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Bone metastases is one of the common metastatic site and leading cause of cancer-related mortality in
progressive cancer patients. The purpose of the present study is to establish a liquid biopsy based
multi-gene classifier and associated signalling pathways for early diagnosis of bone metastases. We used
publically available microarray datasets and analysed them in a platform/chip-specific manner using
GeneSpring software. Analyses of gene expression datasets identified 15 consistently over-expressed
genes with statistical significance. Further, expression profile of same set of 15 genes were compared
in breast and lung cancer exosome derived mRNA with (n = 10) and without (n = 10) bone metastases
against healthy controls. ROC curve analysis performed individually for all the 15 genes shortlisted the
5 most relevant genes with significant sensitivity and specificity in both cancers. This liquid biopsy-
based bone metastases predictor using multi-gene panel is a unique approach with potential clinical
applications for effective management of aggressive cancers.
� 2021 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bone metastasis is the leading reason for mortality and morbid-
ity globally and its occurrence is immensely growing [1]. The bone
is the third most common site for metastasis, after the lung and
liver [1,2]. Cancer metastases to the bone are more widespread
among patients with progressive cancer of the breast (73%), pros-
tate (68%), or lung (36%) [3]. Bone metastases lead to skeletal-
related events (SREs) in final-stage cancer patients which define
as spinal cord compression, the essential requirement for radiation
or surgery to bone, pathologic fracture, and hypercalcemia [4].
Unfortunately, current beneficial therapeutic options are in most
cases the only palliative and, although not curative, surgery
remains the noteworthy effective for bone metastasis treatment
[5]. The growing global incidence of bone metastasis along with
the distinct lack of noteworthy development in overall survival
rate during the past four decades requires newer methodologies
to recognize the molecular mechanisms of the disease and to clas-
sify potential markers for early detection, prognosis, and as targets
for therapy [6]. Consequently, identifying impending pathological
genes and signalling pathways inducing the bone metastasis pro-
cess is very important.

It is a major target in primary cancer research to regulate the
genetic mechanisms that support the bone metastatic processes,
which include: tumor cell intravasation, cell survival during circu-
lation, extravasation into new tissues, and successfully inhibited
growth at a secondary site [7]. A recent study of exosomes has sug-
gested that early stage tumor release extracellular vesicles carrying
numerous types of tumor markers [8]. Exosomes are particles
released from almost all kinds of cells that are enclosed by a lipid
bilayer and cannot replicate [9]. The mechanism of exosome bio-
genesis and contained cargo within are still not yet totally under-
stood, nevertheless studies have indicated that exosomes can
transport cargo of DNA, RNA, proteins and modulate target cells
[10,11]. Therefore, exosomes provide a wide range platform for
the discovery of new liquid biopsy based biomarker for cancer
using combine and individual cargo molecules [12]. Nowadays,
numerous studies have to specify that tumor-derived exosomes
are responsible for cancer progression which, shows that TDEs
may hold abundant potential for cancer diagnosis, prediction,
and treatment response assessment. However, the significant func-
tion of exosomes assists in the pathological communication
between primary tumor and bone cells within the bone microenvi-
ronment remains a developing field.
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Investigative approaches that can develop existing databases
and classify markers concordant through studies may be an advan-
tageous methodology to narrow down to markers of increased
assurance and clinical applicability. Moreover, relevant studies
have been reported on cancer of numerous sites. Meta-analysis
based approaches in head and neck cancer have led to the identifi-
cation of novel targets and candidate biomarkers [13]. Parmigiani
and the team excellently applied meta-analysis of gene expression
for the molecular classification of lung cancer [14]. In prostate can-
cers, markers causal to the carcinogenic process were identified
utilizing a similar approach [15]. Besides, markers highly related
to diagnosis and treatment outcome prediction in breast cancer
were also recognized through similar meta-analysis based
approaches [16,17]. In this study, we hypothesize that a meta-
analysis of publicly available bone metastasis genomic expression
datasets of numerous cancer types can classify a common meta-
static signature of bone metastasis. We tested this hypothesis by
applying a cross-platform and cross-study meta-analysis method
on multiple microarray datasets and subsequently validate them
in clinical samples to introduce the benefits of exosomes as liquid
biopsy based approaches.
2. Materials and methods

2.1. Search criteria and data mining

Investigation of the generously accessible microarray datasets
was carried out as per the PRISMA guidelines [18]. An electronic
database, explored was performed using the Gene Expression
Omnibus (GEO) (NCBI, http://www.ncbi.nlm.nih.gov/geo/) and
Array Express (EBI) (http://www.ebi.ac.uk/arrayexpress) for the
occurrence of raw data of microarray experiments carried out in
bone metastases from the different primary site. The sequence of
workflow for the analysis involved the following steps, i) data min-
ing and retrieval of numerous databases to identify microarray
studies that compared the expression of primary tumors of various
origins (prostate, colorectal, renal, and breast) against distant bone
metastases. ii) Studies containing only human tumors and iii) stud-
ies, including universal profiling of transcriptome using microar-
rays. Furthermore, Affymetrix [Affymetrix Inc., California, USA],
Agilent [Agilent Technologies, California, USA] and Illumina [Illu-
mina Technologies, San Diego, USA] three platforms were used
for the meta-analysis. The common basic workflow followed the
stepwise protocol recommended by Ramasamy et al for carrying
out a meta-analysis [19]. The general workflow is detailed in Fig. 1.
2.2. Data analysis using GeneSpring

