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In machine learning community, graph-based semi-supervised learning (GSSL)
approaches have attracted more extensive research due to their elegant mathematical
formulation and good performance. However, one of the reasons affecting the
performance of the GSSL method is that the training data and test data need to be
independently identically distributed (IID); any individual user may show a completely
different encephalogram (EEG) data in the same situation. The EEG data may be non-
IID. In addition, noise/outlier sensitiveness still exist in GSSL approaches. To these ends,
we propose in this paper a novel clustering method based on structure risk minimization
model, called multi-model adaptation learning with possibilistic clustering assumption
for EEG-based emotion recognition (MA-PCA). It can effectively minimize the influence
from the noise/outlier samples based on different EEG-based data distribution in some
reproduced kernel Hilbert space. Our main ideas are as follows: (1) reducing the negative
impact of noise/outlier patterns through fuzzy entropy regularization, (2) considering
the training data and test data are IID and non-IID to obtain a better performance by
multi-model adaptation learning, and (3) the algorithm implementation and convergence
theorem are also given. A large number of experiments and deep analysis on real
DEAP datasets and SEED datasets was carried out. The results show that the MA-
PCA method has superior or comparable robustness and generalization performance
to EEG-based emotion recognition.

Keywords: semi-supervised learning, multi-model adaptation, clustering assumption, encephalogram, fuzzy
entropy, emotion recognition

INTRODUCTION

Emotion is a psychological experience from human beings of the world, which is complex
and changeable (Dolan, 2002; Zhang et al., 2016, 2019b). Different human beings have
different emotional understanding on the same thing and may make misjudgment about the
emotion occasionally, let alone machines. Therefore, emotion recognition has attracted great
attention from researchers (Kim et al., 2013; Mühl et al., 2014; Zhao et al., 2015, 2016; Chu
et al., 2017). In this paper, we mainly recognize the corresponding emotion by the internal
changes of the human body which include the heart rate, blood pressure, respiratory rate,
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magneto encephalogram, electroencephalogram (Mühl et al.,
2014), and so on. Generally, most existing EEG-based emotion
recognition systems are divided into two steps: data preparation
and classifier training (Lan et al., 2018; Zhang et al., 2020).
EEG feature extraction methods are comprehensively sorted out
in Jenke et al. (2014). In order to improve the recognition
accuracy, there existed many EEG-based emotion recognition
approaches (Musha et al., 1997; Kim et al., 2013). A satisfactory
state of emotion detection based on brain computer interface
(BCI) is to detect the emotional state by a real-time EEG signal
without inputting signal from the subjects (Zhang et al., 2019b).
Different feedback is given to different emotional states in the
meantime. These proposed methods (Zhang et al., 2016, 2017)
are used to recognize multiple emotion classes from EEG. The
latest affective BCIs adopted machine learning algorithms and
relied on a few support vectors (Jenke et al., 2014; Mühl et al.,
2014). For recording of the EEG signal of the expected target
emotion, it is necessary to provide emotional stimulation of the
expected concrete emotion to subjects. In the training/calibration
stage, the EEG datasets with labels are used to train the emotion
recognizer. Many researchers have reported sound classification
performance on emotion recognition from real-time EEG data
(Mühl et al., 2014).

Due to the high cost of obtaining labeled data, semi-supervised
learning (SSL) technology has appeared. It only needs a small,
labeled data and a large, unlabeled data to learn a model,
which solves the problem on supervised learning needing a
large number of labeled samples. Tu and Sun (2013) presented
an EEG classifier via SSL feature extraction strategy. Tao et al.
(2015, 2016, 2017) and Wu and Deng (2018) showed a SSL
method for reducing the possible negative impact from random
initialization parameters on neural networks. Zu et al. (2019)
proposed that remote sensing image classification method based
on SSL can effectively improve the accuracy of land cover
classification and has a higher efficiency in remote sensing image
classification since graph-based semi-supervised learning (GSSL)
(Li and Zhou, 2011; Liu et al., 2012; Wang et al., 2012), with its
good performance, has been extensively studied. The manifold
regularization (MR) (Belkin et al., 2006; Gao et al., 2010; Nie et al.,
2010) is a popular GSSL method. A general MR framework was
presented by Nie et al. (2010).

In general, the clustering assumption is a basic assumption
in GSSL: similar samples should belong to the same class
(Chapelle, 2006; Zhu and Goldberg, 2009; Xue et al., 2011;
Zhou et al., 2014; Wang et al., 2019). In other words, each
sample only have one label, which we called hard classification.
However, in the real applications of emotion recognition,
its performance will be discounted by this assumption—for
example, for different subjects in different scenes, crying may be
understood as sad and happy.

To handle the limitation from this assumption, Wang
et al. (2012) and Zhang et al. (2019b) proposed a novel
clustering assumption that can significantly boost the classifier
performance. Assuming that similar samples have the same label
membership, each sample may have multiple membership values
(Zhang et al., 2019a), not only one. However, this method has
a constraint in that the sum of the membership values of each
sample is 1. This constraint may lead to the membership values

of some noise being close to or even greater than those of normal
samples; it may lead to misrecognition.

According to this problem in the SSCCM method, Dan
et al. (2021) proposed SSPCA that relaxed the constraint in
SSCCM and added a fuzzy entropy regularization term (Kosko,
1986; Krishnapuram and Keller, 1993; Zhang et al., 2019c)
for increasing the samples’ discriminative information to get a
membership function with better generalization and that can also
reduce the negative impact of noise and outlier on recognition
performance to improve the robustness of the method. Wang
and Chen (2013) designed SA-SSCCM. Specifically, the SSCCM
method is upper boundary and the LS-SVM method is lower
boundary, respectively—that is, if unlabeled data is good for
model training, the classification result of SA-SSCCM is close
to SSCCM; if unlabeled data penalizes model training, the
classification result of SA-SSCCM is close to that of the LS-SVM
method, and the interference of noise data to the SA-SSCCM
model training is avoided. However, both SSPCA method and
SA-SSCCM method require training data, and the test data
should be independently identically distributed (IID). Due to the
difference among different subjects in real emotion recognition
applications, it may cut recognition accuracy. It is hard to
guarantee that two datasets are IID.

Toward the problem of reduced recognition accuracy caused
by non-IID of training data and test data, this paper adopts
domain adaptation learning (DAL) (Bruzzone and Marconcini,
2010; Tao et al., 2021) related to computer vision and machine
learning (Bishop, 2006; Zhu, 2008). Generally, DAL includes
instance-based DAL, feature-based DAL, and model-based DAL
(Pan and Yang, 2010). The instance-based DAL and feature-based
DAL need to access instances from the source domain during
the model learning. When the source dataset is relatively large,
the training efficiency will be reduced. The model-based DAL
uses the pre-trained source classifier on some source datasets to
learn an effective target classifier, which has good classification
effectiveness and high efficiency. Much more DAL categories in
Pan and Yang (2010) can be found. Therefore, this paper proposes
a multi-model adaptation learning with possibilistic clustering
assumption for EEG-based emotion recognition (MA-PCA).

