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he TGF-

 

�

 

s are multifunctional proteins whose activities
are believed to be controlled by interaction with the

 

latent TGF-

 

�

 

 binding proteins (LTBPs). In spite of
substantial effort, the precise in vivo significance of this
interaction remains unknown. To examine the role of the

 

Ltbp-3, we made an 

 

Ltbp

 

-3–null mutation in the mouse
by gene targeting. Homozygous mutant animals develop
cranio-facial malformations by day 10. At 2 mo, there is a
pronounced rounding of the cranial vault, extension of the
mandible beyond the maxilla, and kyphosis. Histological ex-
amination of the skulls from null animals revealed ossification

T

 

of the synchondroses within 2 wk of birth, in contrast to the
wild-type synchondroses, which never ossify. Between 6
and 9 mo of age, mutant animals also develop osteosclerosis
and osteoarthritis. The pathological changes of the Ltbp-3–
null mice are consistent with perturbed TGF-

 

�

 

 signaling in
the skull and long bones. These observations give support
to the notion that LTBP-3 is important for the control of

 

TGF-

 

�

 

 action. Moreover, the results provide the first in
vivo indication for a role of LTBP in modulating TGF-

 

�

 

bioavailability.

 

Introduction

 

The latent TGF-

 

�

 

 binding proteins (LTBPs)*-1–4 are
matrix molecules composed of multiple (14–20) EGF-like

 

domains and four domains containing eight cysteines (8-cys)

 

that are specific for the LTBPs and the fibrillins (for review
see Handford et al., 2000; Koli et al., 2001). The modular
structure of Ltbp-3 is shown in Fig. 1 A (Yin et al., 1995).

 

LTBP-1, 3, and 4 covalently bind latent TGF-

 

�

 

 (Koli et al.,
2001). The TGF-

 

�

 

s are 25-kd homodimeric cytokines de-
rived by intracellular proteolytic processing of larger propro-
teins (Massague, 1998). However, once cleaved from the cy-

tokine, the TGF-

 

�

 

 propeptide, called the latency-associated
peptide (LAP), remains noncovalently associated with the

 

mature TGF-

 

�

 

 after secretion (Koli et al., 2001). This com-
plex of TGF-

 

�

 

 and LAP, the small latent complex, is inactive,
and the dissociation of TGF-

 

�

 

 from LAP is a crucial regula-
tory step in TGF-

 

�

 

 action. The small latent complex can
form a large latent complex by the bonding of cysteines in
the LAP with a pair of cysteines in the third 8-cys domain of
LTBP (Gleizes et al., 1996; Saharinen et al., 1996). All three
TGF-

 

�

 

 isoforms bind to LTBPs-1, 3, or 4; however, neither
LTBP-2 nor the fibrillins bind TGF-

 

�

 

 (Saharinen and
Keski-Oja, 2000).

The LTBPs have been proposed to have two functions: as
structural components of the extracellular matrix (Dallas et
al., 1995) and as modulators of TGF-

 

�

 

 bioavailability (Koli

 

et al., 2001). Experiments in culture have shown that the
association of LTBP with latent TGF-

 

�

 

 is important for at
least two aspects of TGF-

 

�

 

 biology. First, the binding of
LTBP-1 to the small latent complex facilitates its folding
and secretion (Miyazono et al., 1991). Second, LTBP-1
modulates latent TGF-

 

�

 

 activation (Flaumenhaft et al.,
1993; Nakajima et al., 1997; Gualandris et al., 2000). How-
ever, these studies have not provided direct proof for the
physiological role of LTBP in modulating TGF-

 

�

 

 activity.
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To address this point, we have generated Ltbp-3–null mice.
These mice have an altered skull shape caused by the prema-
ture ossification of the cranial base synchondroses. In addi-
tion, there is enhanced accumulation of trabecular bone in
the long bones and vertebrae and degeneration of the articu-
lar cartilage as the animals age. These phenotypic abnormal-
ities are consistent with postulated roles of TGF-

 

�

 

 in bone
formation and homeostasis. As such, this report represents
the first indication for physiological control of TGF-

 

�

 

 activ-
ity by an LTBP.