The raw data files were used for the analyses included .CEL
(Affymetrix platform), .TXT (Agilent) and .CEL (Illumina) files that
downloaded from the GEO and further analyzed using genespring
software (http://genespring-support.com). Furthermore, the raw
data were uploaded onto the genespring software then baseline
transformed and normalized by Robust Multi-array Analysis
(RMA) in Affymetrix or 75th percentile in Agilent platforms (single
color) or Illumina platforms. The isolated sample files were then
classified into ’Primary’ and ’Metastasis’ and re-analyzed as a single
experiment. The experimental data at the gene level (arithmetic
mean of all probes mapping to the same probe ID) was generated
and quality control was approved using Principal Component Anal-
ysis (PCA) in GeneSpring. Moreover, in the PCA analysis outlier
sample was removed and clustering carried out afterward to con-
firm a clear stratification between the two categories of primary
and metastatic samples. Fold change analysis was then performed
on the samples following which an unpaired t-test (unequal
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variance) were performed to obtain significant gene entities. The
p-value computation (asymptotic) and multiple testing correction
(Benjamini Hochberg FDR) were further performed to obtain gene
entities with p-value < 0.05 and fold change (FC) of >2.0. Addition-
ally, identified gene pathway analysis was done using the inbuilt
pathway analysis tool. The individual gene entity list from each
technology was extracted from the GeneSpring software and
exported to excel files. A similar approach was adopted to identify
all the common genes, and pathways across the three platforms of
Affymetrix, Agilent, and Illumina (Fig. 1) [13].

2.3. Meta-gene signature prediction using a Venn diagram

The different site of primary to bone metastases sample was
compared using a Venn diagram through to find out the gene sig-
nature for bone metastases. The comparison between up/down-
regulated genes in bone metastases from primary breast, prostate,
colon, and renal.

2.4. Functional annotation using multiple web source

The concordant gene list across the various platforms was ana-
lyzed in the diverse web resources to assess functional classes and
protein–protein interactions. Gene ontology analysis and heat map
were generated using FunRich and Gprofiler classification system
to assess the functional classes of the genes [20]. The STRING and
NetworkAnalyst database was used to predict and catalogue the
protein–protein interactions between the concordant genes [21].

2.5. Patient-based validation

Sampling was carried out at Vedant and Civil hospital during
routine Fine Needle Aspiration Cytology (FNAC) procedure as a part
of the diagnostic workup. The validation of selected genes predicted
frommeta-analysis was done in exosomal RNA derived from serum
sample using quantitative real-time PCR. 10 blood sample of
healthy persons, 10 blood samples of primary breast and lung and
10 blood sample from patients with bone metastases were col-
lected with prior consent. The study was approved by the Gujarat
university ethics committee and all samples were collected after
obtaining written informed consent from each patient. The median
age of the patients was 60 years at diagnosis, ranging from 30 to 85.
Clinical-Pathological details include tumor location, histopathol-
ogy, age, gender, habit, the stage was noted in each case.

2.6. Isolation of exosome from primary and bone metastases patient
serum

Exosomes were isolated with the miRCURY exosomes kit for
Serum/Plasma (Qiagen Cat No. 76603) of patients with breast
and lung patients with and without bone metastases. Briefly, sam-
ples were centrifuged at 3000g for 10 min to remove cells and cell
debris. The 0.5 ml supernatant was mixed with 200 ml of precipita-
tion buffer A and incubated at 4 �C for 60 min. After the incubation,
the tubes were centrifuged at 1500g for 30 min and the exosome
pellet was reconstituted in resuspension buffer and stored at
�20 �C until further analysis [22].

2.7. Nanoparticle tracking analysis (NTA)

The isolated exosome’s size distribution and absolute quantifi-
cation were estimated using Nanosight NS300 (NanoSight Ltd.,
Amesbury, UK) equipped with a 405 nm laser. A video of 60-sec
duration was taken with a frame rate of 30 frames/sec, and particle
movement was analyzed using NTA software (version 2.3; Nano-
Sight Ltd.).

http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress
http://genespring-support.com


Fig. 1. Bone metastases meta-analysis workflow. The freely and publically existing raw microarray data of bone metastases series were downloaded and grouped and
analyzed in genespring statistical software.
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2.8. Flow cytometry analysis

Isolated exosome’s were labelled according to Els J van der
Vlist., et al protocol. In brief, isolated exosome’s were incubated
for 60 min in 10 ml of mouse anti-CD63-PE, CD-9, CD-81 antibodies.
Before data acquisition, the samples were diluted with 480 ml of
0.22 mm pre-filtered PBS (final dilution 1:25). BD FACSCalibur flow
cytometer was used for data acquisition and BD FACStation was
used for calculation. Data were obtained using 2 individual apogee
A50/Micro flow FCs equipped with 50mW 405-nm (violet), 488-
nm (blue), and 638-nm (red) lasers [23].