The main ideas are as follows: firstly, according to manifold
learning (Tenenbaum et al., 2000; Belkin and Niyogi, 2001;
Gao et al., 2010; Nie et al., 2010), there is similarity among
samples within its local. According to formula (1) in Dan et al.
(2021), the local weighted mean (LWM) point is determined
by the convex hull of the k-nearest neighbors. It represents
the mean value of the local. Therefore, the neighbors in the
local should have consistency with the mean value—that is,
the labels of each neighbor in the local and its corresponding
LWM should be similar (or consistent). Then, it is assumed
that each neighbor has a similar label membership to its
corresponding LWM (Bottou and Vapnik, 1992; Atkeson et al.,
1997; Xue and Chen, 2007); secondly, the classification prediction
results are mutually verified by the decision function and the
membership function to improve the classification reliability;
thirdly, a fuzzy entropy regularization term is proposed to
increase the sample discrimination information; then, we can
get a membership function with better generalization, and
the negative impact of noise and outlier will be relaxed on
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recognition performance. Finally, a classification model with
better generalization performance is obtained by adding a multi-
model adaptation regularization term for IID and non-IID on
training data and test data, respectively. The major contributions
of this work are the following:

(1) A multi-model adaptation learning with possibilistic
clustering assumption for EEG-based (MA-PCA) is proposed.

(2) Since a multiple auxiliary discriminant model is good for
SSL with a small labeled instance, the regular term has Laplacian
local consistency and the regularize term has different weights of
multiple-source models. It aims to expand the discriminant space
of the target domain and guarantee the local structure consistency
among inner samples of source domain and target domain. At
the end, it solves the non-IID problem between the training data
and test data, too.

(3) Finally, our comprehensive experiments on real datasets
(i.e., DEAP, SEED) show that the method has better robustness
and generalization.

The remainder of this work is organized as follows: In
section “Proposed Framework,” our framework MA-PCA will
be designed which includes MA-PCA formulation, optimization,
and convergence analysis, and section “Algorithm of MA-PCA”
arranges the corresponding optimal algorithm of MA-PCA. The
experimental results and analysis on two real EEG datasets
(i.e., DEAP and SEED) are presented in section “Experimental
Evaluation.” Finally, we conclude in section “Conclusion.”

MA-PCA FRAMEWORK

This section will introduce the concept of our multi-model
adaptation learning with possibilistic clustering assumption
for EEG-based (MA-PCA) framework in detail. It mainly
uses multiple-source models which are obtained from existing
relevant source datasets to learn the robust semi-supervised
classification model. Therefore, the two core components are
organically unified into MA-PCA: (1) any instance should have
a similar label membership with its corresponding LWM. The
fuzzy entropy regularization term is added to reach the amount of
discrimination information to improve the classification accuracy
and robustness and (2) assuming that multiple-source models can
help SLL, the existing multi-source models are used for multi-
source domain adaptation learning to establish a robust target
domain classification model. At the same time, considering IID
and non-IID, the best source model is found by multiple-source
models with different weights to train the target model.

Notations
We denote X = {x1, x2, ..., xi, xi+1, ..., xn} as a feature dataset,
where n is sample number (l� n) and Yl = {y1, y2, ..., yl}

T
∈

Rl×M is a label set about datasetXl = {xi}
l
i=1. Xu = {xj}

n
j=l+1 is

an unlabeled feature dataset, where xi is d dimensions (xi ∈ Rd)
vector of the i-th sample. We compute LWM x̂i about xi:

x̂i =

∑
xj∈Ks(xi)

Dijxj∑
xj∈Ks(xi)

Dij
, (1)

where the k nearest neighbors of xi are arranged in Ks (xi), and the
Euclidean distance algorithm is used to find these neighbors. We
design an undirected weight graph G = (X, D), where D ∈ Rn×n

is weight matrix, Dji = Dij ≥ 0, and the element is measured as
follows:

Dij =

{
exp(−τ||xi − xj||

2), xi is one of the neighbors of xj
0 otherwise

,

where τ is a changeable parameter in Gaussian kernel function.
If the distance between xi and xj is smaller, Dij is higher, and vice
versa. Therefore, the clustering problem is changed into a graph
problem in this paper.

Basic Formulation of MA-PCA
Since both SSPCA and SA-SSCCM methods require that the
training data and test data meet the IID assumption, this paper
reasonably combines the SSPCA method with a multi-model
adaptation learning method (i.e., MA-PCA). This proposed
method not only improves the robustness on noises/outliers but
also solves the problems of insufficient label data and noisy
data affecting the performance of the model and the different
distribution of training data and test data. We therefore propose
the following basic formula of MA-PCA:

Q
(
W, vm

(
xj
)
, γ
)
= min �B(W, vm

(
xj
)
)+ β�M(W, γ), (2)

where �M (W, γ) is the multi-model adaptation term, and
�B

(
W, vm

(
xj
))

is used for reducing the negative impact of
noises/outliers. We have the following function:

�B
(
W, vm

(
xj
))

= min
w,vm(xj)

l∑
i=1

||WTxi − yi||
2
+ λs

l∑
i=1

||WT x̂i − yi||
2

+

M∑
m=1

n∑
j=l+1

v2
m
(
xj
)
||WTxj − cm||

2

+λs

M∑
m=1

n∑
j=l+1

v2
m
(
xj
)
||WT x̂j − cm||

2
+ λ||WT

||
2
H

+C
M∑

m=1

n∑
j=l+1

(
v2

m
(
xj
)

ln v2
m
(
xj
)
− v2

m
(
xj
))

s.t.0 ≤ vm
(
xj
)
≤ 1, m = 1, . . . , M, j = l+ 1, . . . , n,

(3)

where λs, λ, C are balance parameters that can be adjusted to
avoid overfitting during model training. The details about the
other parameters are provided in Dan et al. (2021).

The Multi-Model Adaptation Term in
MA-PCA
In our domain adaptation learning, given is

{
Ws

i
}q

i=1 as a
multiple-source model set, where q is source model number,
and Ws

i is the i-th source model. Each source model is obtained
by learning the specified public dataset. This paper expects the
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classification results of the target model to be consistent with
those of the source domain models. In other words, this paper will
learn the target classifier f (x) =WTx in the whole sample space,
regularize the weight parameters of different source domain
models to control its complexity, and make each target instance
be close to the source domain models. According to this criterion,
it can be realized by introducing the multi-source domain model
adaptation regularization function on the target domain. The
formula is described as follows:

�M(W, γ)

=

q∑
i=1

γi

∫
X
||WTx−WT

i x||
2dx+ η||γ||22

1
=

q∑
i=1

γi
1
n

n∑
j=1

||WTxj −WsT
i xj||

2
F + η||γ||22

=

q∑
i=1

γitr
[(
W −Ws

i
)T S

(
W −Ws

i
)]
+ η||γ||22,

(4)

where γ =
[
γ1, ..., γq

]T , and γi is a weight of the i-th source
model. We constraint that the sum of γi is 1 (i.e.,

∑q
i=1 γi = 1).

It is better to explore the contribution among the source models.
The divergence matrix of the target domain is S = XXT . η ∈ R+
is a balance parameter to control the contribution of ||γ||22. This
parameter can be changed to avoid overfitting on multiple-source
models. In addition, in the second equation in (4), we employ the
sampling frequency as a weight to access the real distribution for
the target domain.

Remark 1: The divergence matrix S is important for connecting
the source classifiers and the target classifier. It will promote
the learning of the target classification model to the real
distribution direction of the target domain, thereby improving
the generalization performance of adaptive learning, which is
essentially different from other domain adaptation regularization
terms based on DAL models (Bottou and Vapnik, 1992; Duan
et al., 2012a). In order to better fit the model idea, this paper refers
to formula (4) as the construction of the regularization term for
divergence-constrained multi-model adaptation.