 

Results and discussion

 

Generation of Ltbp-3–null mice

 

Ltbp-3–null mice were produced by gene targeting using a
targeting vector to replace two exons containing a nonunit
number of codons (Joyner, 1995), including bases 278–807
of the ORF with the neo

 

r

 

 selectable marker (see online sup-
plemental material, available at http://www.jcb.org/cgi/
content/full/200111080/DC1, for details). These two exons
code for the first EGF-like repeat, the pro-gly–rich region,
and the beginning of the first 8-cys domain (Fig. 1). This
deletion causes a frameshift in the ORF and premature ter-
mination of translation. Three clones (17, 22, and 25) with
homologous recombination in the 

 

Ltbp-3

 

 gene were de-
tected by Southern blot analysis (unpublished data), and
two clones were used to produce chimeric animals. Ltbp-3–
null animals were obtained by crossing heterozygous prog-
eny of chimeric mice. Northern blot hybridization of lung

RNA from null animals with a probe mapping 3

 

�

 

 from the
deleted region showed the absence of the 

 

Ltbp-3

 

 transcript
(Fig. 2 A). Therefore, we concluded that these mice were ef-
fectively Ltbp-3–null animals. Ltbp-3–null mice were born
in the expected Mendelian ratio with no apparent defects.
By day 10, null animals displayed a rounded head and short-
ened snout. X-ray radiography of 2-mo-old mutant mice re-
vealed a domed skull, abnormal apposition of the upper and
lower incisors, and curvature of the cervical and thoracic ver-
tebrae (thoracic kyphosis) (Fig. 2 B).

 

Craniofacial abnormalities

 

The appropriate anatomical development of the skull re-
quires the coordinated growth of the membranous and en-
dochondral bones to accommodate the increasing size of the
brain. Therefore, the sutures between the bones of the cra-
nial vault as well as growth plates in the skull base remain

Figure 1. Ltbp-3 targeting strategy. LTBP-3 protein structure. The 
region deleted in the targeted locus is underlined.

Figure 2. Ltbp-3–null mouse. (A) 
Detection of Ltbp-3 mRNA in total lung 
RNA by Northern blot hybridization. 
(Top) Northern blot hybridization. �/�, 
Wild-type; �/�, Ltbp-3–null animal. 
(Bottom) ethidium bromide image of 
RNA before transfer. (B) X-ray radiogra-
phy of 2-mo-old wild-type and Ltbp-3–
null mice.

Figure 3. Histology of wild-type and Ltbp-3–null skulls. (A and B) 
Fusion of bones of the skull base in 3-wk-old Ltbp-3 mice. Whole 
mount skulls of wild-type (A) and mutant (B) animals were stained 
with alcian blue for cartilage and Alizarin red S for calcified bone, 
and skull bases were dissected. Arrows point to synchondroses 
between occipital (oc), sphenoid (sp) and presphenoid (ps) bones. 
(C and D). Histology of the skull base of 3-wk-old wild-type (C) and 
Ltbp-3–null (D) animals. Cartilage is stained red and bone blue. The 
basooccipital–basosphenoid synchondrosis is on the left.
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nonossified for an extensive period after birth. There are re-
ports describing potential roles for TGF-

 

�

 

s in the differenti-
ation of the membranous bones of the skull (Opperman et
al., 1999), but there is no information concerning TGF-

 

�

 

function in the biology of the bones of the skull base. Histo-
logical studies of the sutures in wild-type and Ltbp-3–null
animals revealed no pathological synostosis, i.e. premature
fusion of one or more of the cranial vault sutures (unpub-
lished data). However, differential staining for cartilage and
bone in whole mount preparations, as well as histological
analysis of the cranial base in 21 day old animals, revealed
that the cartilaginous growth plates of the synchondroses
were absent in mutant animals (Fig. 3, B and D), whereas
the synchondroses were nonossified in wild-type littermates
(Fig. 3, A and C).