2.9. Gene expression analysis by qRT-PCR

Total RNA was extracted using Aridia viral DNA and RNA extrac-
tion kit (Cat No./ID: AME0003) according to the manufacturer’s
instructions. The integrity and concentration of the isolated RNA
were determined using Bioanalyzer and 260/280 ratio for purity
by Nanodrop (Epoch BioTek system). A total of 1.0 lg of RNA
3

(260/280: 1.8–2.0) was reverse transcribed to cDNA using the high
capacity cDNA synthesis kit (Qiagen; Cat no: 205411) as per the
manufacturer’s instructions. Real-Time PCR was performed in
20 ll volume that included 10 ll SYBR Green QPCR Master Mix
(QuantiNova SYBR Green, Cat No./ID: 208052) containing 0.5 ll
(200 nM) each of specific forward & reverse primer and 2 ll cDNA
as template. 18 s rRNA was used as a housekeeping gene in each
set of experiments. The list of all the primers used for the study
(HSP90AA1, PTK2, SHC1, YWHAZ, MATR3, HSPD1, MMP9, VEGFA,
IL3, NKTR, TUBGCP6, ACTG2, MYH11, CTTN, and SPP1) is shown
in Table 1. Quantitative PCR using Sybr Green chemistry was car-
ried out in QuantStudio� 5 ((QuantStudio� 5, Applied Biosystems,
USA, CA)) in a 96-well reaction plate format with at the following
thermal cycling conditions: 1 cycle of 5 min at 95 �C for the initial
denaturation step and 40 cycles of 10 s at 95 �C for the denatura-
tion step, 40 s at 56 �C / 60 �C for the annealing and extension step
followed by melting curve detection for ensuring positive amplifi-
cation of the target gene rather than non-specific products or pri-
mer dimmers. The fold change expression was evaluated using



Table 1
Primer list.

Sr No Gene name Sequence No of Base Accession No

1 HSP90AA1 FP-50-CCACTTGGCGGTCAAGCATT-30 20 NM_005348
RP-50-AAGGAGCTCGTCTTGGGACAA-30 21

2 PTK2 FP-50-TATATGAGTCCAGAGAATCCAG-30 22 NM_005607
RP-50-GCTTCACAATATGAGGATGGT-30 21

3 SHC1 FP-50-CACTTGGGAGCTACATTGCCTG-30 22 NM_001130040
RP-50-GTGGTGGAGGTGGCATCTGTT-30 21

4 YWHAZ FP-50-AGCCATTGCTGAACTTGATACA-30 22 NM_145690
RP-50-AATTTTCCCCTCCTTCTCCTG-30 21

5 MATR3 FP-50-CAGCAGTCTACAAATCCAGCACC-30 23 NM_018834
RP-50-CTGCATGTGTCTAGGTCCTTGC-30 22

6 HSPD1 FP-50-GCAAAGTTCCTCAGAAGTTGGT-30 22 NM_002156
RP-50-GCAGCATCCAATAAAGCAGTT-30 21

7 MMP9 FP-50-GAGTGGCAGGGGGAAGATGC-3 20 NM_004994
RP-50-CCTCAGGGCACTGCAGGATG-30 20

8 VEGFA FP-50-CTTGCCTTGCTGCTCTACC-30 19 NM_003376
RP-50-CACACAGGATGGCTTGAAG-30 19

9 ILF3 FP-50-GTGTCCAATCACCAGTCCTG-30 20 NM_012218
RP-50-GCTGAAGAAGTGGGAGTGTAGC-30 22

10 NKTR FP-50-GCAAGCAGTTCAGAAGAGCCAAG-30 23 NM_005385
RP-50-TCTCAGGCACTGGAGGAATCTC-30 22

11 TUBGCP6 FP-50-GGTGTTCAGAGACGCTTATGGC-30 22 NM_020461
RP-50-CCACCTCTTTGGAGATGAGCAC-30 22

12 ACTG2 FP-50-CTGCCATGTACGTCGCCATTCA-30 22 NM_001615
RP-50-GACATTGTGGGTGACGCCATCA-30 22

13 MYH11 FP-50-GTCCAGGAGATGAGGCAGAAAC-30 22 NM_002474
RP-50-GTCTGCGTTCTCTTTCTCCAGC-30 22

14 CTTN FP-50-TAATCCAATGAGGAATTTCCAG-30 22 NM_005231
RP-50-TAGAGCCTGGTGCCTGGG-30 18

15 18srRNA FP-50-GGAGTATGGTTGCAAAGCTGA-30 21 GU198749
RP-50-ATCTGTCAATCCTGTCCGTGT-30 20

16 SPP1 FP-50-ACTCGTCTCAGGCCAGTTG-30 19 NM_001040058
RP-50-CGTTGGACTTGGAAGG-30 16
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the DDCT or 2DDCT method. All experiments were performed in
triplicate independently and the average CT value was calculated
for the quantification of fold change analysis [24].