Final Formulation
We expect better model adaptation performance for EEG-
based emotion recognition by combining SSPCA with scatter-
constrained multi-source classifier model. Therefore, a unified
framework MA-PCA is obtained to learn W, vm

(
xj
)
, γ by

combining formulas (3) and (4). The optimization problem of
MA-PCA can be described as follows:

Q
(
W, vm

(
xj
)
, γ
)

= min
w,vm(xj)

l∑
i=1

||WTxi − yi||
2
+ λs

l∑
i=1

||WT x̂i − yi||
2

+

M∑
m=1

n∑
j=l+1

v2
m
(
xj
)
||WTxj − cm||

2

+λs

M∑
m=1

n∑
j=l+1

v2
m
(
xj
)
||WT x̂j − cm||

2
+ λ||WT

||
2
H

+C
M∑

m=1

n∑
j=l+1

(
v2

m
(
xj
)

ln v2
m
(
xj
)
− v2

m
(
xj
))

+β

{∑q
i=1 γitr

[(
W −Ws

i
)T S

(
W −Ws

i
)]

+η||γ||22

}
, (5)

where γ = [γ1, γ2, ...γq]
T , γ ∈ Rq×1, γT1q = 1, and q are the

number of source domain models. When β = 0, MA-PCA
degenerated to SSPCA. When β > 0, β is used as a balance
parameter. When γi is constant 1, it indicates that there is only
one single-source domain, and its distribution is the same as
the target domain. At this time, MA-PCA approximates the SA-
SSCCM method. When 0 ≤ γi< 1, MA-PCA is a multi-model
adaptation learning method based on the possibility clustering
assumption, and the distribution of source domain and target
domain can be identical or non-identical.

OPTIMIZATION

The objective function (5) is a non-convex function on
(W, vm

(
xj
)
, γ). In this paper, the strategy of alternating iterative

optimization is adopted to realize the optimal solution of
decision model W, membership model vm

(
xj
)
, and contribution

coefficient γ of the source models, respectively, and each iteration
has an optimal solution.

Update W as Given vm
(
xj

)
and γ

Firstly, fixing vm
(
xj
)

and γ to solve W: for ease of calculation, the
following formula (5) is transformed into matrix form. W can be
written as W =

∑n
i=1 xiαi. Under the Representation Theorem,

the formula (5) exists in reproducing kernel Hilbert space, and
the kernel of W can be rewritten as follows: W =

∑n
i=1 K(xi, x)αi

(Belkin et al., 2006). Therefore, formula (5) is mapped into a finite
dimensional space of the optimization αi and can be reformulated
as follows:

Q (α) = min
α

tr
((

αTK lK l − Y
) (

αTK lK l − Y
)T
)

+λstr
((

αTK lK l − Y
) (

αTK lK l − Y
)T
)

+tr
((

αTKuKuJ − L
)
V̂
(
αTKuKuJ − L

)T
)

+λstr
((

αTKuKuJ − L
)
V̂
(
αTKuKuJ − L

)T
)

+ λtr
(
αTKKα

)
+ β

a∑
i=1

γi

(
WT

I − αTK
)
K

· K (W i − Kα) , (6)

where the details about J, L, V̂ can be found in Dan et al. (2021).
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By solving the derivation of (6) w.r.t. α and letting it be equal
to 0 (i.e., ∂Q(α)

/
∂α = 0), we obtain the following:

α = H−1B, (7)

where

H = K lK lK lK l + λK lK lK lK l

+ KuKuJV̂JTKuKu

+ λsKuKuJV̂JTKuKu + λKK + β

q∑
i=1

γiKKKK,

and

B = K lK lYT
+ λsK lK lYT

+ KuKuJV̂L

+ λsKuKuJV̂LT
+ β

q∑
i=1

γi, KKKWs
i ,

Finally, the solution of W is Kα.

Update vm
(
xj

)
as Given W and γ

Then, we fix W and γ to solve vm
(
xj
)
. The optimal problem of

the objective function in (5) can be rewritten as follows:

Q
(
vm(xj)

)
= min

vm(xj)

M∑
m=1

n∑
j=l+1

vm
(
xj
)2
||WTxj − cm||

2

+ λs

M∑
m=1

n∑
j=l+1

vk
(
xj
)2
||WT x̂j − cm||

2
+ λ||WT

||
2
H

+ C
M∑

m=1

n∑
j=l+1

(vm(xj)
2 ln vm(xj)

2
− vm(xj)

2),

(8)

By solving the derivation of Eq. (5) w.r.t. vm
(
xj
)

and letting it

be equal to zero (i.e., ∂Q
(
vm
(
xj
))/

∂vm
(
xj
)
= 0), then

∂Q
(
vm
(
xj
))/

∂vm(xj) = 2vm
(
xj
)
||WTxj − cm||

2

+ 2λsvm(xj)||WT x̂j − cm||
2

+ C
[

2vm
(
xj
)

log vm
(
xj
)2
]
= 0,

we can get:

vm(xj) = exp

(
−(||WTxj − cm||

2
+ ||WT x̂j − cm||

2)

2C

)
, (9)

Since xj means any one instance, the general presentation of
vm
(
xj
)

is as follows:

vm (x) = exp

(
−
(
||WTx− cm||

2
+ ||WT x̂− cm||

2)
2C

)
, (10)

Update γ by Fixing W and vm
(
xj

)
We define Ai = tr

[(
W −Ws

i
)T S

(
W −Ws

i
)] (

i = 1, ..., q
)

which is corresponding to the adaptation of the i-th source
model to the target domain. Given W and vm

(
xj
)
, the objective

function (5) can be rewritten in (11) as follows:

min
γ

γTA+ η||γ||22

s.t.γT1q = 1, 0 ≤ γ ≤ 1, (11)

where A =
(
A1, ...,Aq

)T . The optimal estimation of γ becomes
the optimal weight division problem of multiple model
adaptation learning with scatter constraints. Theoretically, if η =

0, the optimal γi will be 1; otherwise, if Ai = minj=1,...,q Aj, γi is
0; if η→+∞, the optimal γi will tend to be the same weight 1/q.
Thus, the following theorem is obtained:

Theorem 1 (Karasuyama and Mamitsuka, 2013). The following
equation is the optimal solution of (11):

γi=

{
ρ−Ai η, i = 1, 2, ..., ζ

0, i = ζ+ 1, ..., q
,

where ρ =
(
η+

∑q
i=1 Ai

)/
ζ, ζ=

∣∣{i|ρ− Ai > 0, i = 1, 2, ..., q
}∣∣.

Theorem 1 presents that there are ζnon-zero entries in the
optimal γ. According to the target domain, this optimization
can select source domains automatically with a different γ. If γis
bigger, there is a higher similarity between the source domain and
the target domain. Since the optimal γcould be calculated via the
optimal ζ, Karasuyama and Mamitsuka, 2013) presented a special
method to obtain the optimal ζ. This algorithm effectiveness can
be proved under the given right amount of source domains.