Histologically, a synchondrosis resembles two opposed
growth plates with a common zone of resting chondrocytes
and separate zones of proliferating and hypertrophic chon-
drocytes. (Fig. 4 A). The earliest histological changes in the
skull base of Ltbp-3–null animals were detected in the ba-
sooccipital–basosphenoid synchondrosis 1–2 d after birth.
The overall structure of the synchondrosis was altered, as no
distinguishable columns of proliferating chondrocytes were
visible in the mutant synchondrosis (Fig. 4, compare A and
B), and the zones of hypertrophic chondrocytes were wider.
Collagen X, a marker for hypertrophic chondrocytes (Elima
et al., 1993), was restricted to the ends of the synchondrosis
in wild-type animals (Fig. 4 C), but was detected almost
throughout the synchondrosis in Ltbp-3–null animals (Fig. 4
D). In addition, collagen type II, a marker for nonhyper-
trophic chondrocytes (Swalla et al., 1988), was present in the
central zone of wild-type synchondrosis, but was absent from
that of Ltbp-3– null animals (Fig. 4, E and F). The distance
between the cortical bone fronts was smaller in the null ani-
mals compared to wild-type littermates as visualized by Mas-
son’s trichrome staining, which stains bone blue (Fig. 4, G
and H). The ectopic ossification in mutant synchondrosis
was also clear from the expression of the bone sialoprotein
(

 

Bsp)

 

-

 

1

 

 gene, an osteoblast specific marker (Bianco et al.,
1991), in the cells surrounding the synchondrosis (Fig. 4, I
and J). Although the basooccipital–basosphenoid synchon-
drosis was obliterated by 3–5 d after birth, the first changes in
the basosphenoid–presphenoid synchondrosis in the null ani-
mals were not seen until days 3–10 (unpublished data).

 

Figure 4. 

 

The histological changes in basooccipital–basosphenoid 
synchondroses in 1.5-d-old wild-type and Ltbp-3–null animals. 

 

(A and B) Weingart hematoxylin, Safranin O and Fast green staining. 
(A) Wild-type. (B) Mutant. Wider zone of hypertrophic chondrocytes 
in the mutant synchondrosis compared to the wild-type indicates 
more extensive differentiation. Cartilage is stained red. h, hypertrophic 
chondrocyte zone; r, resting chondrocyte zone; p, proliferating 
chondrocyte zone; ph, prehypertrophic chondrocyte zone; (C and 
D) Immunostaining for collagen X. (C) Wild-type. (D) Mutant. (E and 
F) Immunostaining for collagen II. (E) Wild-type. (F) Mutant. (G
and H) Masson’s trichrome staining for bone. More advanced bone 

 

fronts (blue) are apparent in mutant (H) versus wild-type (G) 
synchondrosis. Arrows point to fronts of the cortical basooccipital 
and basosphenoid bones. (I and J). In situ hybridization for bone 
sialoprotein 1 (

 

Bsp-1

 

). (I) Wild-type. (J) Mutant. (K and L) In situ 
hybridization for 

 

Ihh

 

. (K) Wild-type. (L) Mutant. The strong signal in 
the middle of the mutant mouse synchondrosis (L) suggests that these 
chondrocytes are already committed to hypertrophic differentiation. 
(M and N) In situ hybridization for 

 

PTH/PTHrP-R

 

. Expression 
pattern is less defined in the mutant animal sample (N) compared to 
the wild-type (M), and the transcript is detected through the central 
region of the synchondrosis. The intensity of the signal is similar in 
wild-type and in Ltbp-3–null samples. (O and P). In situ hybridization 
for 

 

PTHrP

 