2.10. Hierarchical clustering

To study whether the expression profile in the primary cancer
can exactly classify metastatic status, hierarchical unverified clus-
tering was achieved using the hcluster method of R package
‘‘amap” and the plot was created using the heatmap.2 function of
‘‘gplots” package. Absolute Pearson and Pearson distances were
used to calculate gene and sample distances respectively and gene
linkages were done using the Ward algorithm. Inter-study normal-
ization was completed with the Bioconductor package ‘‘inSil-
icoMerging” using an Empirical Bayes method [25].

2.11. Receiver operating characteristics curve analysis

The receiver operating characteristic (ROC) curve was generated
to evaluate the predictive power such as accuracy and discriminat-
ing the specificity and sensitivity of each of the biomarkers. The
optimal cut-point that yielded the maximum sensitivity and speci-
ficity was determined for each biomarker as cut off from ROC
curves and area under the curve (AUC) was computed using Med-
Cals (Belgium, Europe). The biomarker that has the largest area
under the ROC curve was identified as having the strongest associ-
ation with the presence of bone metastasis [13].

3. Results

3.1. DATA mining

The data mining of the different database documented a total
47 of series based on the search condition [Affymetrix n = 25,
4

Agilent n = 10, Illumina n = 12]. After further filtration of data
based on the inclusion and exclusion criteria, 18 data sets from
Affymetrix, 1 from Agilent, and 4 from Illumina were included
for further analysis in the study (Table 2). The chip and technology
that mismatched with the analysis pipeline were excluded from
the study. The total number of samples analyzed included 542 pri-
mary and 81 patients with bone metastases. The Affymetrix plat-
form included a total of 380 primary and 63 metastases done
with U133 plus 2.0: P = 241, M = 33, U133A: P = 116, M = 28,
U95A: P = 23, M = 2 whereas the Agilent platform using 4X44K
G4112F included 5 primary (P) and 5 samples with metastasis
(M) samples. Similarly, the Illumina platform on HT-12 V 4.0 bead
chip included 157 primary (P) and 13 samples with bone metas-
tases. The representative site examined in the selected series were
breast, prostate, colon, and renal cell carcinoma tumours metasta-
sizing to the bone. The data set from each chip within each plat-
form were analyzed individually using GeneSpring analysis
software and as per the analytical pipeline to classify the concor-
dant gene entities lists.

3.2. Data analysis using GeneSpring

The data from the different series were analyzed as a single
experiment in GeneSpring software and the PCA plot indicated
the various groups showed different gene expression patterned.
In breast cancer bone metastasis 12 series were analyzed in Affy-
metrix and Agilent platform that involved studies carried out on
U133 plus 2.0 chips and 4X44K G4112F chip. In the analysis, few
series were excluded since the samples were outliers during PCA
and clustering. The PCA plot was created to analyze the behavior
and clustering of samples of diverse subgroups and a total of 254
samples was incorporated in the final analysis (P = 241, M = 33).
The statically noteworthy gene list having fold change value >2.0
and p-value <0.05 were considered for further analysis. In addition,



Table 2
Characteristic of individual studies retrieved from Gene Expression Omnibus for bone meta-analysis.

NO. PUBLIC DATASET ARRAY PLATFORM SITE DETAIL GENES VALIDATED VALIDATION METHOD PUBMED ID

1 GSE54323 HG-U133_Plus_2 Breast cancer metastasis to bone – – 25,888,067
2 GSE39494 Agilent-014850/4x44K G4112F Breast cancer metastasis to bone ABCC5 qPCR, IHC, WESTERN BLOT 23,174,366
3 GSE14017 HG-U133_Plus_2 Breast cancer metastasis to bone – – 19,573,813
4 GSE18549 HG-U133_Plus_2 Prostate cancer metastasis to bone – – –
5 GSE32269 HG-U133A Prostate cancer metastasis to bone SOX9 qPCR, IHC, WESTERN BLOT 23,426,182
6 GSE68882 HG_U95A Prostate cancer metastasis to bone TAGLN, MSMB qPCR, IHC 12,154,061
7 GSE101607 Illumina HumanHT-12 V4.0 Prostate cancer metastasis to bone PSMB9, TAP1, HLA-A qPCR, IHC 27,497,761
8 GSE101607 Illumina HumanHT-12 V4.0 Colon cancer metastasis to bone – – 27,497,761
9 GSE101607 Illumina HumanHT-12 V4.0 Renal cancer metastasis to bone – – 27,497,761

K.P. Bhadresha, M. Patel, N.K. Jain et al. Journal of Bone Oncology 29 (2021) 100374
breast cancer bone metastases samples included different breast
cancer types such as basal, non-basal, invasive, lobular, ductal,
invasive ductal, and BRCA1. In breast cancer bone metastases a
total number of 20,680 down and 25,392 up genes were identified
after the analysis of U133 plus 2.0 whereas 2387 down and 1837
up genes were identified from 4X44K G4112F. Similar study was
carried out in prostate cancer bone metastases in that 8 series were
analyzed in U133 plus 2.0 and U95A, a total number of 7350 down
Fig. 2. (2A) Venn diagram. Venn diagram representing the overlapping genes. Each of the
cancer, colon cancer, prostate cancer and renal cancer. The numerals are the number of ge
circles. (2B) Heat maps of identified 15 gene expression.

Table 3
The concordant list of top 15 genes description.

