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Abstract

Motivation: Phylogenetic networks represent reticulate evolutionary histories. Statistical methods

for their inference under the multispecies coalescent have recently been developed. A particularly

powerful approach uses data that consist of bi-allelic markers (e.g. single nucleotide polymorphism

data) and allows for exact likelihood computations of phylogenetic networks while numerically

integrating over all possible gene trees per marker. While the approach has good accuracy in terms

of estimating the network and its parameters, likelihood computations remain a major computa-

tional bottleneck and limit the method’s applicability.

Results: In this article, we first demonstrate why likelihood computations of networks take orders

of magnitude more time when compared to trees. We then propose an approach for inference of

phylogenetic networks based on pseudo-likelihood using bi-allelic markers. We demonstrate the

scalability and accuracy of phylogenetic network inference via pseudo-likelihood computations on

simulated data. Furthermore, we demonstrate aspects of robustness of the method to violations in

the underlying assumptions of the employed statistical model. Finally, we demonstrate the applica-

tion of the method to biological data. The proposed method allows for analyzing larger datasets in

terms of the numbers of taxa and reticulation events. While pseudo-likelihood had been proposed

before for data consisting of gene trees, the work here uses sequence data directly, offering several

advantages as we discuss.

Availability and implementation: The methods have been implemented in PhyloNet (http://bioin

focs.rice.edu/phylonet).

Contact: jiafan.zhu@rice.edu or nakhleh@rice.edu

1 Introduction

Species phylogenies model how species evolve and diversify. When

species split and diversify without subsequent exchange of genetic

material between different species, the species phylogeny takes the

shape of a tree. In the post-genomic era, the inference of species trees

in general makes use of the availability of sequence data of multiple

individual loci across the genomes. Methods for species tree infer-

ence from such data view evolution of the sequence data as two co-

occurring stochastic processes: one that models the growth of the

genealogies of individual loci within the branches of the species tree

and another that models the evolution of sequences of individual

loci along the branches of the corresponding genealogies. The latter

process is most commonly captured by Markov models of sequence

evolution and is the basis for computing the likelihood of (gene)

trees (Felsenstein, 1981). Modeling the former process depends on

the evolutionary processes acting on the individual loci. In particu-

lar, the coalescent model (Kingman, 1982) is one such model of

growth of the genealogies when individual loci evolve under the

idealized Wright–Fisher model. When the species tree is viewed as a

set of populations stitched together according to the tree structure,

the coalescent model is extended into the multispecies coalescent

(Degnan and Rosenberg, 2009).

However, when different species exchange genetic material, the

tree structure is no longer adequate for modeling their resulting re-

ticulate evolutionary history. It is now well established that the evo-

lutionary histories of several groups of species, both prokaryotic and

eukaryotic, are reticulate (Mallet et al., 2016). In prokaryotes, the

most common process of reticulation is horizontal gene transfer

(Gogarten et al., 2002; Koonin et al., 2001), whereas hybridization

and introgression are the main processes of reticulation in eukar-

yotes (Arnold, 1997; Barton, 2001; Fontaine et al., 2015; Mallet,

2005, 2007; Mallet et al., 2016; Racimo et al., 2015; Rieseberg,

1997; Rieseberg et al., 2003; Wen et al., 2016a). A phylogenetic net-

work is a rooted, directed acyclic graphs that represents the evolu-

tionary histories of a set of taxa when that evolutionary history is

not strictly treelike (Nakhleh, 2010).
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To extend the aforementioned model of two co-occurring sto-

chastic processes to reticulate evolutionary histories, the multispe-

cies network coalescent (MSNC) was devised (Yu et al., 2012,

2014). Under this model, the genealogy of an individual locus

evolves within the branches of a phylogenetic network, thus captur-

ing evolutionary scenarios where loci could be exchanged across

species boundaries. The model enabled the development of statistic-

al methods for inferring phylogenetic networks from multi-locus

datasets, summarized in Table 1.

In terms of the data that they utilize, statistical methods for

phylogenetic network inference based on the multispecies network

coalescent can be grouped in three categories. The methods of Yu

et al. (2012), Yu et al. (2014) and Wen et al. (2016b) use gene tree

estimates as the input data and infer the phylogenetic network and

its parameters based on maximum likelihood or Bayesian inference.

A major computational bottleneck for these methods is the calcula-

tion of the likelihood of phylogenetic networks. These calculations

can take hours and even days for a single network if the numbers of

taxa and reticulations are large. This was the main motivation be-

hind the development of pseudo-likelihood methods for phylogenet-

ic networks (Solı́s-Lemus and Ané, 2016; Yu and Nakhleh, 2015).

However, two disadvantages of using gene tree topology estimates

as the input data (for both the full- and pseudo-likelihood methods)

are the inability to estimate some parameters of interest that could

be estimable from sequence data, and in fact the gene tree estimates

could have much error in them, especially at the scale of evolution

where incomplete lineage sorting is a concern. To address these two

issues, the methods of Wen and Nakhleh (2018) and Zhang et al.

(2018) employ Bayesian Markov chain Monte Carlo to sample the

posterior of phylogenetic networks and gene trees from the sequence

data directly, where the data for each locus consist of a sequence

alignment. Most recently, Zhu et al. (2018) devised a Bayesian

method for inferring phylogenetic networks from data that consist

of unlinked bi-allelic markers (such as single nucleotide polymorph-

ism data and amplified fragment length polymorphisms).

