
contributed by nonsynonymous mutations as a function of the
scaled selection coefficient of a mutation. The expected amount
of polymorphism in a genomic region can be summarized as the
total number of polymorphic sites for both nonsynonymous
(Pn) and synonymous sites (Ps, lower horizontal line), and the
number of rare mutations using, for example, the number of
singletons (mutations seen only once) at nonsynonymous sites
(Sn). Amounts of divergence are quantified using the number
of divergent synonymous (Ds, upper horizontal line) and non-
synonymous sites (Dn) relative to an out-group sequence. For
a given mutation rate and effective population size, sample size
n of chromosomes resequenced and size of a genomic fragment
population genetic theory and diffusion results on the Wright-
Fisher model can be used to compute these quantities as a func-
tion of the scaled mutation effect S of a nonsynonymous muta-
tion. Here for illustration, we assume 1000 synonymous neutral
sites, 3000 nonsynonymous nucleotide sites with a scaled muta-
tion rate � = 4N� = 0.01, a scaled divergence to the out-group
of � = 0.05, and a sample comprising n = 10 chromosomes.

lection keeps it in check. On the other hand, a weakly
deleterious mutation (Ns < 1, where N is the effec-
tive population size and s is the selection coefficient)
will behave essentially like a completely neutral mu-
tation, and thus might have a sizable chance to con-
tribute to both polymorphism and divergence. We
expect this outcome because natural selection has
an inadequate grip on very weakly deleterious mu-
tations, so they can rise to higher frequencies, and
rarely even to fixation, thus contributing to diver-
gence between species. Beyond this verbal intuition,
one can use population genetic theory to specify
the frequency at which we expect to see a nonsyn-
onymous single nucleotide polymorphism (SNP)
as a function of its deleterious fitness effect, and in
turn make predictions about observable patterns of
polymorphism and divergence (Fig. 3). Population
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genetics theory predicts that the product S = 4Nes
(where Ne is the effective size of a population54 and
s the selection coefficient of a new mutation) deter-
mines the expectation for the number and frequen-
cies of polymorphisms observed within species, as
well as the amount of divergence between species.
Expectations for total amounts of polymorphism
(and amounts of polymorphism segregating in a
given class of frequency) and divergence can then
be compared to amounts expected for a class of mu-
tations that are hypothesized to be neutral (Fig. 4).
Thus, empirical polymorphism and divergence data
contain information on the distribution of scaled fit-
ness effects, S, of new mutations. The emphasis here
is on scale, as the selective effect of mutations can
only be estimated up to a constant, the effective pop-
ulation size. Current methods seek to estimate the
distribution of S values associated with new muta-
tions, and possibly the fraction of mutations that are
beneficial, from patterns of polymorphism and di-
vergence. In the next section, we briefly review the
assumptions common to most methods and then
evaluate the empirical studies utilizing these meth-
ods to gain knowledge about the scaled fitness effects
of new mutations.

Methods inferring DFE from amounts of
polymorphism and divergence
Most currently available methods first summa-
rize observed polymorphism data through the site-
frequency spectrum (SFS) of synonymous and non-
synonymous mutations (i.e., how many times do
we observe a SNP present in 1, 2, 3, . . . , n – 1
copies in a sample comprising n sequenced chromo-
somes (Fig. 4). These methods tend to assume that
synonymous mutations are selectively neutral (but
see the interesting exception in Drosophila55), and
thus model the SFS of synonymous mutations as the
by-product of mutation (bringing new alleles) and
drift. The effect of drift is modeled by assuming a
Wright–Fisher population genetic model where the
population size can be either constant (Ne account-
ing for the data) or variable through time. At this
time, most methods tend to assume very simplistic
scenarios to account for variation in population size
through time,56 but development of methods ac-
counting for more complicated underlying demo-
graphics is ongoing.57 The joint effects of mutation,
drift, and selection are expected to shape the pat-
terns of polymorphism of nonsynonymous muta-

tions, and thus comparison of the synonymous and
nonsynonymous counts in the various frequency
classes spanning the SFS are the basis for inferring
the scaled mutation effects, S, of nonsynonymous
mutations. The probability (likelihood) of a given
set of SFS counts (the data) is computed by assuming
a simplified demographic model (constant popula-
tion size or a single population-size change in recent
history), and that only deleterious mutations con-
tribute to nonsynonymous polymorphism. Values
for the scaled mutation rates per site (� = 4N�) and
a distribution of scaled fitness effects (scaled DFE)
are typically fit by maximum likelihood.