Entrez ID Gene symbol Description

3320 HSP90AA1 heat shock protein 90 kDa alpha (cytosolic), class A mem
5747 PTK2 Protein tyrosine kinase 2
6464 SHC1 SHC (Src homology 2 domain containing) transforming p
7534 YWHAZ Tyrosine monooxygenase / tryptophan 5-monooxygenas
9782 MATR3 Matrin 3
3329 HSPD1 heat shock 60 kDa protein 1 (chaperonin)
4318 MMP9 matrix metallopeptidase 9
6696 SPP1 secreted phosphoprotein 1
7422 VEGFA vascular endothelial growth factor A
3609 ILF3 interleukin enhancer binding factor 3, 90 kDa
4820 NKTR natural killer cell triggering receptor
85,378 TUBGCP6 tubulin, gamma complex associated protein 6
72 ACTG2 actin, gamma 2, smooth muscle, enteric
4629 MYH11 myosin, heavy chain 11, smooth muscle
2017 CTTN Cortactin

5

and 6456 up genes were recognized after the analysis on U133 plus
2.0 while 208 down and 329 up genes were identified using U95A
chip. Parallel, a total number of 298 down and 4406 up genes were
identified from Illumina platform HT-12V 4.0 bead chip in colon
cancer bone metastases using 3 series. Comparative analysis in
the 2 series of renal cancer to bone metastases using Illumina plat-
form HT-12V 4.0 bead chip showed a total number of 10,568 down
and 2278 up-regulated genes.
circles represents a dataset of bone metastases with various primary tumors breast
nes differentially expressed in the datasets represented by that area of overlap of the

Gene expression Chromosome Map location

ber 1 Up 14 14q32.33
Up 8 8q24.3

rotein 1 Up 1 1q21
e activation protein, zeta Up 8 8q23.1

Up 5 5q31.2
Up 2 2q33.1
Up 20 20q13.12
Up 4 4q22.1
Down 6 6p12
Down 19 19p13.2
Down 3 3p22.1
Down 22 22q13.31-q13.33
Down 2 2p13.1
Down 16 16p13.11
Down 11 11q13
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3.3. Meta-gene signature prediction

Intensive analysis of all the genes of the retrieved microarray
studies was carried out and separate lists of differentially
expressed genes according to the primary with bone metastases
tumor were prepared. The meta-gene signature was identified by
Fig. 3. (3A) The top 15 enriched GO terms of differentially expressed genes. A. biologica
connected with metastases progression. Expending the commercial pathway knowledge
metastatic signature. The figure represents the cross – talk amongst the various signal tra
YWHAZ, PTK2 that direct developments such as cell proliferation, invasion, apoptosis an
String output showing interaction of the common 15 genes that are specific for bone m

6

comparing primary tumors such as breast, prostate, colon, and
renal cancers. The Venn diagram created using FunRich software
to identify the meta-gene signature (Fig. 2A). The list of genes com-
monly identified between all primary bone metastasis tumors
showed a total 985 gene list (p < 0.05 and FC > 2.0) were 478 down
and 507 up-regulated significantly. From this a highly up and
l process B. molecular functions C. cellular component (3B) Molecular mechanisms
we established pathways that were developed or over-represented in the common
nsduction pathways with main active genes such as HSP90, SPP1, VEGF, MMP-9, IL6,
d lead to the formation of bone metastasis. (3C) String protein interaction analysis.
etastases.



Table 4
The most 12 hub-gene identified based on PPT network analysis.

Hub-Gene Degree Betweness

HSP90AA1 238 93690.81
YWHAZ 85 31882.7
SHC1 85 30958.23
PTK2 68 24258.69
CTTN 39 13616.52
VEGFA 26 15830.24
HSPD1 21 6802.99
TUBGCP6 16 5648
MYH11 16 4747.28
MMP9 15 6688.74
ACTG2 12 2532.23
ILF3 10 4136.25

Fig. 3 (continued)
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down-regulated metastatic 15 genes (HSP90AA1, PTK2, SHC1,
YWHAZ, MATR3, HSPD1, MMP9, VEGFA, IL3, NKTR, TUBGCP6,
ACTG2, MYH11, CTTN, and SPP1) panel was obtained based on
which lead to the formation of bone metastases (Fig. 2B). The con-
cordant list of 15 genes is provided in Table 3.

3.4. Functional annotation

Gene ontology delivers a collective descriptive background and
functional annotation and classification for evaluate the gene sets
data. GO groupings are structured into three groups: biological
process, cellular component, and molecular function. We found
GO terms for biological function significantly enriched in the meta-
bolic process, cell adhesion and cell growth while, cellular compo-
nent, the enriched GO term were cytoplasm, exosome and nucleus



K.P. Bhadresha, M. Patel, N.K. Jain et al. Journal of Bone Oncology 29 (2021) 100374
and for molecular function, the enriched GO term were structural
molecular activity and the binding category significantly showed
the major component with protein binding molecules (Fig. 3A).

To further assess the biological noteworthy pathway for the
genes, we also done the KEGG pathway enrichment analysis.
Hypergeometric test with P value < 0.05 was used as the standards
for pathway detection. The most important pathway in our KEGG
analysis was

mTOR signaling pathway, VEGF and VEGFR signaling pathway,
and E cadherin and N cadherin signaling event. Osteopontin-
mediated events, BMP signaling pathway, and p38 MAPK signaling
pathway other significant pathways that are also dysregulated
(Fig. 3B).