While the method of Zhu et al. (2018) is very promising in terms

of accuracy and has the advantage that it performs numerical inte-

gration that completely sidesteps the issue of sampling the enormous

gene tree space, it is very slow in practice, rendering the inference of

networks with >5–6 taxa and 3–4 reticulations infeasible. This art-

icle concerns the scalability of the method. We first discuss factors

that make likelihood computations on networks computationally

orders of magnitudes more demanding that on trees even when the

network and tree differ by a single reticulation. We then propose a

pseudo-likelihood formulation based on bi-allelic markers, along

with an inference method. We demonstrate the accuracy, robustness

and speed of the method and its ability to analyze much larger data-

sets than full-likelihood-based methods can handle. The developed

methods are implemented in the open-source, publicly available

software package PhyloNet (Than et al., 2008; Wen et al., 2018).

2 Background

A phylogenetic network W on set X of taxa is a rooted, directed,

acyclic graph whose leaves are bijectively labeled by X . Each node

in the network has in-degree of 0 (the root), 1 (a tree node) or 2

(a reticulation node). The out-degree of each node is at most 2.

Network W’s sets of nodes and edges are denoted by V Wð Þ and

E Wð Þ, respectively.

Each node in the network has a species divergence time and each

edge b has an associated population mutation rate hb ¼ 4Nbl where

Nb is the effective population size associated with edge b and l is the

mutate rate per site per generation. For calculations under the co-

alescent, it is always assumed that there is an infinite-length edge

above the root of the network. Furthermore, for every pair of reticu-

lation edges e1 and e2 that share the same reticulation node, we asso-

ciate an inheritance probability, c, such that ce1
; ce2
2 0; 1½ � with

ce1
þ ce2

¼ 1. We denote by C the vector of inheritance probabilities

corresponding to all the reticulation nodes in the phylogenetic

network. In order to simplify notation, we assume here that W repre-

sents the phylogenetic network topology and all the other parame-

ters; that is, the divergence times, population mutation rates and

inheritance probabilities are components of W, in addition to the

topology.

In this article, we assume the multispecies network coalescent

process. Consider a dataset S ¼ fS1; . . . ; Smg where Si consists of

the binary states of m unlinked (independent) bi-allelic markers for

a set X of taxa. The likelihood of a species phylogeny W (topology

and parameters) is given by

L WjSð Þ ¼
Ym
i¼1

L WjSið Þ ¼
Ym
i¼1

ð
G

p Sijgð Þp gjWð Þdg (1)

where the integration is taken over all possible gene trees. The term

p Sijgð Þ is the likelihood of gene tree g given the sequence data of

locus i (Felsenstein, 1981) and p gjWð Þ is the density function of gene

trees given the species phylogeny and its parameters (Rannala and

Yang, 2003).

Bryant et al. (2012) introduced an algorithm for analytically

computing the integration in Equation (1) for bi-allelic markers,

thus avoiding the need to sample gene trees to estimate the integral.

Zhu et al. (2018) extended the method of Bryant et al. in novel ways

so that the integration in Equation (1) can be done analytically also

when the species phylogeny is a network.

3 Materials and methods

We first discuss factors that govern the computational complexity of

full likelihood calculations on networks, and then propose a pseudo-

likelihood function of phylogenetic networks and demonstrate its

scalability.

3.1 When it comes to computational complexity, a

network is not merely a tree with a few additional

reticulations
While the full likelihood computations of the algorithm of Bryant

et al. (2012) allowed for inferring species trees with tens of taxa, the

computational complexity of these computations exploded when the

species phylogeny was a network. We now explain the explosion in

Table 1. Methods for phylogenetic network inference under the

MSNC

Data L References

GT/GTT F Yu et al. (2014), Wen et al. (2016b)

GTT P Yu and Nakhleh (2015), Solı́s-Lemus and Ané (2016)

SA F Wen and Nakhleh (2018), Zhang et al. (2018)

BM F Zhu et al. (2018)

BM P This article

Note: L, likelihood computation (F, full; P, pseudo); GT, gene trees; GTT,

gene tree topologies; SA, sequence alignments; BM, bi-allelic markers.
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the running time of computing the probability of a gene tree top-

ology on a network as compared to that of computing the probabil-

ity of a gene tree on the species tree ‘inside’ the network. While the

computations in this article do not involve gene tree probability

computations, the limitations of the likelihood computations of Zhu

et al. (2018) follow the same rationale.

The probability mass function (pmf) p gjWð Þ, where g is a gene

tree topology, is central to statistical inference of species trees and

networks. In the case of species trees, W is a tree, and C is irrelevant.

As was shown in (Degnan and Salter, 2005; Yu et al., 2014),

p gjWð Þ ¼
P

h2HW gð Þ p hjWð Þ, where HW gð Þ is the set of all coalescent

histories of g inside W. Roughly speaking, a coalescent history of g is

an embedding of g within the branches of W. The size of HW gð Þ for a

gene tree topology g when W is a tree is exponential in the number

of leaves in the gene tree (Rosenberg, 2007; Than et al., 2007). Wu

(2012) devised an efficient way of computing the pmf for species

trees without explicitly enumerating all coalescent histories in the

set HW gð Þ. Similarly, Yu et al. (2013) devised an efficient way of

computing the pmf for species networks without enumerating all co-

alescent histories. However, with this improved method, likelihood

calculations for species trees scale very well, whereas that is not the

case for phylogenetic networks.

Here, we extended the algorithm of Than et al. (2007) to com-

pute the size of HW gð Þ for a gene tree topology g and phylogenetic

network W. For simplicity, we assume one individual is sampled per

species so that the leaves of the gene tree and phylogenetic network

are labeled by the same set X of taxa (the algorithm can be trivially

extended to the case where multiple individuals are sampled per spe-

cies). Every edge e in a gene tree defines a cluster, ce, which is the set

of leaves under the edge. We denote by L(t) the set of all taxa label-

ing the leaves of tree t. Let Cg be the set of all clusters of size � 2 of

taxa in the gene tree g, and let Xg ¼ L gð Þ. Assume E Wð Þ includes a

special edge r that is incoming into the root. We write (x, y) to de-

note a tree whose root has two children that are subtrees x and y.

