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The central nervous system (CNS) is an immunologically

specialized organ where restrictive barrier structures protect

the parenchyma from inflammation and infection. This

protection is important in preventing damage to non-renewable

resident cell populations, such as neurons, responsible for

functions ranging from executive to autonomic. Despite these

barriers, the CNS can be infected through several entry portals,

giving rise to meningitis and encephalitis. Following infection,

resident cells recruit peripherally derived immune cells to sites

of viral infection. In this review, we discuss recent advances in

immune recruitment and entry at barrier structures as well as

current immunotherapeutic strategies for the treatment of

persistent viral infections.
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Introduction
CNS viral infections are a major cause of death and

disability globally. Furthermore, the socio-economic bur-

den of CNS infections is growing rapidly with the (re)

emergence of highly pathogenic neurotropic viruses [1–

3]. Despite this growing patient population, specific ther-

apies for CNS infections are largely unavailable. The

current standard-of-care for viral infection is antiviral

therapy [4,5]. However, these drugs are often ineffective

in depleting viral reservoirs because they are either non-

specific or fail to cross the specialized CNS barrier struc-

tures into areas of viral invasion [2]. Consequently, there

remains an outstanding and growing need for targeted

treatment of these viral diseases.
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Inextricably intertwined in our ability to treat CNS viral

infections is our knowledge of brain anatomy, drainage,

and immunity, as reviewed elsewhere [6–9]. Application

of these principles can assist in creating targeted viral and

immune-mediated therapeutics. Over the past decade,

several instrumental findings have altered our perspective

of CNS immunity. Once thought to be immune-privi-

leged, the CNS is immune competent, dynamic, and in

direct contact with the peripheral immune system [10,11].

Within this review, we discuss recent advances in

immune recruitment and entry at barrier structures as

well as current immunotherapeutic strategies for the

treatment of persistent viral infection.

CNS anatomy and drainage
The brain parenchyma, enveloped by the meninges, is

suspended in cerebrospinal fluid (CSF) within the cranial

vault (Figure 1). The CSF, produced by the choroid

plexus (Figure 2) within the ventricular spaces, and the

meninges (Figure 3), comprised of the dura, pia and

arachnoid mater, protect the CNS from injury and infec-

tion. Immediately beneath the skull lies the dura mater

(Figure 3), a dense connective tissue layer consisting of

fenestrated vessels (without tight junctions) derived from

the carotid artery, sensory nerve fibers of the cranial nerves,

and an abundant repertoire of immune cells, including

meningeal macrophages [9,12�]. Inferior to the dural tissue

lies the arachnoid mater — a trabecular network that cre-

ates a subarachnoid space for CSF flow. Within the arach-

noid mater lie granulations responsible for CSF absorption

into the superior sagittal sinus, the venous drainage system.

Lastly, the pia mater above the parenchyma gives rise to

perivascular (Virchow-Robin) spaces where penetrating

arteries enter the parenchyma. These spaces are known

to contain CSF and perivascular macrophages [9].

Between cells of the CNS parenchyma resides interstitial

fluid that maintains neuronal and glial homeostasis

through solvent exchange between the capillary vascula-

ture and CSF [13]. Recently, Iliff et al. described a system

known as the ‘glymphatics’, where the disparate systems

of CSF influx and efflux drive clearance of interstitial

fluid and its suspended solutes [14,15]. Specifically, CSF

moves from the meningeal space along penetrating arter-

ies and their periarterial spaces into the CNS paren-

chyma. Mediated in part by astrocytic endfeet, interstitial

fluid is driven through the parenchyma into perivenous

spaces where, ultimately, fluid residing in the perivascular

spaces can be resorbed.

The CSF and interstitial fluid is drained in part by

lymphatics into the deep cervical lymph nodes. The
www.sciencedirect.com

mailto:mcgavernd@mail.nih.gov
http://www.sciencedirect.com/science/journal/18796257/28
http://dx.doi.org/10.1016/j.coviro.2018.02.003
http://dx.doi.org/10.1016/j.coviro.2017.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coviro.2017.12.003&domain=pdf
http://www.sciencedirect.com/science/journal/18796257


CNS immunity against viral infection Manglani and McGavern 117

Figure 1
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Sagittal view of the central nervous system and its barrier structures.