3.5. Protein-protein network and Hub-gene identification

Hub node significantly have a vital role in signaling mechanism.
Therefore, the concordant list when further analyzed to STRING
database to the investigation of network interaction between 15
genes. The major communication network consisted of two major
interconnected groups with HSP90AA1 and PTK2 being the nodes
of connection (Fig. 3C). Furthermore, NetworkAnalyst database
Fig. 4. Characterization of extracellular vesicles. (4A) Size and concentration evaluated
markers (CD9, CD63, and CD81) were analyzed using Flow-cytometer. The data demons
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delivered a protein network with 520 nodes, 637 edges, and 14
seeds. Twelve nodes with degrees above 10 were identified as
hub genes, including HSP90AA1, YWHAZ, PTK2, CTTN, HSPD1,
TUBGCP, MYH11, ACTG2, IL3, VEGFA as shown in Fig. 3C and
table 4.
3.6. Characterization of the exosomes derived from breast and lung
cancer bone metastatic cells

To explore the role of exosomes in bone metastases, exosomes
were isolated from the serum of lung and breast patients with
and without bone metastases, and their characteristic was con-
firmed by flow cytometer and nanoparticle tracking analysis using
Nanosight based on the principle of particle size distribution. How-
ever, serum contains the heterogeneous population of extracellular
vesicles comprising both round-shaped 30–100 nm diameter vesi-
cles, consistent with exosomes. The exosomes isolated were
approximately 32 nm in size which confirmed that these vesicles
are exosomes (Fig. 4A). Furthermore, flow cytometry data also
revealed that extracted exosome was express three specific exoso-
mal marker CD63, CD81, and CD9 (Fig. 4B).
by nanosight, indicates that sizes are compatible with exosomes. (4B) Exosomes
trated that extracts were enriched with exosomal marker protein CD81 and CD63.



Fig. 5. (5A) Gene expression. Primary breast and lung exosomes mRNA, advance stage breast and lung cancer with bone metastases, as well normal exosomes mRNA analysed
with qRT-PCR. (5B) Unsupervised hierarchical clustering of primary breast (A) and lung (B) cancer with advanced stage bone metastatic samples. Clustering was based on 15
differentially expressed genes at a false discovery ratio level of 0.05. Breast and lung tumor identification looks at the top of the figure and each column represents gene
expression of a single tumor. The colored bar specifies the variation in gene expression in target samples as compared to reference cells i.e., red, more expressed and cream,
less expressed in target samples. Further, the black lines of the dendrogram stand for the support for each clustering. The metric performed was Euclidean distance, with
complete linkage for distance between clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 5
ROC curve analysis of the individual genes. (A) Breast cancer with and without bone metastasis (B) Lung cancer with and without bone metastasis.

(A) Model Name Associated criteria Sensitivity Specificity Significance P (area = 0.5) Youden Index J AUC 95% CI

ACTG2 >0.4819 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
CTTN >0.3103 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
HSP90AA1 >17.7448 100.00 90.00 <0.0001 0.9000 0.980 0.797 to 1.000
HSPD1 �0.0039 80.00 70.00 0.5000 0.0920 0.710 0.467 to 0.888
MYH11 >0.9874 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
ILF3 >5.9969 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
MATR3 >0.1374 70.00 100.00 0.0815 0.7000 0.740 0.498 to 0.907
MMP9 >3.5146 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
NKTR >0.6462 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
PTK2 >10.5421 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
SHC1 >0.0421 70.00 70.00 0.5417 0.4000 0.590 0.351 to 0.801
SPP1 >1.4261 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
TUBGCP6 >0.4268 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
VEGFA �22.1618 90.00 100.00 <0.0001 0.9000 0.970 0.781 to 1.000
YWHAZ �0.0304 90.00 60.00 0.1036 0.5000 0.710 0.467 to 0.888

(B) Model Name Associated criteria Sensitivity Specificity Significance P (area = 0.5) Youden Index J AUC 95% CI

ACTG2 >3.99 100.00 90.00 <0.0001 0.9000 0.990 0.814 to 1.000
CTTN �0.13 70.00 90.00 0.0003 0.6000 0.850 0.621 to 0.968
HSP90AA1 >4.04 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
HSPD1 �0.21 90.00 80.00 <0.0001 0.7000 0.860 0.633 to 0.972
MYH11 �0.29 90.00 100.00 <0.0001 0.9000 0.990 0.814 to 1.000
ILF3 >7.75 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
MATR3 �0.01 50.00 80.00 0.2598 0.3000 0.650 0.408 to 0.846
MMP9 >18.93 90.00 80.00 <0.0001 0.7000 0.880 0.658 to 0.981
NKTR �2.15 90.00 100.00 <0.0001 0.9000 0.980 0.797 to 1.000
PTK2 >5.29 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
SHC1 �0.05 70.00 80.00 0.1076 0.5000 0.710 0.467 to 0.888
SPP1 >2 100.00 100.00 <0.0001 1.0000 1.000 0.832 to 1.000
TUBGCP6 >25.03 90.00 100.00 <0.0001 0.9000 0.960 0.766 to 1.000
VEGFA �45.03 70.00 80.00 0.0336 0.5000 0.760 0.520 to 0.920
YWHAZ �0.02 30.00 100.00 0.5664 0.3000 0.580 0.342 to 0.793
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3.7. Differential gene expression analysis of exosomes: identifying a
marker for liquid biopsy