We define function qc eð Þ to represent the number of coalescent

scenarios of leaves in set c \ ce. We define children(e) for edge

e ¼ u; vð Þ 2 E Wð Þ as the set of all edges v;xð Þ 2 E Wð Þ for x 2 V Wð Þ.
For two edges e1; e2 2 E Wð Þ; e1 6¼ e2, we say that e2 ¼ u2; v2ð Þ is on

the path from e1 ¼ u1; v1ð Þ to the root, denoted by e1 � e2, if there

is path from the root of W to u1 that passes through both u2 and v2.

If no such path exists, we write e1�e2. Denoting by f e1; e2ð Þ the

number of paths from e1 to e2, the quantity can be computed by:

f e1; e2ð Þ ¼

1; if e1 ¼ e2

0; if e1 � e2P
ek2children e2ð Þ f e1; ekð Þ; if e1 � e2

8>><
>>:

(2)

Using the function f, qc eð Þ is computed using Algorithm (1). The

size of HW gð Þ is given by
P

e2E Wð Þ qXg
eð Þf e; rð Þ.

Figure 1A demonstrates the effect on the size of set H of the add-

ition of a single reticulation to an underlying tree to form a network.

For some networks, going from a tree to a network with a single re-

ticulation increased the size of H by 10 million fold. The efficient

algorithms of Wu (2012) and Yu et al. (2013) ameliorate the compu-

tational complexity of computing the pmf by employing a bottom-

up algorithm that stores values at nodes. In other words, they trade

off memory for time. The reason that these algorithms scale in the

case of trees but not networks is precisely the illustration in

Figure 1A.

An obvious factor that significantly affects the running time of

computing the pmf is the number of taxa (leaves) in the network.

However, in some cases, computing the likelihood of a network on

20 taxa could take less time than that of computing the likelihood of

a network with, say, 10 taxa. The complexity of a phylogenetic net-

work is governed by the diameters of the reticulation nodes and the

number of leaves under the reticulation nodes (Fig. 1B). The larger

either or both of these, the worse the explosion in the size of H is

and, consequently, the worse the likelihood calculations become in

terms of time and memory requirements. These exorbitant computa-

tional costs are only exacerbated, in a potentially exponential man-

ner, when the number of reticulations increases.

3.2 Pseudo-likelihood
Given a phylogenetic network W on set X of taxa, a subset W0 of W

on subset X 0 �X of taxa is the phylogenetic network obtained by

restricting W to the leaves in X 0 (if there are multiple paths between

A

B

Fig. 1. The ratio of the number of coalescent histories on a network to the

number of coalescent histories on the underlying tree. (A) The results are

based on 30 random 20-leaf phylogenetic networks and 100 gene trees

for each network. Each of the 30 networks was obtained by adding a single

reticulation to an underlying tree. (B) A phylogenetic network with a single

reticulation. The diameter of the reticulation is the number of edges on the

paths marked with the red cycle. The taxa under the reticulation correspond

to the leaves marked with the blue line

Algorithm 1 Compute qcðeÞ.
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two leaves, we keep them all). We denote such a subnet by WjX 0 .

Figure 2 shows a phylogenetic network and its four three-taxon sub-

nets. It is important to note nodes and reticulation edges in the sub-

nets have the same divergence times and inheritance probabilities as

their corresponding nodes and reticulation edges, respectively, in the

full phylogenetic network. We assume the same population size

across all branches of the network.

While subnets with 0 � jX 0j � jX j could be considered, here

we consider only three-taxon subnets. For a phylogenetic network

W, we denote by P 3 Wð Þ the set of all three-taxon subnets of W, also

called trinets.

Let W be a (parameterized) phylogenetic network on set X of

taxa, and let P 3 Wð Þ be the set of W’s trinets. Consider a dataset S

¼ fS1; . . . ; Smg where Si consisting of the binary states of m unlinked

(independent) bi-allelic markers for a set X of taxa. We denote by

S 3 the set of all datasets obtained by restricting S to all three-taxon

subsets. Table 2 shows an example of S and S 3 for a four-taxon

phylogenetic network (e.g. the one in Fig. 2). The pseudo-likelihood of

a species phylogeny W (topology and parameters) is given by

PL WjSð Þ ¼
Y

W02P 3 Wð Þ
L W0jS 0ð Þ (3)

where S 0 is the dataset obtained by restricting S to the taxa in W0,

and L W0jS 0ð Þ is computed according to Equation (1) using the al-

gorithm of Zhu et al. (2018). It is important to note here that while

the exposition is given in terms of phylogenetic networks and the al-

gorithm of Zhu et al. (2018), this same formulation applies to spe-

cies trees and the algorithm of Bryant et al. (2012).

3.2.1 Searching the phylogenetic network space

We use simulated annealing to search the phylogenetic network

space with similar moves and setting to that of Yu and Nakhleh

(2015), with two main differences. First, when a delete-reticulation

move is proposed, it is accepted with probability 0.01 no matter

how the pseudo-likelihood changes. In our testing of the search

strategy, we found that such a modification helps the search jump

out of locally optimal states. Second, the optimal network with one

fewer reticulation nodes than the the maximum number was kept

during each iteration of search, and it was used as the starting state

for every subsequent iteration except the first one. The search is con-

ducted in a number of iterations, where each iteration walks the

space of phylogenetic networks starting at some temperature that is

reduced gradually during the iteration. So, for example, an iteration

could inspect on the order of 50 000 points in the parameter space.