The CNS is protected by several anatomically restrictive barrier

structures that include the choroid plexus (Figure 2), meninges

(Figure 3), blood–brain barrier (Figure 4), and olfactory epithelium

(Figure 5). These barrier structures protect the CNS infection but can

also serve as an entry point for pathogens and/or immune cells.
CNS lymphatics consists of the nasal lymphatics, which

travel from olfactory bulb (OB), through the cribriform

plate and below the skull, and the dural lymphatics,

which travel alongside the superior sagittal sinus and

across the transverse sinus [16–18]. Although studies have

shown the connection between glymphatics and lympha-

tics, the exact mechanism of CSF drainage into the

lymphatics remains unknown [15].

In addition to the CNS clearance and drainage systems,

the brain and spinal cord are well perfused by an exten-

sive vascular network. Unlike choroid plexus or dural

vasculature, blood vessels that traverse the CNS pia

and parenchyma are tightly regulated (Figure 4)

[19,20]. Endothelial cells comprising these vessels form

tight junctions. In addition, parenchymal blood vessels

are further fortified by pericytes, basement membrane,

and astrocytes. These structures decrease permeability,

making it difficult for small molecules and cells to enter

the CNS parenchyma.

While the aforementioned anatomy protects the CNS,

it can still be infected by viruses via the meninges or
www.sciencedirect.com 
blood–brain barrier (BBB), retrograde transport by

peripheral nerves, or by circulating/infiltrating peripheral

immune cells. Invasion of neural tissue can initiate seri-

ous neurological disorders like meningitis and encephali-

tis, as reviewed previously [21,22]. These infections can

cause significant and irreversible damage to the CNS.

Understanding how CNS resident innate immune cells

respond to these infections as well as their role in guiding

peripheral immune cell recruitment to sites of viral inva-

sion should aid the development of interventions to treat

CNS infections.

Innate antiviral immunity to CNS infection
Upon viral entry into the body, an immune response is

generated in secondary lymphoid organs. Primed immune

cells are then recruited to the CNS by local inflammatory

signaling. Activated by conserved pathogen-associated

molecular patterns (PAMPs), pattern recognition receptors

(PRRs), retinoic acid-inducible gene (RIG)-I-like recep-

tors, and toll-like receptors (TLRs) initiate innate immune

reactions [23,24]. Viral nucleic acids bind to these receptors

expressed by innate immune sentinels (e.g. microglia,

macrophages, dendritic cells, astrocytes) and cause release

of type I interferon (IFN-I) as well as the production of

interferon stimulated genes (ISGs). IFN-I limits viral

spread by upregulating antiviral proteins, recruiting

peripheral immune cells, and altering endothelial tight

junction proteins to decrease BBB permeability

[23,25,26�,27,28]. A recent intravital imaging study per-

formed in the brains of lymphocytic choriomeningitis virus

(LCMV) infected mice revealed that the absence of IFN-I

signaling prevented microglia differentiation from a rami-

fied state, decreased peripheral myeloid cell patrolling of

cerebrovasculature, and significantly increased the number

of infected brain-resident myeloid cells [28]. Within this

viral model system, IFN-I signaling was responsible for the

entire innate immune program within the CNS.

Following infection, IFN-I responses within the CNS can

be global or region-specific. For example, long-distance

IFN-I signaling can prevent viral spread from one brain

region to another. This has been observed following

vesicular stomatitis virus (VSV) infection, where micro-

glial IFN-I production in the olfactory bulb is thought to

limit the anterograde spread of virus into the hindbrain

regions [29,30]. IFN-I responses can also tighten the BBB

and limit the extent of viral entry from the blood. Astro-

cytic interferon-a receptor signaling was shown to

decrease BBB permeability and protect the hindbrain

from West Nile virus (WNV) infection [26�]. These data

demonstrate that with certain infections IFN-I can pro-

vide a region-specific antiviral defense.

Antiviral immune responses within specific
anatomical niches
While the local IFN-I response plays an important role in

CNS protection, the activation and recruitment of the
Current Opinion in Virology 2018, 28:116–126
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Choroid plexus. The choroid plexus resides in ventricular spaces of the brain and is responsible for creating cerebral spinal fluid (CSF). The

choroid plexus is a dynamic barrier structure home to many immune cells, including choroid plexus macrophages. Unlike the BBB, but similar to

the dura mater, choroid plexus blood vessels are fenestrated and do not express tight junctions, which provides easier access to pathogens and

immune cells into the stromal space. Choroid plexus epithelia (ependyma) serve as a barrier between fenestrated blood vessels and the CSF.