Next, the algorithm adopts a coordinate descent strategy to
solve (11), which is close to the method in Geng et al. (2012). In
each iteration cycle, when other entries are fixed, we select two
items to update, and γT1q = 1 must be satisfied at the end of
each iteration. Suppose that in an iteration cycle the i-th and j-th
entries are selected, the following iterative formula can therefore
be obtained:

(I) γ∗i = 0, γ∗j = γi+γj, if 2η
(
γi+γj

)
+
(
Aj − Ai

)
≤ 0

(II) γ∗j = 0, γ∗i = γi+γj, if 2η
(
γi+γj

)
+
(
Ai − Aj

)
≤ 0

(III) or γ∗i = 1/2
(
γi+γj

)
+ 1/4η

(
Aj − Ai

)
,

γ∗j = γi+γj − γ∗i .

,

(12)

We iteratively traverse all paired entries in γ and optimize
any two entries in γ by (12) until the optimization function
(5) converges. Intuitively, the updating criteria in (12) tends
to be that the larger the value to γi, the smaller the Ai.
Since Ai measures the distribution distance between the i-th
source model and the target domain, the smaller the Ai, the
higher the correlation between the i-th source domain and
the target domain.
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Remark 1: After obtaining the optimal solution of W and V,
the label matrix of the samples in the target domain can also
be obtained, and the influence of noise has been effectively
suppressed. The label and the membership of out of sample can
also be calculated by W and V. Finally, the performance of W
relies on the learned graph G = XD and the multiple-source
domain adaptation model.

Convergence Analysis
Since the objective function (5) is a multi-objective optimization
function, it is difficult to guarantee the global optimal solution.
It is worthy to note that the algorithm in this paper adopts an
alternate iterative strategy for optimizing. Since the objective
function of a single optimization variable [i.e., equations (6), (8),
and (11)] is convex and in closed form, the iterative optimal
solution can be obtained. Therefore, this work only deduces the
asymptotic convergence of the algorithm based on the iterative
target value of the objective function. The derivation process is
shown in (13) as follows:

Q
(
Witr, vitr, γitr)

≥

Q
(
Witr+1, vitr, γitr)

≥

Q
(
Witr+1, vitr+1, γitr)

≥

Q
(
Witr+1, vitr+1, γitr+1) > ε > 0,

(13)

where Witr, vitr, γitr are the optimal solutions at the itr-th
iteration. ε is a very small constant. The objective function will
converge to a local optimum. The derivation process proves that
the iterative target value of the algorithm shows a downward
trend. When the value drops to a certain threshold (at least
greater than ε), we stop the iterative. Finally, the objective
function will converge to the local target value of each single
optimization variable.

ALGORITHM DESCRIPTION

The optimization of MA-PCA adopts an alternating iteration
strategy. The most semi-supervised learning methods are often
optimized by iterative learning. In addition, the membership
value of initialized unlabeled instances can be obtained by
any of the following methods: some fuzzy clustering method,
randomization strategy, or all initialized to zero. Therefore, the
learning of MA-PCA method starts with labeled instances to
initialize the decision model W. When the objective function
converges, the iteration terminates. The algorithm in this
paper specifically adopts a window-based stopping criterion to
better control the algorithm convergence: given a window size
h̄, computing ς = |Max2itr −Min2itr|

/
Max2itr at the itr-th

iteration (2itr =
{

Objitr−h̄+1, ..., Objitr
}

means 2itris composited
by the historical target value in this window. When ς < ε, the
iteration terminates. The details of this algorithm are shown in
Table 1.

TABLE 1 | Algorithm description of MA-PCA.

Input: the target domain with data X l and its labels Y l , unlabeled data
Xu, regular term parameter λ, λs, C, η, β. There are q source classifier
models

{
Ws

i

}q
i=1, iteration termination threshold ε, and maximum

number of iterations N.

Output: the target classifier model W, the label membership function v,
and the contribution coefficient γ of multi-source model.

Procedure:

1. Initialize the label memberships of unlabeled data,
γ0

i = 1/q (i = 1, ..., q);

2. Obtain the initial W0 by Eq. (7);

3. Obtain the initial v0 by Eq. (10);

4. Calculate the Q
(
W0, v0, γ0) of objective function

for itr = 1 to N do

{

5.1 Fix the current vitr and γitr for updating W itr to W itr+1 by Eq. (7)

5.2 Fix the current W itr and γitr for updating vitr to vitr+1 by Eq. (10)

5.3 Fix the current W itr and vitr for updating γitr to γitr+1 by Eq. (12)

Until itr > N or ς < ε, return the optimal W, v, and γ

}

EXPERIMENT

In this part, we comprehensively compare the proposed method
with several state-of-the-arts on two widely used benchmark
databases, including SEED (Zheng and Lu, 2015) and DEAP
(Koelstra et al., 2012), for EEG-based emotion recognition
(Mansour et al., 2009).

Datasets
According to Lan et al. (2018) and Zhong et al. (2020), there
exist certain significant differences between SEED and DEAP
since they can be generated by different subjects, sessions, EEG
devices, experimental schemes, emotional stimuli, etc., Detailed
information about these two datasets can be viewed in Lan
et al. (2018). In the following experiments, we adopt differential
entropy (Lan et al., 2018; Zhong et al., 2020) as the data feature
in emotion recognition, which has also been widely used in the
preceding literatures (Shi et al., 2015; Zheng et al., 2015, 2016;
Chai et al., 2016, 2017; Lan et al., 2018; Zhong et al., 2020) for
domain adaptation emotion recognition.

Baseline Setting
We will systematically compare our method with such state-of-
the-arts as SSPCA (Dan et al., 2021), a baseline without domain
adaptation, FastDAM (Duan et al., 2012b), Multi-KT (Tommasi
et al., 2014) with l2-norm constraint on p, A-SVM (Yang et al.,
2007), and DSM (Duan et al., 2012a). Since existing deep domain
adaptation frameworks have achieved many inspiring results
on emotion recognition as well as visual recognition, we also
additionally present comparisons with several deep (CNN-based)
domain adaptation methods with deep features: DAN (Long
et al., 2015) and Reverse Grad (Ganin and Lempitsky, 2015).

It was noted that, in the DA schema, automatic parameter
tuning is not possible for source classifiers using cross-validation
due to the reason that training and test data are from different
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data distributions. Therefore, all methods evaluated in this paper
on the dataset are empirically searched for the parameter space
to optimize parameter settings to obtain the best results for each
method. The parameters of all methods are adjusted to obtain the
best results, except for the specially specified parameters.

For the method SSPCA without domain adaptation, this
experiment will fuse the decision values of all classifiers obtained
from the independent training of labeled samples in each
source domain and target domain. DSM, Multi-KT, A-SVM,
and FastDAM are domain adaptation methods. For A-SVM, this
experiment also fuses the decision values of all basic classifiers,
and each classifier is learned from a labeled sample in a source
domain.1

There are some hyper-parameters in the objective function
(5) that need to be determined. First of all, this experiment
sets the most important parameters (e.g., γi) as optimization
variables in the iterative optimization process, and only a few
crucial parameters that are proposed in MA-PCA need to be
pre-defined (e.g., λ, λs, C, η, β), and considering that parameter
determination is an open problem in the field of machine
learning, we have determined parameters empirically in a past
work. Since the exponent of γi plays the role of avoiding trivial
solutions in the process of optimizing γi, as proved in Hou
et al. (2017), the larger the exponent of γi is, the closer all
weight values are to be same. In order to reflect the differences
among different source domains, this experiment will set the
index of γi to be 2 by experience. The validity of this decision
will be verified in the experimental results in the following
section. The hyperparameter λ, λs, C, η, β is adjusted within the
range of {10−4, 10−3, ..., 103, 104

}. Finally, we search the nearest
neighbor number k from the set {35, 10, 15, 17} to construct
the nearest neighbor graph in MA-PCA (also SSPCA) and
obtain the first-ranked recognition accuracy from the optimal
parameter configuration.