4 Results

4.1 Simulations
We first set out to assess the running time of computing the pseudo-

likelihood of phylogenetic networks of varying sizes. To achieve

this, we generated networks with 10, 20, 50 and 100 taxa and with

0, 1, 2, 3 and 4 reticulations. We used PhyloGen (Thiers, 2002) to

first generate random species trees with 10, 20, 50 and 100 taxa.

Then, for each species tree, we randomly added 0, 1, 2, 3 and 4

reticulations. To add a reticulation to a species network, we selected

two edges uniformly at random and added an edge between

their midpoints in a direction that ensures no cycles are created.

Inheritance probabilities were assigned 0.5 to reticulation edges.

Then, we used PhyloNet (Wen et al., 2018) to simulate the evolution

of 10 000 bi-allelic markers on each species network. Finally, we

computed the pseudo-likelihoods of each phylogenetic network

using the datasets generated on it. The results are given in Figure 3.

As the results demonstrate, computing the pseudo-likelihood is

very fast. In particular, it is worth pointing out that computing the

full likelihood of networks of with >10 taxa and three or four retic-

ulations could be impractical for many topologies. As discussed

above, this is governed not only by the number of taxa and number

of reticulation nodes, but more importantly by the diameters of the

reticulation nodes, the dependence among the cycles in the underly-

ing undirected graph of the network, and the numbers of taxa that

Fig. 2. A phylogenetic network and its three-taxon subnets. Phylogenetic network W induces four subnets W1; W2; W3 and W4. The inheritance probabilities are the

same among the network and subnets for corresponding reticulation edges, and the times of all corresponding nodes are the same among the network and its

three subnets

Table 2. Site patterns on the phylogenetic network W of Figure 2

and its marginalized patterns on the four subnets

S (W) S 3 (W1) S 3 (W2) S 3 (W3) S 3 (W4)

s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

A 1 0 0 1 0 0 1 0 0 1 0 0

B 0 1 0 0 1 0 0 1 0 0 1 0

C 1 1 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 3. Running times of computing the pseudo-likelihood of networks of

varying numbers of taxa and leaves. The running times are reported in sec-

onds. They were measured on a desktop computer with 16G RAM and INTEL

XEON E3-1245 @ 3.5 GHz, and eight threads were used

Inference of species phylogenies from bi-allelic markers i379



are descendants of reticulation nodes. The pseudo-likelihood calcu-

lations take fraction of a second on phylogenetic networks with 20

or fewer taxa, regardless of the number of reticulations. The calcula-

tions take about 10 s for 50-taxon networks, whereas the running

time jumps to over 100 s for phylogenetic networks with 100 taxa.

This increase in the running time with the number of taxa is

expected, since the number of trinets of a network on n taxa is

n
3

� �
. The very small increase in the running time, by viewing it as a

function of the increase in the number of reticulations, is because tri-

nets are small enough for full-likelihood calculations. Furthermore,

even when a network has four reticulations, many trinets would

have 0 or 1 reticulations, making their analysis even faster.

While scalability in speed is impressive, the main question is:

How accurate is inference of phylogenetic networks under pseudo-

likelihood when using bi-allelic markers? To answer this question,

we generated 100 datasets, 20 replicates for each number of sites on

the network of Figure 4. We simulated 100, 1000, 10 000, 1 00 000

and 10 00 000 bi-allelic sites, with one haploid generated for every

taxon. We set the mutation rates to u¼1 and v¼1 [where u and v

are the mutation rate from red allele to green allele and the mutation

rate from green allele to red allele, respectively, following the

notation of Bryant et al. (2012)], then we used h ¼ 0:01 for

every branch in the true network. We used following command

(numsites 2 f100; 1000;10000; 100000;1000000g) to simulate sites:

SimBiMarkersinNetwork -pi0 0.5 -sd seed -num num

sites -tm <A: A_0; B: B_0; C: C_0; D: D_0; E: E_0;

F: F_0; G: G_0; H: H_0; I: I_0; J: J_0; K: K_0; L:

L_0; M: M_0; N: N_0; O: O_0; P: P_0> -truenet net

string -out ‘markers.txt’;

For the value of seed in the ‘-sd’ option, we used a different 8-digit

integer for each of the 20 replicates. The value of netstring is the

extended Newick string of the network in Figure 4.

To test the ability of our algorithm to recover the topology of the

true network, we ran the aforementioned simulated annealing pro-

cedure on the simulated datasets. The maximum number of reticula-

tions during the search was set to 3, since determining the true

number of reticulation is beyond the capability of a maximum

unpenalized (pseudo-)likelihood (Wen et al., 2018). For each data-

set, the search was performed for 50 iterations. The five networks

with highest pseudo-likelihood were saved during the search. We

used the following command to generate the results:

MLE_BiMarkers -pseudo -mnr 50 -pi0 0.5 -mr 3 -pl 8 -

ptheta 0.01 -thetawindow 0.01 -sd 12345678 -taxa

(A_0, B_0, C_0, D_0, E_0, F_0, G_0, H_0, I_0, J_0,

K_0, L_0, M_0, N_0, O_0, P_0) -tm <A: A_0; B: B_0; C:

C_0; D: D_0; E: E_0; F: F_0; G: G_0; H: H_0; I: I_0;

J: J_0; K: K_0; L: L_0; M: M_0; N: N_0; O: O_0; P:

P_0>

The results are shown in Figure 5. As the results show, when

10 000 sites or more are used as input for inference, the method al-

ways infers the true phylogenetic network. When only 1000 sites are

used, the true network is one of the top five optimal networks

inferred, but not the most optimal, in 20% of the cases, whereas

the true network is not even among the top five optimal networks in

the remaining 80% of the cases. When only 100 sites are used, the

method cannot infer the true network.