The possible contribution of beneficial mutations
to polymorphism is ignored in most methods. The
argument for this simplification is that beneficial
mutations should make a negligible contribution to
patterns of polymorphism because they are rare and
tend to sweep rapidly through the population. On
the other hand, beneficial mutations are expected to
significantly boost the amount of nonsynonymous
divergence (Fig. 3). Accordingly, several methods
use divergence data in combination with SFS data to
estimate the fraction of nonsynonymous divergence
that is driven by beneficial mutations.56–58 A closer
inspection of Figure 3 confirms the intuition that
beneficial mutations are expected to make a large
contribution to nonsynonymous divergence (Dn),
but also suggests that the intuition that the contri-
bution of beneficial mutation to polymorphism is
negligible may be flawed: a single beneficial muta-
tion is actually expected to contribute comparatively
more to amounts of polymorphism (Pn) than a neu-
tral or a deleterious one!

Empirical DFE inferred from population
genomics data
The methods for estimation of the scaled DFE from
this type of data differ slightly by (1) the nature
of demographic assumptions underlying the likeli-
hood calculations; (2) whether diffusion or an exact
matrix version of the Wright–Fisher model is used to
compute theoretical expectations and, in turn, the
likelihood of SFS data; (3) the underlying distribu-
tion used to model the scaled DFE; and (4) whether
only polymorphism data are considered (via SFS
counts) or divergence data are also analyzed.

Table 3 contains empirical estimates of scaled
DFE obtained from these types of data. Compar-
ison of the distributions inferred from these studies
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Figure 4. An example of site frequency spectrum (SFS) data
in chimpanzee (Pan troglodytes troglodytes). Data comprising
the resequencing of the exome of 12 individuals (n = 24 chro-
mosomes) is redrawn using the data of Ref. 76. Circle size is
proportional to counts of polymorphism. Synonymous counts
are in gray (upper set of L-shaped dots) and nonsynonymous
counts in black (lower set of L-shaped dots).

is not always straightforward, as different meth-
ods can assume quite different parametric distri-
butions to model the underlying DFE. One of the
easiest ways to make more meaningful comparisons
across studies is to discretize the type of distribu-
tion used in broad categories of S values. Commonly
used categories are the effectively neutral mutations
(–1 < S < 0), the slightly deleterious mutations
(–10 < S < –1), and the strongly deleterious ones
(S<–10). The rationale for the number of categories
is rather arbitrary,59 but the choice of boundaries are
based on the fact that deleterious mutations with
S > 100 will make a negligible contribution to poly-
morphism unless a very large number of individuals
(n > 1000) are resequenced.60 Moreover, one might
be interested in the proportion of mutations with S
around 1, as this class of mutation might be impos-
sible to select out and yet might be damaging to the
mean fitness of populations.9

The observed differences among the species stud-
ied so far are not easy to parse into differences, owing
to the broad demographics of the species (affecting,
in turn, the underlying effective size and efficacy
of natural selection) versus genuine differences in
their DFE (i.e., differences in s among mutations).
However, the most striking difference lies in the pro-
portion of mutations in the effectively neutral range

(–1 < S < 0), which varies fivefold depending on
the species examined (i.e., barely 6% in Drosophila
versus over 30% in most studies of human pop-
ulations). Curiously, species believed to evolve at
fairly large population size, such as yeast, still ex-
hibit a fairly large proportion of effectively neutral
mutations; as discussed above, at this point it is not
clear whether these differences reflect overall demo-
graphics or the existence of a class of mutations with
very small fitness effects.

Another challenge for this type of method is to
reliably estimate the scaled DFE in the presence of
potentially complicated demographics. One current
effort pursues the development of methods that can
accommodate more complicated demographic sce-
narios, but a fruitful direction might also be to de-
velop methods that are more robust with respect
to underlying demographic assumptions. In this re-
spect, methods that seek to correct for the effects
of demographics on SFS counts, rather than esti-
mating a specific demographic scenario,61 might be
the way forward (see also Ref. 62 for a review on
interaction of selection and demographics).

As genome sequence data becomes increasingly
available, more rigorous comparative approaches
can be used to analyze data of polymorphism and
divergence from numerous pairs of fairly recently
diverged species. Assuming identical DFE for both
species, but possibly different population size his-
tories, might lead to more reliable inference of DFE
(Elyashiv et al.63 are explicitly doing so). This ap-
proach also rests on the assumption that DFE tend to
be well conserved over evolutionary time; however,
direct insights into DFE obtained through recent ex-
perimental evolution studies seem to challenge this
assumption and show that the current level of adap-
tation is a factor strongly determining the DFE of
new mutations.64–66

Conclusions

What can we say about the DFE of new mutations?
For the DFE of beneficial mutations, experimen-
tally inferred distributions seem to support theory
for the most part. When the wild-type genotype
is close to a fitness optimum, experiments uncover
distributions that fit with EVT predictions of the
generalized Pareto distribution. Distributions with
shapes ranging from close to exponential to uniform
are recovered. There is variation between studies,
but estimates consistently suggest shape parameters
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Table 3. Summary of studies inferring the distribution of scaled fitness effects, Ns, of nonsynonymous mutations