For non-linear learning methods MA-PCA, FastDAM, and
multi-KT, Gaussian kernel Ki,j = exp

(
−σ||xi − xj||

2) is default
kernel function, σ=1/d, and d is the feature dimension. In

FastDAM, γi =
exp(−δDist(Xs

i ,X))∑
i exp(−δDist(Xs

i ,X))
(i = 1, ..., S) is the weight

value of each source domain, δ = 100. For the benchmark
method SSPCA, the target domain samples are directly mapped
to the source domain without any domain adaptation, and the
decision values of all classifiers obtained from the independent
training of labeled samples from each source domain and target
domain are equally fused.

Emotion Recognition Within Dataset
Note that different subjects even from the same dataset still
have different EEG feature distributions due to individual
characteristics. We therefore practice the so-called leave-one-out
cross-validation strategy conducted also in Lan et al. (2018) to

1For each source domain, we train one SVM by using the corresponding
labeled samples. Then, for each test instance x, the decision values from p SVM
classifiers are converted into probability values by using the sigmoid function [i.e.,
g(t) = 1/(1 + exp(-t)]. Finally, we average the p probability values as the final
prediction of the test instance x.

evaluate the emotion recognition performance of MA-PCA—
that is, one subject remained to be the target domain, and the
others from the dataset are constructed as multiple sources. In
this multi-source scenario, we follow the same setting as Tao et al.
(2021) to evaluate our method compared with other state-of-the-
arts on SEED and DEAP, respectively.

Performance Comparison
The emotion recognition performance of MA-PCA and the rest
of the comparison methods within the DEAP and SEED datasets
are visualized in Figure 1. It can be seen from the bar plot that the
recognition performance of all DA methods is better than that
of SSPCA, and MA-PCA achieves the best performance (about
21% performance improvement over SSPCA), followed by DSM
on DEAP dataset. Besides this, those multi-source adaptation
methods, including our method, unsurprisingly achieved more
accuracy gains than the no-adaptation method SSPCA on SEED.
We can observe that our method MA-PCA demonstrates the best
performance on SEED by upgrading the average accuracy. An
interesting observation is that all methods work better on SEED
than on DEAP, which has also been reported in Lan et al. (2018)
and Tao et al. (2021). The reason for this phenomenon might be
that the larger distribution discrepancy between different subjects
from DEAP prevented boosting performance in these methods
(Mansour et al., 2009; Lan et al., 2018).

Finally, MA-PCA achieved almost the best performance on
both datasets. A possible explanation is that the distribution
discrepancy may exist in the same dataset (i.e., DEAP or SEED),
and MA-PCA can learn a more robust target classifier for domain
adaptation by discriminatively selecting a set of prelearned base
classifiers in the non-IID scenario of multi-subject adaptation.

Multi-Kernel Learning
As well known, the choice of kernel is a challenging issue in
the kernel learning method. Recently, multiple kernel learning
(MKL) has been effectively proposed for conquering this
choice issue that existed in single kernel learning methods.
Consequently, we also evaluate the performance boost in our
method by using MKL (called MKMA-PCA for short) for
each source domain. To this end, the first step is to construct
a new space spanned by multiple kernel mapping features.
We firstly denote by {φa}

0
a=1 an empirical kernel function

set, which, respectively, projected Xa into 0 different spaces.
Then, an orthogonally integrated space can be constructed by
concatenating these 0 spaces. We denote the mapping features
in this final space by φ̃(xi) = [φ1(xi)

T, φ2(xi)
T, ...,φ0(xi)

T
]
T
∈

R0na , where xi ∈ Xa. Correspondingly, the kernel matrix in this
final space can be easily deduced as Knew = [K̃1; K̃2; ...; K̃0],
where K̃i is the i-th kernel matrix from the 0 feature spaces.
Aiming to exploit the multiple kernel spaces, we therefore employ
four kernel mapping functions, including the Gaussian kernel
used above. The other additionally employed kernels are inverse
square distance kernel function, Laplacian kernel function,
and inverse distance kernel function, respectively, denoted
as Kij = 1

/ (
1+ σ||xi − xj||

2), Kij = exp
(
−
√

σ||xi − xj||
)
, and

Kij = 1/(1+
√

σ||xi − xj ||).
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FIGURE 1 | Domain adaptation emotion recognition on within dataset. SI, session I; SII, session II; SIII, session III.

FIGURE 2 | Emotion recognition on within-dataset with multiple kernel
learning. SI, session I; SII, session II; SIII, session III (similarly hereinafter).

The observation from Figure 2, in which MKMA-PCA
significantly outperforms MA-PCA, justifies that our MA-PCA
with MKL can further boost the recognition performance on
DEAP and SEED. This also proves the importance of kernel
choice in those kernel-based learning models.

Emotion Recognition Cross-Dataset
It is more challenging on emotion recognition when across
datasets, with the differences in acquisition pathways, subjects’

characteristics, and behaviors. The previous experiments show
the performance comparison of MA-PCA with other DA
methods within the dataset (i.e., across subjects). This subsection
further evaluates the robust effectiveness of MA-PCA when
adapting across datasets. In this experimental scenario, multiple
different protocols were constructed using different EEG devices
and emotional stimuli by sampling the training and testing
datasets separately. Therefore, six experimental settings, namely,
DEAP → session I, DEAP → session II, DEAP → session III,
session I→DEAP, session II→DEAP, and session III→DEAP,
were set up to demonstrate that MA-PCA has robust effectiveness
on emotion recognition with cross-dataset. For simplicity of
expression, session I, session II, and session III in SEED are coded
as SI, SII, and SIII, respectively, [for detailed experimental setup
information, see the literature Tao et al. (2021)].

Performance Comparison
We aim to evaluate the performance of our method MA-PCA
using the emotion recognition results on cross-dataset from
DEAP and SEED. The experimental results are, respectively,
plotted in Figure 3, which shows the average results for six
possible combinations.

It can be seen from the bars in Figure 3 that the no-adaptation
method SSPCA has the worst performance than others in all
cases, which witnesses the existence of distribution discrepancy
between DEAP and one of the sessions from SEED. In this
context, the importance of domain adaptation (DA) will be
indispensable. This is justified by the observation in Figure 3
that DA may reduce technical differences in cross-dataset
applications, and our MA-PCA consistently outperformed other
DA methods in most cases of the cross-dataset settings. A possible
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FIGURE 3 | Domain adaptation emotion recognition on cross-dataset.

reason for this may be that the clustering hypothesis with fuzzy
entropy in our MA-PCA could weaken the impact of noise
from these datasets. A clear phenomenon can be observed in
Figure 3—due to the large distribution difference between the
different datasets, the average recognition accuracy of all methods
is correspondingly lower than the results obtained in Figure 1
within the dataset.