These results can be put in the context of the performance of the

method of Zhu et al. (2018) in terms of how inference based on the

full-likelihood calculations performs, and the method of Yu and

Nakhleh (2015) in terms of how inference based on pseudo-

likelihood from gene tree estimates performs. As shown by Zhu

et al. (2018), accurate inference based on full-likelihood required at

least 1000 sites, even though the network considered in that work

had only five taxa. In this regard, and given that the network consid-

ered here is much larger, it only makes sense that >1000 sites are

required. As for the method of Yu and Nakhleh (2015), the authors

showed that over 250 accurately estimated gene trees are required

for accurate estimates of a 23-taxon phylogenetic network. An ac-

curately estimated gene tree contains much more information than a

single bi-allelic marker. In fact, a 23-taxon binary gene tree is

equivalent to at least 21 different, yet compatible, bi-allelic markers,

as each internal edge in the gene tree requires a bi-allelic marker to

identify it.

These two contexts combined show the inference based on the

pseudo-likelihood from bi-allelic markers is not only very accurate,

but is also competitive with full-likelihood-based inferences. It is

worth repeating that the method of Yu and Nakhleh (2015) requires

very accurate gene tree estimates. It is not uncommon to have error

rates upwards of 60% in gene tree estimates on closely related

species.

4.2 Comparison to full likelihood computation
To compare inferences based on pseudo-likelihood and full

likelihood as given by the method of Zhu et al. (2018), we simulated

100, 1000, 10 000, 1 00 000 and 10 00 000 bi-allelic sites on the

network in Figure 6 with one haploid generated for every taxon.

Fig. 4. The true network with 16 taxa used for assessing the accuracy of infer-

ences based on pseudo-likelihood. The branch lengths of the phylogenetic

networks are measured in units of expected number of mutations per site

(scale is shown). The inheritance probabilities are marked in blue

Fig. 5. Accuracy of the inference on simulated data. The blue region corre-

sponds to the number of times the true network was returned as the optimal

network (the one with the highest pseudo-likelihood) after the search. The or-

ange region corresponds to the number of times the true network is not the

optimal network found by the search, but but is among the top five species

networks under maximum pseudo-likelihood. All other scenarios are repre-

sented by the grey region
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We used h ¼ 0:006 as the population mutation rate for external

branches and the root, and h ¼ 0:005 for internal branches, both

in the unit of population mutation rate per site. We set the

mutation rates to u¼1 and v¼1. We generated 100 datasets, 20 rep-

licates for each number of sites. We used following command

(numsites 2 f100; 1000;10000; 100000;1000000g) to simulate sites:

SimBiMarkersinNetwork -pi0 0.5 -sd seed -num numsites

-tm <A: A_0; C: C_0; L: L_0; Q: Q_0; R: R_0> -truenet

netstring -out ‘markers.txt’;

For the value of seed in the ‘-sd’ option, we used a different 8-digit

integer for each of the 20 replicates. The value of netstring is the

extended Newick string of network in Figure 6.

Then we ran maximum likelihood inference on those datasets with

10 iterations with following commands, using both pseudo-likelihood

and full likelihood computations (‘-pseudo’ is removed for the latter):

MLE_BiMarkers -pseudo -mnr 10 -pi0 0.5 -mr 1 -pl 8 -

ptheta 0.006 -thetawindow 0.006 -sd 12345678 -taxa

(A_0, C_0, L_0, R_0, Q_0) -tm <A: A_0; C: C_0; L:

L_0; Q: Q_0; R: R_0>

Results of the comparison are shown in Figure 7. As the results

show, when 10 00 sites or more are used, inference based on

pseudo-likelihood results in very accurate results that are identical

to those obtained by full likelihood inference. When only 1000 sites

were used, only in 6 out of 20 cases did pseudo-likelihood inference

not result in the true network, but in all six cases that true network

was one of the top five inferred. Again, in this case, the results are

comparable to those based on full likelihood. In datasets consisting

of only 100 sites, inferences result in poor networks regardless of

whether full- or pseudo-likelihood is used. To summarize these

results, inference based on pseudo-likelihood is comparable in ac-

curacy to that based on full likelihood.

4.3 The effect of number of individuals sampled
As described in Zhu et al. (2018), sampling more individuals from

the hybrid species helps improve the accuracy of the inferred net-

work based on full-likelihood computations. In particular, sampling

more individuals allow the usage of fewer sites, a result that has im-

portant practical implications. We now set out to study this trend in

the case of inferences based on pseudo-likelihood. We sampled one

haploid individual for each of the four taxa L, A, R and C, and 1, 2,

3 and 4 haploid individuals for hybrid taxon Q in the network in

Figure 6. We generated 100, 500, 1000 and 2000 sites for each of

the four individual settings, with 10 replicates. We used following

command (numsites 2 f100;500; 1000;2000g) to simulate sites (in

option ‘-tm’, individuals of Q: ‘Q_1, Q_2, Q_3’ were removed

according to four individual settings):

SimBiMarkersinNetwork -pi0 0.5 -sd seed -num numsites

-tm <A: A_0; C: C_0; L: L_0; Q: Q_0, Q_1, Q_2, Q_3;

R: R_0> -truenet netstring –-out ‘markers.txt’;

For the value of seed in the ‘-sd’ option, we used a different 8-digit

integer for each of the 20 replicates. The value of netstring is the

extended Newick string of network in Figure 6.