In order to evaluate a gene expression pattern that can differen-
tiate bone metastatic tumors from primary breast and lung tumors
were identified as depicted in Fig. 5A. Quantitative gene expression
patterns of HSP90AA1, PTK2, SHC1, YWHAZ,MATR3, HSPD1,MMP9,
VEGFA, IL3, NKTR, TUBGCP6, ACTG2, MYH11, CTTN, and SPP1 were
analyzed from exosomes mRNA of lung and breast cancer patients
with and without bone metastases. Among these genes, in breast
cancer patient HSP90AA1, IL3, VEGFA, and PTK2 were dramatically
upregulated (�2 fold differently expressed) in primary as well as
bonemetastases, whereas SHC1, YWHAZ,MATR3, and HSPD1 genes
were downregulated (<2 fold differently expressed) in primary
breast cancer as well as in bone metastases. On the other hand, the
expression of NKTR, TUBGCP6, ACTG2, MYH11, MMP9, SPP1 and
CTTN showed significant downregulation in primary breast and
was upregulated in bone metastases (Fig. 5A).

In lung cancer patient HSP90, PTK2, MMP9, VEGFA, IL3, NKTR,
TUBGCP6, ACTG2, and PTK2 were noteworthy upregulated in pri-
mary lung cancer with and without metastases. Curiously, it was
seen that MYH11, SHC1, HSPD1, and CTTN genes were significantly
upregulated in primary lung cancer compared to the bone metas-
tases but contradictorily SPP1 was notable downregulated in pri-
mary lung cancer whereas upregulated in bone metastases.
Furthermore, the expression of the MATR2 and YWHAZ genes were
significantly downregulated in primary lung cancer as well as in
bone metastases (Fig. 5A).
3.8. Hierarchical clustering

Further we performed the hierarchical cluster to checked
whether the selected 15 genes would be beneficial in categorizing
primary breast and lung cancer into sets that have diverse possible
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to develop bone metastases or not. This could only be predicted to
occur if the gene expression profile related with metastases is
already existing in a subset of cells in the primary tumor. The
expression profile of the 15 genes was therefore used in hierarchi-
cal clustering to classify a group of 10 non-metastatic breast and
lung tumor as depicted in Fig. 5B. The primary cancer breast and
lung were clustered into two individual groups, based on their
expression profile in primary and metastatic mRNA as highly cor-
relating or not correlating with each other. We predicted that the
tumours with a larger fold change in gene expression profile would
have a worse diagnosis may be due to disease progression to
metastases.

3.9. Receiver operating characteristics curve analysis

ROC analysis was carried out to determine the prediction of
these identified genes, thus individual ROC was also studied with
the sensitivity, specificity, and area under the curve are stated in
table 5 (Fig. 6A & 6B). In detail, every 15 genes were able to classify
between primary breast and lung cancer with and without bone
metastases with an average sensitivity and specificity 90% and
100%, respectively. After the ROC curve analysis prediction of
breast bone metastases and lung bone metastases could be formed
with the 5 genes such as HAP90AA1, SPP1, IL3, SPP1 and PTK2
which shows the sensitivity and specificity results touched the
100%, respectively.

4. Discussion

Metastasis is the single major cause of cancer related mortality
[26]. The pathophysiology of metastasis progression includes the
complex interplay between tumour cells and its microenvironment
[27]. In the last few decades molecular landscaping of various
metastatic cancers have found role of signal transduction mole-



Fig. 6. ROC curve. Receiver operating characteristic curve analysis of the individual 15 genes in patients with primary breast (6A) and lung (6B) cancer with and without bone
metastases.
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cules in cancer invasion, homing, and progression eventually lead-
ing to metastatic spread from primary site of origin. Therefore,
there is dire need of emerging technologies and platforms to pre-
dict risk of developing site specific metastasis using liquid biopsy
approach to avoid repeated tissue biopsy [28]. Bone metastasis is
one of the most common metastatic site in solid tumours originat-
ing from breast, lung, prostate, colon, and kidney [3]. The biggest
11
challenge in treating metastatic disease is due to its systemic
spread and lack of appropriate treatment approaches [29]. Solitary
metastatic site can be tackled through metastatectomy to show
some survival improvement, while patients with multiple lesions
are not always suitable for surgery [30]. This prompted us to estab-
lish a multi-gene expression panel for the early prediction of bone
metastasis in patients with breast and lung cancer using a liquid
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biopsy approach. An early indicator of bone metastasis may pro-
vide survival advantage to patients and thereby provide them long
disease free survival with timely intervention.