Emotion Recognition With Multi-Source Prior
As reported in preceding works about domain adaptation
learning, multiple-source domains can improve the adaptation
performance to some extent by integrating multiple prior
knowledge. Nevertheless, in concrete applications, multi-source
adaptation also incurs another challenge, i.e., source scalability
issue, since multi-source learning could lead to the so-called
negative transfer problem. In this scenario, how to discriminately
exploit multiple sources becomes a challenge worthy to be
addressed in multi-source adaptation learning frameworks. To
this end, we will explore in this part the different reliabilities of the
prior sources in the emotion recognition task (Tao et al., 2019).
We evaluate the performance of all baseline domain adaptation
methods with multiple prior sources on the designed cross-
dataset settings. The average accuracies of all methods are plotted
in Figure 4, where A-SVM employs the average prior model.

When there exists a very large distribution discrepancy
between different domain datasets, it is hard for A-SVM to
eliminate the inter-domain distribution bias. Therefore, the
results in Figure 4 shows that A-SVM is inferior compared
with the other multi-source adaptation methods in most settings.

A-SVM even has a downgraded performance tendency with the
increase of source domains in some scenarios, which indicates the
existence of “negative transfer” phenomenon in A-SVM. Another
interesting observation from Figure 4 is that all DA methods,
except A-SVM, achieve more improvement by leveraging
multiple-source knowledge than that by bridging only one source
(i.e., cross-subject settings) when the number of source domains
increases. This proves that it is beneficial to leverage multiple
sources for boosting the recognition performance. Moreover,
MA-PCA and DSM conquer others by touching on the top
performance due to their designed weights for discriminately
screening the optimal sources. Our method MA-PCA obtains
more gains over DSM in some scenarios. This may be attributed
to the adopted strategy in MA-PCA, which can efficiently select
the most relevant source domains through optimal weighted
multi-source adaptive regularization.

Adaptive Emotion Recognition With Deeply Extracted
Features
In this subsection, we will particularly evaluate our method
MA-PCA with deeply extracted features by comparing it with
several recently proposed deep adaptation models on cross-
dataset emotion recognition using multi-source settings.

In practical tasks, our method MA-PCA can be trained on
the deeply transformed features of all domains, which follows
the same setup with that in Zhu et al. (2017) and Zhou et al.
(2018). Concretely, some pre-trained deep models (e.g., VGG16
and DAN, etc.) are first fine-tuned using the source domain, then
the deep features can be extracted from EEG signals in both

Frontiers in Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 855421

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-855421 April 28, 2022 Time: 16:14 # 10

Dan et al. Possibilistic Clustering Promoting Multi-Model Adaptation

FIGURE 4 | Emotion recognition with multi-source adaptation settings.

FIGURE 5 | Adaptive emotion recognition using deeply extracted features.

TABLE 2 | Multi-source adaptation emotion recognition accuracies of derived methods as well as MA-PCA.

Method {DEAP,SII,SIII} →SI {DEAP,SI,SIII} →SII {DEAP,SI,SII} →SIII {SI,SII,SIII} →DEAP {SI,SII} →DEAP {SI,SIII} →DEAP

MA-PCA_NTS 72.81 70.52 68.57 55.90 54.20 55.81

MA-PCA_NSS 71.30 70.05 65.87 53.17 53.77 55.43

MA-PCA-NOS 71.61 69.86 66.28 53.49 54.23 55.66

MA-PCA 73.47 71.12 68.85 56.33 54.46 55.87

Values in bold denote the best recognition rates.
SI, session I; SII, session II; SIII, session III.
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source and target domains with this CNN model, and finally the
recognition model would be trained on these extracted features.
In the context of our experiments, we denote our methods
with VGG16 (respectively DAN) model as MA-PCA + VGG16
(MA-PCA + DAN respectively). As for DAN and ReverseGrad,
we use their released source codes to fine-tune the pre-trained
models by, respectively, using the pre-tuned parameters in their
works (Ganin and Lempitsky, 2015; Long et al., 2015). Note that
these deep adaptation methods typically aim to learn domain-
invariant representations. Differently from the deep adaptation
frameworks, our proposed method explores to learn a domain-
invariant recognition model with strong generalization ability
from the source domain to the target one.

We plot the mean results of all methods in Figure 5, from
which we can observe that our deep adaptation method MA-
PCA + VGG16 and MA-PCA + DAN significantly outperform
MA-PCA. This indicates the advantage of deep features due to
its robust feature representation. Furthermore, MA-PCA+DAN
also obtains comparable recognition performance with respect
to other deep adaptation methods. This may be attributed to
the classification-level constraint in MA-PCA, where most of the
source discriminative structures are expected to be preserved by
the guidance of target classification. In some cases, shown in
Figure 5, MA-PCA+VGG16 or MA-PCA+DAN even achieves
the top-one performance compared with other deep adaptation
frameworks. This phenomenon shows that the proposed MA-
PCA can become an effective surrogate to the deep adaptation
model by just exploiting the deep features extracted from any one
of the state-of-the-art deep models.

Ablation Study
In our method MA-PCA, there exist several hyper-parameters
needed to be tuned. These hyper-parameters are mainly used to
trade off different components of the proposed framework. We
therefore, respectively, set these parameters into their extreme
values to explore the importance of each component in MA-
PCA. To this end, we set S = I to denote MA-PCA without target
domain divergence information by MA-PCA_NTS and set γi =

1
/

q and γi =
exp(−Dist(Xs

i ,X))∑
i exp(−Dist(Xs

i ,X))
(i = 1, 2, ..., q)to, respectively,

denote by MA-PCA_NSS and MA-PCA_NOS the case where
MA-PCA weights each source model by mean components and
measures its distance from the target domain, respectively.

The performance of these derived methods is evaluated on
cross-dataset recognition tasks, and the performance results
are shown in Table 2. It is easy to see from Table 2 that
the performance of all derived methods is more or less
degraded, and the performance of the MA-PCA_NTS method
without target divergence constraints is slightly degraded. The
performance of the MA-PCA_NSS method with an average
weight on the source domain model decreases significantly;
The performance of MA-PCA_NOS with the distance-weighted
method for the source domain model is better than that of
the MA-PCA_NSS method. However, the performance of these
two derived methods is weaker than that of the MA-PCA
optimization weighting method for the source domain model,
which indicates that the proposed optimization mechanism

for source domain model selection is effective. In addition,
an interesting observation is that the overall recognition
accuracy is below 60% when the multi-source domains
are all from the SEED dataset. However, when the multi-
source domain has the DEAP dataset, the overall recognition
accuracy of all methods is close to 70%, even higher than
70%. It indicates that the diversity of source domains can
improve the robustness and generalization of MA-PCA and its
derived methods.