. In wild-type synchondroses (O) expression is apparent in 
proliferating chondrocytes and in lateral chondrocytes of the central 
region of the synchondrosis. The signal is absent in the resting 
chondrocytes in the center of synchondrosis. The intensity of the 
signal is decreased in Ltbp-3–null synchondrosis (P).
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Therefore, premature closure of the synchondroses in
Ltbp-3–null mice is responsible for the observed cranio-
facial malformations. The failure to extend the presphenoid,
basosphenoid, and the basooccipital bones results in a short-
ened cranial base. To accommodate the growing brain vol-
ume, the membranous bones of the vault expand outward
and upward creating a domed skull. The anterior displace-
ment of the foramen magnum may cause the development
of the kyphosis, as the spinal column must be realigned with
the overall body axis. The shortening of the cranial base also
causes the alteration in the apposition of the incisors.

The wider zones of hypertrophic chondrocytes, as well as
more advanced bone fronts in the Ltbp-3–null mice, resem-
bled certain changes observed in animals deficient for the ex-
pression of parathyroid-hormone related protein (PTHrP)
or its receptor PTH/PTHrP-R (for review see Karsenty,
2001). Vortkamp et al. (1996) proposed that chondrocyte
differentiation is regulated by an inhibitory feedback loop in
which Indian hedgehog (Ihh), produced by the most differ-
entiated prehypertrophic and hypertrophic chondrocytes,
stimulates the production of PTHrP by the periarticular car-
tilage and perichondrium, and PTHrP inhibits hypertrophic
differentiation by interaction with its receptor on prehyper-
trophic chondrocytes (Chung et al., 2001). Therefore, we
examined the expression of Ihh, PTHrP, and PTH/PTHrP-R
in wild-type and mutant mice. In wild-type mice, Ihh was
expressed by prehypertrophic and differentiating hyper-
trophic chondrocytes, whereas in null animals, Ihh expres-
sion was broader, indicating that chondrocytes in the central
region of the synchondrosis were committed to hypertrophic
differentiation (Fig. 4, K and L). In wild-type animals,
PTH/PTHrP-R expression was detected in prehyper-
trophic chondrocytes, whereas in Ltbp-3–null animals,
PTH/PTHrP-R transcripts were detected in the central re-
gion of the synchondrosis (Fig. 4, M and N). The expression
pattern appeared less organized than that observed in wild-
type synchondrosis, but the level of expression was similar as
judged by the intensity of the staining. In sections probed
for PTHrP, there was broad expression throughout the pre-
sumptive zone of proliferating chondrocytes, and the level of
expression appeared lower in Ltbp-3–null animals compared
to wild-type animals (Fig. 4, O and P). This decreased ex-
pression of PTHrP was also observed in the synchondroses
of younger animals (see online supplemental material, avail-
able at http://www.jcb.org/cgi/content/full/200111080/
DC1). A decreased level of PTHrP in Ltbp-3–null mice
would allow more extensive chondrocyte differentiation and
account for the more rapid ossification of the synchon-
droses.

The changes in Ltbp-3–null mice are consistent with pre-
vious reports describing a role for TGF-

 

�

 

; in regulating
PTHrP expression, although we have been unable to detect
differences with antibodies that recognize either active TGF-

 

�

 

or phosphorylated Smads. Pateder et al. (2001) and Serra
et al. (1999) demonstrated in cell and organ culture that
TGF-

 

� 

 

stimulates PTHrP expression and inhibits hyper-
trophic differentiation. We infer that in Ltbp-3–null mice
there is a deficit in TGF-

 

� 

 

that results in decreased PTHrP
expression and early differentiation of the synchondroses,
ectopic ossification, and synostosis. The decrease in PTHrP

 

coincident with Ihh expression in the central zone of the
synchondroses suggests that TGF-

 

� 

 

acts before the induc-
tion of PTHrP expression and after Ihh expression.