Expression of tight junctional proteins between individual epithelial cells protects the CSF by restricting solute and cellular movement. During

infection, the choroid plexus can serve as a gateway for immune recruitment and entry into the CSF. Immune cells must first enter the choroid

plexus stroma before traversing the epithelial barrier.
adaptive immune cells is usually necessary for viral clear-

ance. Lymphoid cells can gain access to the CNS via

multiple entry portals as shown in Figure 1. These areas

are also sites of pathogen entry into the CNS, which is

likely why the immune system invests so much into

surveying these structures. The presence of adhesion

and antigen presenting molecules facilitates extravasation

and routine immune surveillance of these entry portals

despite the presence of specialized barrier proteins [31].

Each barrier structure has its own anatomical specializa-

tions that result in a tailored immune defense against

invading pathogens. Some of the recent insights into

pathogen-specific immunity within these distinct ana-

tomical regions are described in more detail below.

A. Meninges

Although viral meningitis has been studied extensively,

little is known about how resident meningeal cells recruit

and direct peripheral immune cell traffic. Peripheral
Current Opinion in Virology 2018, 28:116–126 
immune cells can enter the CNS through the blood

meningeal barrier [12�,32], as depicted in Figure 3.

The meningeal stromal cell network consists of blood

endothelial cells, pericytes, fibroblasts, and smooth mus-

cle cells [19]. Blood vessels within the dura mater are

fenestrated and do not express tight junctions [33], per-

mitting easier access to peripheral immune cells that must

still traverse the arachnoid mater before entering the

subarachnoid space. By contrast, meningeal vessels

beneath the arachnoid mater are non-fenestrated, express

tight junctions, and are surrounded by a network of

fibroblastic reticular cells that can modulate peripheral

immune cells. Following coronavirus infection, menin-

geal endothelial cells and fibroblastic reticular cells

release CCL19 and CCL21 to recruit/reactivate antiviral

CCR7+ CD4+ and CD8+ T cells in response to resident

myeloid and neural cell infection [34��]. The entry of

CCR7+ T cells is likely facilitated by stromal cell reorga-

nization after infection [35]. Without CCR7+ lymphoid
www.sciencedirect.com
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Figure 3
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Meninges. The meninges consist of three layers that envelope the brain and spinal cord. The dura mater, the outermost layer, is vascularized by

fenestrated vessels and is home to a repertoire of immune cells, including meningeal macrophages that line the vessels. Interior to the dura lies

the arachnoid mater. The arachnoid, its trabecula and the pia mater form the subarachnoid space, a compartment where cerebrospinal fluid (CSF)

freely flows. The arachnoid mater also contains tight junctions that help keep materials in the dura mater separate from the subarchnoid space.

Within the subarachnoid space resides pial vessels that dive into the CNS parenchyma. Pial vessels are non-fenestrated and express tight

junctions. The spaces between these vessels and the parenchyma (referred to as perivascular spaces) are inhabited by perivascular macrophages.

The final layer, which lies beneath pia mater, is referred to as the glia limitans — a layer of surface-associated astrocytes that protect the brain

and prevent migration of solutes and cells from the CSF into the parenchyma. During states of infection, the meninges can serve as an entry point

for extravasating immune cells. Dural vessels are especially susceptible to immune cell and pathogen entry because they are fenestrated and do

not express tight junctions.
cell recruitment, animals cannot control viral replication

and die of infection [34��]. However, it is unclear exactly

how these immune cells enter the virally infected CNS

parenchyma from the meninges [36], although the process

presumably involves migration across the glial limitans.

Non-infectious animal models suggest that meningeal

and/or perivascular macrophages ‘license’ T cells for

CNS entry through chemokines (e.g. CCL5, CXCL9-

11, CXCL12), adhesion molecules, and cognate antigen

presentation [37�]. Upon entering the meninges, acti-

vated T cells utilize these cues to interact with local

macrophages, reactivate, and, ultimately, gain access to

the CNS parenchyma. However, it is presently not known

whether similar steps are required for antiviral T cells to

enter the infected brain after migrating into the menin-

ges. Understanding how the meninges regulate immune
www.sciencedirect.com 
recruitment and traffic into the infected brain should

improve our ability to stimulate productive immune

responses against parenchymal infections.