CONCLUSION

To deal with cross-subject/dataset EEG-based emotion
recognition task, we proposed a multi-model adaptation
method with possibilistic clustering assumption, i.e., MA-PCA,
by exploiting the knowledge of the correlation between the
source and target domains in the objective function. It suppresses
the influence of noise/abnormal data and weakens the impact
of model performance caused by the different distributions
of training data and test data (i.e., source domain and target
domain). In MA-PCA, the fuzzy entropy regularization term is
used to weaken the influence of noisy data, and multi-domain
adaptation learning method is used to establish a robust
classification model to weaken the influence of different data
distributions. The comprehensive experiments performed on
two public datasets verify the effectiveness of MA-PCA in
dealing with cross-subject/dataset emotion recognition. In most
scenarios, our MA-PCA (or MA-PCA-VGG16/DAN) obtains the
best results or comparable performance with respect to several
representative baselines. Since the implementation of MA-PCA
algorithm needs an iterative optimization procedure, how to
improve the efficiency of MA-PCA and seek a more efficient
algorithm would be an issue worthy of further study in our
future research.
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Koelstra, S., Muḧl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., et al.
(2012). DEAP: a database for emotion analysis using physiological signals. IEEE
Transact. Affect. Comput. 3, 18–31. doi: 10.1109/t-affc.2011.15

Kosko, B. (1986). Fuzzy entropy and conditioning. Inform. Sci. 40, 165–174. doi:
10.1016/0020-0255(86)90006-x

Krishnapuram, R., and Keller, J.-M. (1993). A possibilistic approach to clustering
[J]. IEEE Trans. Fuzzy Syst. 1, 98–110. doi: 10.1109/91.227387

Lan, Z., Sourina, O., Wang, L., Scherer, R., and Müller-Putz, G. R. (2018). Domain
adaptation techniques for EEG-based emotion recognition: a comparative study
on two public datasets. IEEE Transact. Cogn. Dev. Syst. 11, 85–94. doi: 10.1109/
tcds.2018.2826840

Li, Y.-F., and Zhou, Z.-H. (2011). “Improving semi-supervised support vector
machines through unlabeled instances selection,” in Proceedings of the 25th
AAAI Conference of Artificial. Intelligence, San Francisco, CA, 386–391. doi:
10.3233/BME-130935

Liu, W., Wang, J., and Chang, S.-F. (2012). Robust and scalable graph-based
semi-supervised learning. Proc. IEEE 100, 2624–2638.

Long, M., Cao, Y., Wang, J., and Jordan, M. (2015). “Learning transferable features
with deep adaptation networks,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning, Lille,
97–105.

Mansour, Y., Mohri, M., and Rostamizadeh, A. (2009). “Domain adaptation with
multiple sources,” in Proceedings of the Conference on Neural Information
Processing Systems, (Vancouver, BC: MIT Press), 1041–1048.

Mühl, C., Allison, B., Nijholt, A., and Chanel, G. (2014). A survey of affective brain
computer interfaces: principles, state-of-the-art, and challenges. Brain Comput.
Interfac. 1, 66–84. doi: 10.1080/2326263x.2014.912881

Musha, T., Terasaki, Y., Haque, H. A., and Ivamitsky, G. A. (1997). Feature
extraction from EEGs associated with emotions. Artif. Life Robot. 1, 15–19.
doi: 10.1007/bf02471106

Nie, F., Xu, D., Tsang, I., and Zhang, C. (2010). Flexible manifold embedding: a
framework for semi-supervised and unsupervised di- mension reduction. IEEE
Transact. Image Proces. 19, 1921–1932. doi: 10.1109/TIP.2010.2044958

Pan, S. J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22, 1345–1359.

Shi, X., Guo, Z., Lai, Z., Yang, Y., Bao, Z., Zhang, D., et al. (2015). A framework
of joint graph embedding and sparse regression for dimensionality reduction.
IEEE Trans. Image Process. 24, 1341–1355. doi: 10.1109/TIP.2015.2405474

Tao, J., Dan, Y., and Zhou, D. (2021). Robust multi-source co-adaptation with
adaptive loss minimization. Sign. Proces. Image Commun. 99:116455. doi: 10.
1016/j.image.2021.116455

Tao, J., Wen, S., and Hu, W. (2015). L1-norm locally linear representation
regularization multi-source adaptation learning. Neur. Netw. 69, 80–98. doi:
10.1016/j.neunet.2015.01.009

Tao, J., Wen, S., and Hu, W. (2016). Multi-source adaptation learning with global
and local regularization by exploiting joint kernel sparse representation. Knowl.
Based Syst. 98, 76–94. doi: 10.1016/j.knosys.2016.01.021

Tao, J., Zhou, D., Liu, F., and Zhu, B. (2019). Latent multi-feature co-regression
for visual recognition by discriminatively leveraging multi-source models. Patt.
Recogn. 87, 296–316. doi: 10.1016/j.neunet.2019.02.007

Tao, J. W., Song, D., Wen, S., and Hu, W. (2017). Robust multi-source adaptation
visual classification using supervised low-rank representation. Patt. Recogn. 61,
47–65. doi: 10.1016/j.patcog.2016.07.006

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science 290, 2319–2323.
doi: 10.1126/science.290.5500.2319

Tommasi, T., Orabona, F., and Caputo, B. (2014). Learning categories from few
examples with multi model knowledge transfer. IEEE Trans. Pattern Anal.
Mach. Intell. 36, 928–941. doi: 10.1109/tpami.2013.197

Tu, W., and Sun, S. (2013). Semi-supervised feature extraction for EEG
classification[J]. Patt. Anal. Appl. Paa 16, 213–222. doi: 10.1007/s10044-012-
0298-2

Wang, Q.-W., Li, Y.-F., and Zhou, Z.-H. (2019). “Partial label learning
with unlabeled data,” in Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI’19), Macao,
3755–3761.

Wang, Y., and Chen, S. (2013). Safety-aware semi-supervised classification[J]. IEEE
Tran.s Neur. Netw. Learn Syst. 24, 1763–1772. doi: 10.1109/tnnls.2013.2263512

Wang, Y.-Y., Chen, S.-C., and Zhou, Z.-H. (2012). New semi-supervised
classification method based on modified cluster assumption. IEEE Transact.
Neur. Netw. Learn. Syst. 23, 689–702. doi: 10.1109/TNNLS.2012.2186825

Wu, M.-S., and Deng, X.-G. (2018). Semi-supervised pattern classification method
based on Tri-DE-ELM. Comp. Eng. Appl. 54, 109–114.

Frontiers in Neuroscience | www.frontiersin.org 12 May 2022 | Volume 16 | Article 855421

https://doi.org/10.1007/978-94-017-2053-3_2
https://doi.org/10.1162/0899766041732396
https://doi.org/10.1162/0899766041732396
https://doi.org/10.1162/neco.1992.4.6.888
https://doi.org/10.1109/TPAMI.2009.57
https://doi.org/10.1016/j.compbiomed.2016.10.019
https://doi.org/10.1016/j.compbiomed.2016.10.019
https://doi.org/10.1109/CVPR.2013.451
https://doi.org/10.3389/fnins.2021.690044
https://doi.org/10.1109/TPAMI.2011.114
https://doi.org/10.1109/TPAMI.2011.114
https://doi.org/10.1007/s10916-011-9759-1
https://doi.org/10.1109/tpami.2012.57
https://doi.org/10.1109/tpami.2012.57
https://doi.org/10.1109/TKDE.2017.2681670
https://doi.org/10.1109/taffc.2014.2339834
https://doi.org/10.1109/TNNLS.2013.2271327
https://doi.org/10.1155/2013/573734
https://doi.org/10.1109/t-affc.2011.15
https://doi.org/10.1016/0020-0255(86)90006-x
https://doi.org/10.1016/0020-0255(86)90006-x
https://doi.org/10.1109/91.227387
https://doi.org/10.1109/tcds.2018.2826840
https://doi.org/10.1109/tcds.2018.2826840
https://doi.org/10.3233/BME-130935
https://doi.org/10.3233/BME-130935
https://doi.org/10.1080/2326263x.2014.912881
https://doi.org/10.1007/bf02471106
https://doi.org/10.1109/TIP.2010.2044958
https://doi.org/10.1109/TIP.2015.2405474
https://doi.org/10.1016/j.image.2021.116455
https://doi.org/10.1016/j.image.2021.116455
https://doi.org/10.1016/j.neunet.2015.01.009
https://doi.org/10.1016/j.neunet.2015.01.009
https://doi.org/10.1016/j.knosys.2016.01.021
https://doi.org/10.1016/j.neunet.2019.02.007
https://doi.org/10.1016/j.patcog.2016.07.006
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1109/tpami.2013.197
https://doi.org/10.1007/s10044-012-0298-2
https://doi.org/10.1007/s10044-012-0298-2
https://doi.org/10.1109/tnnls.2013.2263512
https://doi.org/10.1109/TNNLS.2012.2186825
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-855421 April 28, 2022 Time: 16:14 # 13

Dan et al. Possibilistic Clustering Promoting Multi-Model Adaptation

Xue, H., and Chen, S. (2007). “Alternative robust local embedding,” in Proceedings
of International Conference on Wavelet Analysis Pattern Recognition, Beijing,
591–596.