 

Defective bone remodeling

 

Because TGF-

 

�

 

 has been shown to be important for long
bone physiology, we examined the structure of the long
bones of Ltbp-3–null mice to determine if other TGF-

 

�

 

-
mediated functions were affected. By day 8 after birth, null
animals showed growth retardation. The weight of adult
Ltbp-3–null animals was 30–80% of sex-matched litter-
mates, and the endochondral bones were shorter by 

 

�

 

10–
25%. Histological analysis of the growth plates of tibiae,
femora, and vertebrae from 1 d to 2-mo-old animals re-

Figure 5. Changes in the structure of long bones in Ltbp 3 mice. 
(A–F) Mid-sagittal sections of tibiae (A and B) and caudal vertebrae 
(C–F) of 9-mo-old wild-type (A, C, and E) and mutant (B, D, and F) 
animals stained with Weingart hematoxylin/Safranin O/Fast green. 
(E and F) Higher (5�) magnification of the regions boxed in C and 
D. (G and H) Mid-sagittal sections of the articular region of proxi-
mal tibiae in 6-mo-old wild-type (E) and mutant mice (F). (I and J). 
Mid-sagittal section of epiphyses of 9-mo-old wild-type and 
Ltbp-3–null mice. ac, articular cartilage; as, articular surface; gp, 
growth plate; arrowheads, hypertrophic chondrocytes.
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vealed no obvious differences between Ltbp-3–null and
wild-type littermates (unpublished data). Consistent with
the report of Filvaroff et al. (1999), who expressed a type
II TGF-

 

�

 

 receptor with a truncated cytoplasmic domain
(RIIDN) in osteoblasts and found age-dependent increases
in trabecular bone mass, increased trabecular mass in long
bones was observed at 3 mo of age in Ltbp-3–null mice with
a body weight 

 

�

 

60% of sex-matched wild-type littermates
(unpublished data). This osteosclerosis was more pro-
nounced in 6- and 9-mo-old mutant animals (Fig. 5, com-
pare A and B). Staining for proteoglycans revealed unminer-
alized cores within the trabecular bones close to the growth
plates, suggesting rapid extracellular matrix deposition and
initiation of trabecular bone formation. The increased num-
ber of metaphysial trabeculae also suggested slow turnover.
Similar changes occurred in the vertebrae (5, C–F). Interest-
ingly, mutations in LAP cause Camurati–Engelmann syn-
drome, which is characterized by sclerosis and hyperosteosis
(Janssens et al., 2000; Kinoshita et al., 2000), whereas trans-
genic animals overexpressing TGF-

 

�

 

2 in osteoblasts develop
osteoporosis (Erlebacher and Derynck, 1996). Hence, we
conclude that an Ltbp-3 defect mirrors long bone pheno-
types caused by impaired TGF-

 

�

 

 signaling.
The inhibition of TGF-

 

�

 

 signaling has been shown to
lead to periarticular cartilage terminal differentiation and
ossification. Mice either expressing a TGF-

 

�

 

 RIIDN in ar-
ticular cartilage, synovium and periosteum/perichondrium
(Serra et al., 1997), or deficient in Smad-3 (Yang et al.,
2001) develop degenerative joint disease. Ltbp-3–null ani-
mals also develop progressive degeneration of articular carti-
lage resembling osteoarthritis. Histological analysis of the
knee joints of mutant and wild-type littermates revealed
pathological changes in the articular cartilage of 6-mo-old
Ltbp-3–null animals: proteoglycan staining was decreased
(compare Fig. 5, G and H) and hypertrophic chondrocytes
were detected in the superficial layers of the articular carti-
lage (Fig. 5 H). In wild-type mice, the articular cartilage
consisted almost exclusively of mature nonhypertrophic
chondrocytes (Fig. 5 G). In mutant mice, at 9 mo, articular
cartilage was absent, the articular surface appeared ossified
and fibrotic (Fig. 5 J), and osteophytes were present (unpub-
lished data). Similar changes were observed in the vertebral
joints (Fig. 5, C–F). The degenerative changes in Ltbp-3–
null joints present later (6–9 mo) than those in RIIDN
transgenic and Smad-3–deficient animals. We believe that
Ltbp-3 deficiency causes a more moderate decrease in TGF-

 

�

 

levels compared to the inhibition of TGF-

 

�

 

 signaling in
DNIIR and Smad-3–null animals.