B. Choroid plexus

The choroid plexus consists of fenestrated vasculature

without tight junctions that is surrounded by an epithelial

network (sealed by tight junctions) capable of hosting a

diverse immune repertoire, including T and B cells

(Figure 2) [12�,19]. Although the choroid plexus is

directly infected by some viruses (e.g. Coxsackie B3,

Echovirus 30, LCMV), it is likely that this structure also

plays a primary role in the antiviral defense against other

CNS viruses because of its anatomical localization within

the ventricular system, ability to globally activate the

CNS through release of inflammatory mediators into
Current Opinion in Virology 2018, 28:116–126
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Figure 4
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Blood–brain barrier (BBB). The blood brain barrier creates a selective interface between the blood and CNS parenchyma. It consists of endothelial

cells and their tight junction proteins, basement membrane, pericytes and astrocytic end feet. In conjunction with barrier function, the BBB can

also modulate cerebral blood flow through the neuro-vascular unit, a connection involving neurons, pericytes, astrocytes, and the blood–brain

barrier. This allows neural and astrocytic activity to modulate blood vessel tone, resulting in an increase or decrease of regional perfusion. During

infection, the BBB is permissive to immune extravasation from the blood into the perivascular spaces. Immune cells usually enter the perivascular

spaces before gaining access to the parenchyma. These spaces are inhabited by perivascular macrophages.
the CSF, and role as a gateway for immune cell entry

[38,39]. Under steady state conditions, immune cells

travel from the blood across fenestrated endothelium into

stromal spaces (connective tissue) within the choroid

plexus. More recently, it was observed that CD4+ T cells

use IFNg to help maintain immune populations within

the choroid plexus during homeostasis by promoting

expression of adhesion, chemokine and antigen present-

ing molecules on the epithelium. Interestingly, deletion

of the IFNg receptor was shown to reduce steady state

immune cell numbers within the choroid plexus as well as

immune trafficking into the CSF [40] — a process that

depends in part on NFkB/p65 signaling [41]. While

immune cell traffic through the choroid plexus has been

studied in the context of CNS injury and autoimmune

disease [42,43], less is known in vivo about how this
Current Opinion in Virology 2018, 28:116–126 
structure functions immunologically following CNS viral

infection [38]. However, data obtained in other models of

CNS inflammation might provide clues into the role of

the choroid plexus in antiviral immunity.

C. CNS parenchyma

Unlike the meninges, the CNS parenchyma is home to

few immune cells [12�]. Resident microglia survey and

respond rapidly to CNS infections [44]. After herpes

simplex virus-1 (HSV-1) infection, microglia utilize the

cGAS-STING cytosolic DNA sensing pathway to induce

release IFN-I, which abrogates viral spread and lethality

by activating a neuronal antiviral program [45–47]. Micro-

glia-mediated protection was also observed following

dengue virus (DENV) infection, where depletion of

CNS myeloid cells with clodronate increased viral
www.sciencedirect.com
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Figure 5
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Olfactory epithelium and bulb. The olfactory epithelium forms part of the nasal airway and serves as a direct interface between the peripheral

nervous system (PNS) and CNS. Olfactory sensory neurons within the olfactory epithelium are surrounded by support cells including basal,

sustentacular, and microvillar cells. These neurons extend axon fibers that cross the cribriform plate and synapse in the olfactory bulb of the CNS.

Because the dendrites of olfactory sensory neurons extend directly into the airways, these cells can be infected by viruses. Viruses that infect

olfactory sensory neurons often hijack axonal transport machinery to invade the CNS. Other pathogens, such as bacteria and amoeba, can also

access the CNS by traversing the olfactory epithelium and entering holes in the cribriform plate.
replication and mortality [48]. Loss of CNS myeloid cells

abolished antiviral CD8+ T cell recruitment to the

DENV-infected brain, suggesting that microglia play a

critical role in the antiviral defense against this pathogen.

Although innate activation and recruitment can be

initiated by microglia, neurons can also contribute to

protective immunity during infection. Following HSV-

1 infection, deletion of STAT1 signaling specifically

in neurons markedly increased viral titer in the brain

and trigeminal ganglia as well as viral spread into non-

neuronal tissues, resulting in increased mortality [47].

Neuronal antiviral protection also occurs following

WNV infection. CD8+ T cells are required to clear

WNV [49,50], and neurons can participate in this clear-

ance by releasing T cell recruitment chemoattractants

like CXCL10, which has also been observed following

rabies virus infection [51,52]. Interestingly, it was

recently demonstrated that WNV infection promotes

release of CCL2 and CXCL10 from neurons that depends

on activation of receptor-interacting protein-kinase 3
www.sciencedirect.com 
(RIPK3), which in turn promotes recruitment of leuko-

cytes to the brain without causing neuronal cell death

[53��]. Use of this particular pathway in neurons reflects a

nontraditional, neuroprotective role for RIPK3 that usu-

ally induces necroptotic cell death in other cell types [54].