Organism

Method/dem

model –1 < Ns < 0 –10 < Ns < 1 –10 < Ns

Distribution(s)

fitted References

Human Diffusion +
complex

demography

0.27 0.30 0.43 Mix of normal

exponential/

neutral

57

Human EWK2009 0.35 0.09 0.56 � 56

Mus musculus

castaneus

K&K 0.19 0 0.81 LN, �, �, Spikes 59

Pan troglodytes EWK2009 0.09 0.06 0.74 � 76

D. melanogaster EWK2009 0.06 0.07 0.87 � 56

Saccharomyces

cerevisae

0.25 0.25 0.5 � 63

S. paradoxus 0.2 0.2 0.6

Angiosperms EWK2009 0.1–0.35 0.05–0.15 0.7–0.8 � 77

Medicago

truncatula

EWK2009 20–35 12–15 50–65 � 78

Note: EWK200956: diffusion based, simple demographic model fitted featuring a possible step change from population
size N1 to population size N2 at some time t in the past (N1, N2, and t become “nuisance parameters” estimated
alongside DFE and the fraction of favorable mutations).
K&K: discrete W–F matrix based, demographic model identical to EWK2009.
Dem, demographic; LN, log normal; spikes, spikes at different Ns class values.

in the Weibull domain (Fig. 2), although some cases
yield distributions that are difficult to distinguish
from a strict exponential.

Some of this variation is likely statistical noise in-
herent to the use of a very small number of data
points (typically less than 15) to distinguish be-
tween sometimes quite similar distributions. How-
ever, variation in the DFE of beneficial mutations is
also predicted in fitness landscape models when the
number of character dimensions are varied, with
a right-truncated DFE of beneficial mutations pre-
dicted when the number of character dimensions is
low, only converging toward an exponential DFE of
beneficial mutations when the number of charac-
ter dimensions is large.33,67 Interestingly, the most
extreme examples of right-truncated DFE of benefi-
cial mutations have been recovered in viruses,34 ar-
guably less complex organisms than bacteria, where
more exponential-like DFE tend to be recovered.27

Recent tentative estimates for the complexity of bac-
terial genomes, operationally measured by inferring
the number of independent traits underlying fitness,
are rather low: likely 10 or fewer.30,47 Note, however,
that these estimates of complexity are obtained un-
der the strong assumption that these mutations are
fully pleiotropic.

For wild-type genotypes initially residing far-
ther from the optimum, experimentally charac-
terized DFE of beneficial mutations tend to be
peaked (Fig. 1), no longer conforming with the
EVT predictions but still fitting with the general
predictions of fitness-landscape models. A few ex-
periments have started to give us an idea of how
DFE change as populations move closer to, or fur-
ther from, a fitness optimum, and in some cases
even show the transition from a peaked to an EVT
tail DFE.29 However, predicting distance from the
optimum a priori is impossible without an un-
derstanding of the underlying fitness landscape—
something that is notoriously difficult to
characterize.

The conventional assumption in comparative
genomics, starting with the neutral theory of
molecular evolution championed by Kimura,13 is
that populations are very close to their fitness opti-
mum, and so beneficial mutations are exceedingly
rare and can safely be ignored. Thus, in most cases,
assumptions of the models used do not allow for
beneficial fitness effects to be estimated at all (but
see Ref. 68 for an exception). However, beneficial
mutations are not so rare that they cannot be de-
tected when looked for in evolution experiments,
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and depending on the particular selection envi-
ronment, beneficial mutations can even be quite
numerous.31 It could be argued that these data rep-
resent the DFE of extremely maladapted popula-
tions, important only in the artificial environment
of the lab. However, even if these experiments do
represent DFE at the extremes, understanding the
DFE of beneficial mutations in maladapted popula-
tions is of direct importance for at least two applied
evolutionary problems. The first is that of antibi-
otic resistance in microbes. The presence of antibi-
otics throws populations far off their fitness opti-
mum, and so predicting how pathogens evolve in
the presence of antibiotics requires an understand-
ing of the DFE and resulting dynamics of popula-
tions in extremely stressful environments. Another
potential application is in understanding the evo-
lutionary dynamics of populations at risk of ex-
tinction. Populations at risk may decline to census
sizes so low that many deleterious mutations can
be no longer be filtered out by selection. Models
of this process, called mutational meltdown, tend to
deal only with deleterious mutations. However, data
from experimental evolution and fitness landscape
models suggest that the farther these populations
move from their fitness optima, the greater the num-
ber of potential beneficial mutations—also termed
compensatory mutations—and the greater the fit-
ness effects of those mutations. Poon and Otto69

show that incorporating beneficial mutations when
modeling this process can change the predicted out-
come and suggest that beneficial mutations, while
still rare compared to deleterious mutations, can
have important effects on evolution even in small
populations and, thus, should not be ignored.