 

Summary

 

This report describes the phenotype of the Ltbp-3–null
mouse: premature obliteration of synchondroses, osteoscle-
rosis, and osteoarthritis. These manifestations are consistent
with published evidence suggesting TGF-

 

�

 

 involvement in
bone remodeling and homeostasis. Therefore, we propose
that Ltbp-3 regulates TGF-

 

�

 

 bioavailability either by en-
hancing secretion of the TGF-

 

�

 

 small latent complex or by
participating in the activation of the latent TGF-

 

�

 

, as sug-
gested from results obtained for LTBP-1 in cell culture

 

(Miyazono et al., 1991; Flaumenhaft et al., 1993). Irrespec-
tive of the mechanism, the phenotypic changes in Ltbp-3–
null mice are consistent with previous results describing a
role for TGF-

 

�

 

 in regulating PTHrP expression, as well as
with the effects of impaired TGF-

 

�

 

 signaling on bone phys-
iology in vivo. Hence, this represents the first report provid-
ing genetic evidence in support of the role for LTBP in regu-
lating TGF-

 

�

 

 bioavailability. Experiments to determine
the precise mechanism underlying these phenotypes are un-
derway.

 

Materials and methods

 

Ltbp-3 gene targeting

 

Ltbp-3 gene targeting strategy, as well as the production and characteriza-
tion of mice with a disrupted Ltbp-3 gene, are described in the online
supplemental material (available at http://www.jcb.org/cgi/content/full/
200111080/DC1). X-ray radiography was performed on anaesthetized ani-
mals using a Micro 50 (Microfocus Imaging) at 30 KV for 10 s.

 

Histology and immunohistochemistry

 

Whole-skull staining with Alizarin red S and Alcian blue was performed as
described (Lufkin et al., 1992). For histological analysis, samples were
fixed overnight in 4% paraformaldehyde in PBS at 4

 

�

 

C, decalcified in 10%
EDTA/2.5% paraformaldehyde in PBS for 7–14 d at 4

 

�

 

C, dehydrated
through an ethanol series, cleared in xylene, and embedded in paraffin.
5-

 

	

 

m sections were stained with either Masson’s Trichrome Stain or Wein-
gart’s hematoxilin/Fast Green/Safranin O (Luna, 1992) for bone and carti-
lage. Collagen II was detected using mouse monoclonal 2B1.5 antibody
(NeoMarkers) and M.O.M. Kit (Vector) and collagen X using rabbit antise-
rum pXNC1-8, a gift from G. Lunstrum (Shriners Hospital for Children,
Portland, OR) and the Vector Elite Kit.

 

In situ hybridization

 

RNA probes were prepared using DIG RNA labeling kit (Roche). The
probes used were 

 

Bsp-1

 

, a gift from I. Thesleff (University of Helsinki, Hel-
sinki, Finland), 

 

Ihh

 

, a gift from A. McMahon (Harvard University, Cam-
bridge, MA), PTHrP-R, gift of A. Broadus (Yale University Medical School,
New Haven, CT), and PTHrP, a gift of H. Kronenberg (Massachusetts Gen-
eral Hospital, Boston, MA). In situ hybridization was performed as de-
scribed (Wassarman et al., 1997).

 

Online supplemental material

 

Included in the online supplemental materials (available at http://
www.jcb.org/cgi/content/full/200111080/DC1) are details of the targeting
strategy for production of 

 

Ltbp-3

 

 disruption and characterization of the ge-
notypes of the mutant mice (Fig. S1), a picture of in situ hybridization of
embryos probed for 

 

Ltbp-3

 

 expression (Fig. S2), and an illustration of
PTHrP expression in the synchondroses of newborn animals (Fig. S3).
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