Then we ran maximum pseudo-likelihood estimation with 10

iterations on each of those 160 datasets using the same command as

above. The accuracy of the inferred networks is reported in Figure 8.

The results show a clear benefit to sampling multiple individuals, es-

pecially when the number of sites is small. Once again, when only 100

sites are used, the performance is not very good, since this number of sites

is too small. However, when only 500 sites are used, sampled only indi-

vidual results in obtaining the true network in only six out of 10 cases,

whereas sampling four individuals results in accurate inferences in all 10

cases. Furthermore, as the number of sites increases, the positive effect of

increasing the number of sampled individuals starts diminishing.

4.4 Robustness of inference to lack of independence
As given by Equation (1), the individual sites are assumed to be inde-

pendent. Here, we set out to study the accuracy of inference when

Fig. 6. The true network with five taxa used for assessing the accuracy of

inferences based on pseudo-likelihood. The branch lengths of the phylogen-

etic networks are measured in units of expected number of mutations per site

(scale is shown). The inheritance probabilities are marked in blue

Fig. 7. Accuracy of the inference on simulated data: pseudo-likelihood versus

full likelihood. The blue region corresponds to the number of times the true

network was returned as the optimal network (the one with the highest

pseudo-likelihood) after the search. The orange region corresponds to the

number of times the true network is not the optimal network found by the

search, but is among the top five species networks. All other scenarios are

represented by the grey region. P: pseudo-likelihood, F: full likelihood

Fig. 8. Accuracy of the inference on simulated data: Effect of the number of

sampled individuals. The blue region corresponds to the number of times the

true network was returned as the optimal network (the one with the highest

pseudo-likelihood) after the search. The orange region corresponds to the

number of times the true network is not the optimal network found by the

search, but is among the top five species networks. All other scenarios are

represented by the grey region. On the horizontal axis, 1, 2, 3 and 4 represent

the number of individuals of sampled from the hybrid taxon

Inference of species phylogenies from bi-allelic markers i381



this assumption is violated. We simulated dependent sites as done by

Zhu et al. (2018). We generated 1000, 5000 and 10 000 sites in the

network of Figure 6 under different conditions: (i) single marker

was generated from a gene tree (i.e. the case of independent loci),

(ii) 10 markers were generated from a gene tree and (iii) 100

markers were generated from a gene tree. Note that gene trees

were generated independently. We used following command

( numgt; sitespergtð Þ 2 f 1000; 1ð Þ; 5000;1ð Þ; 10000; 1ð Þ; 100; 10ð Þ;
500; 10ð Þ; 1000; 10ð Þ; 10; 100ð Þ; 50; 100ð Þ; 100;100ð Þg) to simulate

sites:

SimBiMarkersinNetwork -pi0 0.5 -sd seed -num numgt -

sitespergt numsitespergt -tm <A: A_0; C: C_0; L:

L_0; Q: Q_0; R: R_0> -truenet netstring -out

‘markers.txt’;

For the value of seed in the ‘-sd’ option, we used a different 8-digit

integer for each of the 20 replicates. The value of netstring is the

extended Newick string of the network in Figure 6.

We ran maximum pseudo-likelihood estimation with 10 itera-

tions on each of those datasets using the same command as above.

Results are shown in Figure 9. The results clearly show that the

method is very robust to violation in the independent-loci assump-

tion when 5000 sites or more are used. In the case of 1000 sites, the

performance gets affected negatively only slightly. This result has

great practical implications: In practice, when a large number of

sites is sampled, one cannot ensure the sites are independent. The

results show that even if independence is violated for a large number

of sites, the method is robust in that case. This is consistent with

what the authors observed with full likelihood computation in Zhu

et al. (2018).

4.5 The effect of limitation on number of reticulations
As we discussed in Wen et al. (2018), inference of phylogenetic net-

works based on (unpenalized) likelihood cannot estimate the true

number of reticulations simply because adding more reticulations

only makes the model a better (or, at least as good a) fit for the data.

This is why in the above results, we limited the number of reticula-

tions that the method explores during inference to the true number

(which is known since the data were simulated). To understand how

the method performs when the limit on the number of reticulations

during inference is set higher than the true number, we compared

different limitations on the number of reticulations using the net-

work in Figure 6. We simulated 100, 1000, 10 000, 1 00 000 and

10 00 000 bi-allelic sites with 20 replicates for each number with the

same command used for comparing pseudo-likelihood and full like-

lihood computation, then set the maximum number of reticulations

to 1, 2 and 3 for each settings. We then ran maximum pseudo-

likelihood inference with 10 iterations on those datasets using the

same command as above, and the ‘-mr’ (maximum reticulations) op-

tion is changed to 1, 2 and 3 accordingly. The results are shown in

Figure 10. The results make complete sense as setting a higher limit

on the number of reticulations allowed during the search for optimal

networks guides the method toward networks with more reticula-

tions since those would have better pseudo-likelihoods. To illustrate

the behavior of the method, we took a replicate with 10 000 sites as

an example and plotted the pseudo-likelihoods of the best inferred

networks with 1, 2 and 3 reticulations, as well as the networks

themselves in Figure 11. The figure shows two important points.