Experimental evolution has allowed for the ex-
amination of the DFE of beneficial mutations in a
number of microbes; however, it is still impossible
to characterize the DFE of beneficial mutations in
this way in eukaryotes. On the other hand, estimates
of mutation rate and the mean effect size of bene-
ficial mutations are parameters that can potentially
be extracted from polymorphism data. With these
parameters, one can calculate the expected waiting
time for new mutations (assuming the distribution
is close to exponential). Predictions of evolutionary
rescue models depend on these parameters, and so
these kinds of estimates may be important in pre-
dicting a species’ ability to adapt to climate shifts
and other human-induced environmental changes

(see Ref. 70 for a lucid and quantitative account of
this process). In a similar way, these same parame-
ters will also be crucial for modeling the evolution
of antibiotic resistance and host shifts in pathogens.

As one broadens the focus from beneficial muta-
tions to the DFE of all mutations, experimental evo-
lution and genome polymorphism data do not al-
ways match as well with current theoretical models.
For the genotype–phenotype mapping that is typi-
cally used in mutational landscape models, the pre-
diction is that the DFE of mutations is � distributed
with a shift that depends on the current distance to
the fitness optima (Fig. 1). Although some of the
data appear to be adequately described by � distri-
butions, other are clearly bimodal and complex.37,59

Thus, while many techniques for inferring the DFE
in experimental evolution and genomics analysis as-
sume that the DFE is � distributed, discrepancies in
these results suggest that this is not always appro-
priate (as discussed in Ref. 42).

It would be nice to also compare predicted DFE
inferred using the two very different approaches dis-
cussed in this review; however, direct comparisons
of the DFE of mutations inferred by experimen-
tal evolution methods and genome polymorphism
data are currently very difficult. This is due to an in-
ability to distinguish between DFE shape differences
due to selection versus demography in the polymor-
phism data (as discussed earlier). It is also difficult to
know if a comparison is appropriate because of the
potentially large differences in the type of selective
environments driving adaptation in these two types
of data. In evolution experiments, the environment
used for natural selection to operate tends to be fixed
and is usually relatively simple, while the observed
polymorphism data are likely the result of much
more complex and potentially fluctuating environ-
ments. It is difficult to know how these potential
complexities have affected the DFE that is inferred
from population genomics data, and accounting for
this may be important. A model by Huerta-Sanchez
et al.71 explores how temporal fluctuation in selec-
tion regimes can affect patterns in SFS data, but this
approach has not yet been turned into a practical
inference method.

One general conclusion arising from a compar-
ison of DFE inferred from all types of data is that
there is a great deal of variation in observed DFE
shapes. A factor that seems to have an overwhelm-
ing effect is the distance from the optimum (current
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level of maladaptation). Genetic background is an-
other factor that may play an important role through
organism complexity, variation in the amount of
pleiotropy, and epistasis. Advances in the imple-
mentation of high-throughput methods in both ex-
perimental evolution and sequencing now allow for
the thorough characterization of the DFE of mu-
tations across a wide range of organisms and en-
vironments, allowing for direct experimental tests
of potential mechanisms driving observed differ-
ences in DFE. In addition, the rapidly growing abun-
dance of genome sequence data, now available for
an ever-widening range of species, will allow for
better identification of any general patterns in the
characteristics of arising mutations and their fitness
effects. Future work should be focused on un-
derstanding what drives the observed variation.
Mutational-landscape models make explicit predic-
tions regarding a number of factors that could drive
variation in DFE and, thus, offer an important guide
on this front. In that regard, two particular factors
that have been overlooked for interpreting data are
the roles of partial pleiotropy and heterogeneity in
the environment. Fitness-landscape models incor-
porating partial pleiotropy have been formulated
but have not yet been used for inference. The ef-
fect of heterogeneity in the environment on DFE
has largely been unexplored and there is a need to
extend both theory and experiment in this area.

Acknowledgment

SB and TB acknowledge financial support from the
ERC Grant ADAPT (Grant number 311341).

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Chevin, L.-M., G. Martin & T. Lenormand. 2010. Fisher’s
model and the genomics of adaptation: restricted pleiotropy,
heterogeneous mutation, and parallel evolution. Evolution
64: 3213–3231.

2. Chevin, L.-M., R. Lande & G. M. Mace. 2010. Adaptation,
plasticity, and extinction in a changing environment: to-
wards a predictive theory. PLoS Biol. 8: e1000357.

3. Hoffmann, A.A. & C.M. Sgrò. 2011. Climate change and
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