Xue, H., Chen, S.-C., and Yang, Q. (2011). Structural regularized support vector
machine: a framework for structural large margin classifier. IEEE Transact.
Neur. Netw. 22, 573–587. doi: 10.1109/TNN.2011.2108315

Yang, J., Yan, R., and Hauptmann, A. G. (2007). “Cross-domain video concept
detection using adaptive svms,” in Proceedings of the 15th ACM International
Conference on Multimedia, (New York, NY: ACM), 188–197.

Zhang, Y., Dong, J., Zhu, J., and Wu, C. (2019b). Common and special knowledge-
driven TSK fuzzy system and its modeling and application for epileptic EEG
signals recognition. IEEE Access 7, 127600–127614. doi: 10.1109/access.2019.
2937657

Zhang, Y., Chung, F. L., and Wang, S. (2019a). Takagi-sugeno-kang. Fuzzy systems
with dynamic rule weights. J. Intell. Fuzzy Syst. 37, 8535–8550. doi: 10.1016/j.
isatra.2017.10.012

Zhang, Y., Li, J., Zhou, X., Zhou, T., Zhang, M., Ren, J., et al. (2019c). A view-
reduction based multi-view TSK fuzzy system and its application for textile
color classification. J. Amb. Intellig. Human. Comput. 9, 1–11. doi: 10.1007/
s12652-019-01495-9

Zhang, Y., Tian, F., Wu, H., Geng, X., Qian, D., Dong, J., et al. (2017). Brain MRI
tissue classification based fuzzy clustering with competitive learning. J. Med.
Imag. Health Inform. 7, 1654–1659. doi: 10.1006/cbmr.1996.0023

Zhang, Y., Wang, L., Wu, H., Geng, X., Yao, D., and Dong, J. (2016). A clustering
method based on fast exemplar finding and its application on brain magnetic
resonance images segmentation [J]. J. Med. Imag. Health Inform. 6, 1337–1344.
doi: 10.1166/jmihi.2016.1923

Zhang, Y., Wang, S., Xia, K., Jiang, Y., and Qian, P. (2020). Alzheimer’s disease
multiclass diagnosis via multimodal neuroimaging embedding feature selection
and fusion. Inform. Fus. 66, 170–183. doi: 10.1016/j.inffus.2020.09.002

Zhao, Y., Liebgott, H., and Cachard, C. (2015). Comparison of the existing tool
localization methods on two-dimensional ultrasound images and their tracking
results. Control Theor Appl. 9, 1124–1134. doi: 10.1049/iet-cta.2014.0672

Zhao, Y., Shen, Y., Bernard, A., Cachard, C., and Liebgott, H. (2016). Evaluation
and comparison of current biopsy needle localization and tracking methods
using 3d ultrasound. Ultrasonics 73, 206–220. doi: 10.1016/j.ultras.2016.09.006

Zheng, W.-L., and Lu, B.-L. (2015). Investigating critical frequency bands and
channels for EEG-based emotion recognition with deep neural networks. IEEE
Transact. Autono. Mental Dev. 7, 162–175. doi: 10.1109/tamd.2015.2431497

Zhong, P., Wang, D., and Miao, C. (2020). EEG-based emotion recognition using
regularized graph neural networks. IEEE Transact. Affect. Comput. 99:1. doi:
10.1109/taffc.2020.2994159

Zhou, S.-H., Liu, X.-W., Zhu, C.-Z., Liu, Q., and Yin, J. (2014). “Spectral
clustering-based local and global structure preservation for feature selection,”
in Proceedings of the 2014 International Joint Conference on Neural Networks,
Beijing, 550–557.

Zhou, X., Jin, K., Shang, Y., and Guo, G. (2018). Visually interpretable
representation learning for depression recognition from facial Im-ages. IEEE
Transact. Affect. Comput. 11, 542–552. doi: 10.1109/TAFFC.2018.2828819

Zhu, X.-J. (2008). Semi-Supervised Learning Literature Survey [R]. Computer
Science TR 1530. Madison, WI: University of Wis-consin.

Zhu, X.-J., and Goldberg, A. (2009). Introduction to Semi-Supervised Learning, Vol.
3. San Rafael, CA: Morgan & Claypool, 130.

Zhu, Y., Shang, Y., Shao, Z., and Guo, G. (2017). automated depression diagnosis
based on deep networks to encode facial appearance and dynamics. IEEE
Transact. Affect. Comput. 9, 578–584. doi: 10.1109/TAFFC.2017.2650899

Zu, B.-B., Xia, K.-W., Wen, L., Niu, W.-J., and Jiang, X.-Q. (2019).
Semi-supervised classification application of remote sensing image
based on block low rank images. J. Front. Comput. Sci. Technol. 13,
1217–1226.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Dan, Tao and Zhou. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 May 2022 | Volume 16 | Article 855421

https://doi.org/10.1109/TNN.2011.2108315
https://doi.org/10.1109/access.2019.2937657
https://doi.org/10.1109/access.2019.2937657
https://doi.org/10.1016/j.isatra.2017.10.012
https://doi.org/10.1016/j.isatra.2017.10.012
https://doi.org/10.1007/s12652-019-01495-9
https://doi.org/10.1007/s12652-019-01495-9
https://doi.org/10.1006/cbmr.1996.0023
https://doi.org/10.1166/jmihi.2016.1923
https://doi.org/10.1016/j.inffus.2020.09.002
https://doi.org/10.1049/iet-cta.2014.0672
https://doi.org/10.1016/j.ultras.2016.09.006
https://doi.org/10.1109/tamd.2015.2431497
https://doi.org/10.1109/taffc.2020.2994159
https://doi.org/10.1109/taffc.2020.2994159
https://doi.org/10.1109/TAFFC.2018.2828819
https://doi.org/10.1109/TAFFC.2017.2650899
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition
	Introduction
	Ma-Pca Framework
	Notations
	Basic Formulation of MA-PCA
	The Multi-Model Adaptation Term in MA-PCA
	Final Formulation

	Optimization
	Update W as Given vm(xj) and 
	Update vm(xj) as Given W and 
	Update  by Fixing W and vm(xj )
	Convergence Analysis

	Algorithm Description
	Experiment
	Datasets
	Baseline Setting
	Emotion Recognition Within Dataset
	Performance Comparison
	Multi-Kernel Learning

	Emotion Recognition Cross-Dataset
	Performance Comparison
	Emotion Recognition With Multi-Source Prior
	Adaptive Emotion Recognition With Deeply Extracted Features
	Ablation Study


	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