First, as more reticulations are allowed, the pseudo-likelihood of the

best networks found improves, but the improvement starts slowing

down with the addition of more reticulations. Second, while more

reticulations that the true number (one) are added, the true network

Fig. 9. Accuracy of the inference on simulated data: Robustness to violation

in the independent-loci assumption. The blue region corresponds to the num-

ber of times the true network was returned as the optimal network (the one

with the highest pseudo-likelihood) after the search. The orange region corre-

sponds to the number of times the true network is not the optimal network

found by the search, but is among the top five species networks. All other

scenarios are represented by the grey region. On the horizontal axis, 1, 10

and 100 represent the number of markers generated from a single gene tree

Fig. 10. Accuracy of the inference on simulated data: Setting different limits

on the number of reticulations during inference. The blue region corresponds

to the number of times the true network was returned as the optimal network

(the one with the highest pseudo-likelihood) after the search. The orange re-

gion corresponds to the number of times the true network is not the optimal

network found by the search, but is among the top five species networks. All

other scenarios are represented by the grey region. On the horizontal axis, 1,

2 and 3 represent the maximum number of reticulations during inference

Fig. 11. Improvement with more reticulations. On the horizontal axis, 1, 2 and

3 represent the maximum number of reticulations during the estimation. At

each point, the corresponding network topology is shown. The blue edges

represent the additional reticulations to the true network
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is ‘inside’ the optimal ones being identified with more reticulations.

This is an important result because it illustrates how the true net-

work is first identified and, then, when the method starts adding

more reticulations, it does so to the underlying true network.

4.6 Empirical datasets
We also analyzed the two datasets in Zhu et al. (2018) using

our algorithm, including two different hybrid individuals

O.� cockayneana and O.�prorepens. The hybrid origins of these

two individuals are supported by both morphological (Meudt,

2006) and molecular (Meudt unpubl.) data. These two individuals

were formally named along with putative parents. The first data

subset comprises the following five individuals: O. macrocarpa

[voucher: Meudt 133a, MPN 29546; herbarium codes follow Thiers

(continuously updated)], O. macrophylla subsp. lactea (Cameron

13392, AK 294893), hybrid O.� cockayneana (Meudt 175a, MPN

29710), O. caespitosa (Meudt 174a, MPN 29705) and O. calycina

(Meudt 176a, MPN 29713). The number of loci in this dataset is

802. The second data subset comprises O. sessilifolia subsp. splen-

dida (Heenan s.n., MPN 32149), O. macrocarpa (Meudt 133a,

MPN 29713), hybrid O.�prorepens (Meudt 203a, MPN 29774),

O. sessilifolia subsp. sessilifolia (Meudt 199a, MPN 29771) and

O. caespitosa (Meudt 196a, MPN 297695). The number of loci in

this dataset is 820.

Each data subset comprised five diploid individuals in total,

which means 10 haploid individuals were effectively analyzed due to

the correction for dominant markers. Observe that while we could

combine the two datasets into a larger one to study the scalability of

the method on a larger dataset, the number of sites available is too

small for accurate inferences by pseudo-likelihood, as supported

above by the simulation study.

The search was performed for 50 iterations for each dataset. The

maximum number of reticulations was set to 1. The results are given

in Figures 12 and 13.

Both results show that hybrids are correctly detected. The top-

ology of the network in Figure 13 with the hybrid O.�prorepens is

Fig. 12. The phylogenetic network with maximum pseudo-likelihood for the subset with the hybrid O.� cockayneana (Meudt 175a, MPN 29710) and putative

parents. The width of each tube is proportional to the population mutation rate of each branch, which is printed on each tube. The length of each tube is propor-

tional to the length of the corresponding branch in units of expected number of mutations per site (scale shown). Blue arrows indicate the reticulation edges and

their inheritance probabilities are printed in blue

Fig. 13. The phylogenetic network with maximum pseudo-likelihood for the subset with the hybrid O.�prorepens (Meudt 203a, MPN 29774) and putative parents.

The width of each tube is proportional to the population mutation rate of each branch, which is printed on each tube. The length of each tube is proportional to

the length of the corresponding branch in units of expected number of mutations per site (scale shown). Blue arrows indicate the reticulation edges and their in-

heritance probabilities are printed in blue
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consistent with Figure 20 in Zhu et al. (2018), while the topology of

the network in Figure 12 with the hybrid O.� cockayneana is slight-

ly different from that in Figure 19 in Zhu et al. (2018). Notably,

the topology of Figure 19 in Zhu et al. (2018) is inferred as the

second-best network by our algorithm, and its pseudo-likelihood

value is smaller than that of the best network by only 0.2.

5 Discussion

The results above on simulated data and empirical data demonstrate

very good accuracy of phylogenetic network inference using pseudo-

likelihood based on bi-allelic markers. In terms of computing the

pseudo-likelihood, the computation scales up to hundreds of taxa.

Of course, searching the space of 100-taxon networks is a different

challenge that requires novel techniques beyond scaling up likeli-

hood computations. The simulation results, in particular, clearly

demonstrate that as the number of bi-allelic markers increases, the

accuracy improves significantly. We now turn to investigating the

convergence of the inferred phylogenetic network onto the true net-

work as the number of sites increases.

Let W be a phylogenetic network on set X of taxa and consider

a subset X 0 �X with jX 0j ¼ 3. Both W and trinet W0 ¼ WjX can

be viewed as generative models for bi-allelic markers. It is important

here to remind the reader that all parameters of W0 are transferred

from W. Let g be a gene tree on set X 0 of taxa. We have

p gjWð Þ ¼ p gjW0ð Þ, since the density p gjWð Þ does not involve any

branches (or their parameters) that are in W but not in W0 and the

length of a branch in W0 corresponds to the length of either a branch

in W or a path that results from removing nodes when obtaining W0.

It follows from this that P sjgð Þp gjWð Þ ¼ P sjgð Þp gjW0ð Þ for a bi-allelic

marker on the set X 0 of taxa. Therefore, we obtain from this that

P sjWð Þ ¼ P sjW0ð Þ. In other words, as the number of sites goes to in-

finity, for every trinet of the true network, the proportions of margi-

nalized site patterns converge to their expectation in this trinet of

the true network.