In the post human genome era high throughput transcriptome
and miRNome profiling using NGS or microarray is a routine prac-
tice for establishing a diagnostic or prognostic marker(s). This
approach is cost intensive and require access or collaboration with
good clinical cancer care setup. Many such data sets are uploaded
in publicly available databases for further research by academic
institutions. Meta-analysis of such publicly available datasets can
be utilized judiciously to derive some meaningful conclusion with
clearly defined hypothesis and logically designed methodology. In
the present study meta-analysis was carried out on microarray
gene expression dataset derived from patients with and without
bone metastasis for identification of possible biomarkers. All qual-
ifying datasets containing microarray gene expression studies from
various primary tumours e.g. colon, prostate, breast and renal were
included for meta-analysis using Genespring software. The inten-
tion was to identify common gene expressed consistently in all
bone metastasis patients irrespective of primary site of cancer.
We found 15 genes which were most commonly over expressed
in patients with bone metastasis as compared to no metastatic
tumours. We speculated that since exosomes are routinely shaded
off from primary tumours and enters into circulation if we can
identify any of these 15 shortlisted gene transcript from patient’s
blood sample it will be useful to establish a metastasis predictor.
We therefore conducted a prospective study of realtime PCR based
gene expression using exosomal mRNA from 10 lung/breast cancer
patients harboring bone metastasis as compared to equal number
of non-metastatic patients as control after normalized against
healthy male and female as control.

Several studies based on meta-analysis of gene expression data-
sets derived from various cancer of different sites e.g. breast,
osteosarcoma, prostate and pancreatic with or without bone
metastasis have been carried out to establish biomarkers for diag-
nosis and/or prognosis [31–34]. Meta-analysis is an efficient
approach that enables the researchers to analyse data derived from
various studies using similar or different platforms to identify
probable markers of clinical significance [19]. These hypothesized
biomarkers derived from global profiling data can later be vali-
dated prospectively using clinical samples for establishing a func-
tionally applicable biomarker in specific malignancies. In the
present study validation of multi-gene expression panel derived
from meta-analysis result was carried out on a relatively small
sample population consisting of only breast and lung cancer with
and without bone metastasis.

Earlier study have reported that exosomes, small extracellular
membrane derived vesicles released by the cells, are the key
facilitators of tumor metastasis and early predictor of tumor
invasion and progression [35]. Additionally, exosomes are
secreted into various body fluids which can deliver tumour con-
tent to various target organs. [36]. Exosome can be isolated from
various body fluids to reveal a patient’s clinical direction and
tumor signature [37]. Furthermore, Exosome based liquid biop-
sies have various benefits such as its minimally invasive nature,
the main advantage of multiple samples can be collected at dif-
ferent time points during treatment. Analysis of exosomal cargo,
therefore, has a significant advantage in establishing diagnostic,
prognostic, and treatment monitoring markers [38]. We report
here that all the 15 genes identified by meta-analysis are not
significantly overexpressed in the exosomal cargo showing possi-
bility of differential packaging of tumour-derived transcript dur-
ing exosome biogenesis. However, a common gene signature
consisting of HSP90AA1, SPP1, IL3, VEGFA, PTK2, and YWHAZ
were found in both breast and lung cancer patients with bone
metastasis.
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HSP90, the ’cancer chaperone’, plays a crucial role in cell prolif-
eration and differentiation and is known to be associated with
enhanced aggressiveness of the tumor and metastatic activity
[39]. Further, IL3 contributes to carcinogenesis and metastasis by
suppressing osteoblast differentiation and bone deposition
[40,41]. VEGF is also known to be a major player in the regulation
of angiogenesis which stimulates cell migration and proliferation
and has been studied widely in bone metastasis [42]. Additionally,
PTK2 also known as focal adhesion kinase stimulate metastasis by
controlling the process of cancer cell motility, invasion, and matrix
metalloproteinase surface expression. Similarly, Mitra et al
observed that FAK activity significantly increases MMP9 expres-
sion and impulsive breast cancer metastasis in genetically identical
and orthotopic mouse models [43]. SPP1 also known as Osteopon-
tin (OPN) shows multifunction characteristic in cancer progression
and osteogenic differentiation [44–46]. Collectively, serum exoso-
mal markers HSP90AA1, SPP1, IL3, VEGFA, and PTK2 found in the
present study might be useful in detecting the early spread of bone
metastasis leading to better clinical outcomes. Besides, these clo-
sely interacting gene interaction networks need to be further
explored to understand their molecular mechanism and clinical
relevance.

In this study, we calculated the prediction accuracy of the gene
signature generated by ROC curve analysis to be more than 90%.
Likewise, the clustering data also revealed a noteworthy correla-
tion (p < 0.0001) between the gene expression patterns of the var-
ious genes and metastatic tumors. After further large scale
validation these five gene panel (HSP90AA1, SPP1, IL3, VEGFA,
and PTK2) can be established as a metastatic predictor panel based
on realtime based gene expression in a cost effective and less inva-
sive way.

In conclusion, meta-analysis of publicly available datasets using
suitable statistical tool offers a cost effective way of generating
hypothesis which can later be validated with more sensitive real-
time based gene expression profiling. Using this approach we could
identify a five gene panel with more than 90% accuracy for predict-
ing bone metastasis in patients with breast and lung cancers using
liquid biopsy.
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