To study the convergence empirically, we generated one dataset

with each of 100, 1000, 10 000, 1 00 000 and 10 00 000 sites of bi-

allelic markers using the network of Figure 4. Then for each dataset,

for every trinet of that network, we compute the proportion of every

corresponding marginalized site pattern, and compare it to the

expected frequency of that pattern in the trinet. We plotted the dif-

ferences between these proportions in Figure 14.

As the results show, the proportions of site patterns of trinets

converge very fast to their theoretical expectation, with very negli-

gible variance in the differences once 1 00 000 sites or more are

used. These results are compatible with the accuracy of the method

discussed above on the simulated data.

6 Conclusions

Statistical approaches for inferring phylogenetic networks offer a

great promise in terms of utilizing the data to estimate not only the

topology of the network, but also evolutionary parameters of inter-

est to the biologist, such as population mutation rates and diver-

gence times. Statistical approaches are based on evaluating the

likelihood of phylogenetic network candidates during search of the

parameter space. Except for small networks with fewer than 10 taxa

and two or three reticulations, these approaches are hard to apply in

practice given the prohibitive computational requirements. The

pseudo-likelihood methods of Yu and Nakhleh (2015) and Solı́s-

Lemus and Ané (2016) offered a way to ameliorate this issue.

However, these methods make use of gene tree estimates as the input

data. Under conditions of extensive incomplete lineage sorting, the

individual loci could have very little signal to obtain accurate gene

trees. The major contribution of this article is the introduction of a

pseudo-likelihood method based on the sequence data directly. We

demonstrated that evaluating the pseudo-likelihood of a phylogenet-

ic network is very fast and allows scaling to very large networks. We

also demonstrated the accuracy of maximum pseudo-likelihood in-

ference of phylogenetic networks from bi-allelic data.

Even though the pseudo-likelihood formulation provides accur-

ate inferences, it still does not circumvent the challenging problem

of searching the space of large networks. Developing more efficient

moves for walking the space of phylogenetic networks is necessary.

Acknowledgement

The authors would like to thank Heidi Meudt for sharing data for the two

biological datasets.

Funding

This work was supported by grants DBI-1355998, CCF-1302179, CCF-

1514177 and DMS-1547433 from the National Science Foundation. This

work was supported in part by the Big-Data Private-Cloud Research

Cyberinfrastructure MRI-award funded by NSF under grant CNS-1338099

and by Rice University.

Conflict of Interest: none declared.

References

Arnold,M.L. (1997) Natural Hybridization and Evolution. Oxford University

Press, Oxford.

Barton,N. (2001) The role of hybridization in evolution. Mol. Ecol., 10,

551–568.

Bryant,D. et al. (2012) Inferring species trees directly from biallelic genetic

markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol.,

29, 1917–1932.

Degnan,J.H. and Rosenberg,N.A. (2009) Gene tree discordance, phylogenetic

inference and the multispecies coalescent. Trends Ecol. Evol., 24, 332–340.

Fig. 14. Convergence of the proportions of marginalized site patterns in the

data to their expectations. Every point is the empirical frequency of a margi-

nalized three-taxon site pattern minus the (theoretical) expectation of that fre-

quency on the corresponding subnet in the true network

i384 J.Zhu and L.Nakhleh



Degnan,J.H. and Salter,L.A. (2005) Gene tree distributions under the coales-

cent process. Evolution, 59, 24–37.

Felsenstein,J. (1981) Evolutionary trees from DNA sequences: a maximum

likelihood approach. J. Mol. Evol., 17, 368–376.

Fontaine,M.C. et al. (2015) Extensive introgression in a malaria vector species

complex revealed by phylogenomics. Science, 347, 1258524.

Gogarten,J.P. et al. (2002) Prokaryotic evolution in light of gene transfer. Mol.

Biol. Evol., 19, 2226–2238.

Kingman,J.F.C. (1982) The coalescent. Stochast. Proc. Appl., 13, 235–248.

Koonin,E.V. et al. (2001) Horizontal gene transfer in prokaryotes: quantifica-

tion and classification 1. Annu. Rev. Microbiol., 55, 709–742.

Mallet,J. (2005) Hybridization as an invasion of the genome. Trends Ecol.

Evol., 20, 229–237.

Mallet,J. (2007) Hybrid speciation. Nature, 446, 279–283.

Mallet,J. et al. (2016) How reticulated are species?. BioEssays, 38, 140–149.

Meudt,H.M. (2006) Monograph of Ourisia (Plantaginaceae). Syst. Bot.

Monogr., 77, 1–188.

Nakhleh,L. (2010) Evolutionary phylogenetic networks: models and issues. In:

Heath, L. and Ramakrishnan, N. (eds.) The Problem Solving Handbook for

Computational Biology and Bioinformatics. Springer, New York, pp. 125–158.

Racimo,F. et al. (2015) Evidence for archaic adaptive introgression in humans.

Nat. Rev. Genet., 16, 359–371.

Rannala,B. and Yang,Z. (2003) Bayes estimation of species divergence times

and ancestral population sizes using DNA sequences from multiple loci.

Genetics, 164, 1645–1656.

Rieseberg,L. (1997) Hybrid origins of plant species. Annu. Rev. Ecol. Evol.

Syst., 28, 359–389.

Rieseberg,L.H. et al. (2003) Major ecological transitions in wild sunflowers

facilitated by hybridization. Science, 301, 1211–1216.

Rosenberg,N.A. (2007) Counting coalescent histories. J. Comput. Biol., 14,

360–377.
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