Induction of necroptosis within virally infected neurons

would have a profoundly negative effect on the CNS. It is

very important after infection that the CNS parenchyma

inhibits viral spread and attracts adaptive immune cells

without injuring neurons, which are largely considered a

non-replicative cell population.

D. Olfactory epithelium

Olfactory sensory neurons (OSN) are located in the

olfactory epithelium of the nose and provide a bridge

between the periphery and CNS. Hair-like cilia expres-

sing olfactory receptors extend from OSN dendrites into

the mucus layer of the epithelium, and their axons project

through the cribriform plate onto mitral cells located in

the olfactory bulb (Figure 5). This system is responsible

for our sense of smell, but provides a direct conduit for
Current Opinion in Virology 2018, 28:116–126
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viruses and other pathogens to enter the CNS via the

nose. There are many viruses (e.g. VSV, HSV-1, RABV,

Nipah virus, Hendra virus, influenza A virus, etc.) that

enter the CNS via this route [22,55]. Viral invasion of

OSNs can rapidly lead to encephalitis and host death, as a

virus travels from the olfactory bulb to the hindbrain [56].

Little is known about the immunological defense

mounted by the olfactory epithelium following infection.

Olfactory ensheathing cells (OECs) are glial cells that

insulate OSNs, have phagocytic capabilities, and can clear

neuronal debris during development [57]. These cells can

respond to bacterial PAMPs via TLR2 and TLR4, induc-

ing release of IFN-I [58–60]; however, it is unclear how

OECs contribute to the immune response against neuro-

tropic nasal viruses. Another strategy used by the olfac-

tory epithelium to defend against viral infection is apo-

ptosis. OSNs are a renewable neuronal population that

will sometimes undergo apoptosis following infection to

limit the degree of viral dissemination into the CNS [61].

Despite this ability to rebuild, infection and inflammation

within the olfactory epithelium can be detrimental to

olfactory function, giving rise to a temporary or perma-

nent loss of smell [62,63].

Nasal associated lymphoid tissue (NALT) is also housed

within the nose and is thought to play a role in antimi-

crobial immunity as well as the efficacy of vaccines

delivery nasally [64]. NALT is home to a diverse popula-

tion of APCs, including macrophages, B cells and den-

dritic cells. These APCs facilitate adaptive immune

responses to infection [65]. The NALT can participate

in the initiation of nasal immune responses; however, a

recent study demonstrated that following influenza

virus infection, T resident memory (Trm) cells

localized primarily in the nasal tissue (e.g. olfactory

epithelium) outside of the NALT [66��]. Interestingly,

these Trm’s contributed to the primary defense against

re-challenge by a heterologous strain of influenza

virus, which prevented spread of the pathogen into the

lower respiratory tract [66��]. These data indicate that

antiviral immunity within the olfactory epithelium can

limit viral dissemination into the CNS as well as the lower

respiratory tract. Additional studies are required in this

important barrier tissue to determine all the cellular

participants within the nasal cavity that coordinate such

a formidable defense against continuous microbial

challenges.

Advancements in treatment of persistent viral
infections
Viruses can evade adaptive immune responses and

remain in the CNS indefinitely. Some examples include

human immunodeficiency virus (HIV), simian immuno-

deficiency virus (SIV), John Cunningham virus (JCV),

cytomegalovirus (CMV), varicella zoster virus (VZV),

LCMV, HSV and WNV, among others. By creating their

own microenvironments, viral reservoirs can develop in a
Current Opinion in Virology 2018, 28:116–126 
region-specific and/or cell-specific manner, undergoing

significant genomic evolution compared to the periphery.

Reactivation of CNS viral reservoirs can result in pro-

found neurological disorders, including epilepsy, cogni-

tive impairment, and motor dysfunction despite antiviral

treatment [67].

Over the past decade, immunotherapy has revolutionized

medicine. By utilizing immune-specific therapies, refrac-

tory diseases have become responsive to treatment. The

application of these techniques to persistent viral infec-

tion could aid in the clearance of CNS reservoirs. How-

ever, use of immunotherapy to treat persistent viral

infections offers two unique challenges. First, neurotropic

viruses often take residence in the CNS behind selective

barriers to evade immune cell traffic and detection. To

target these viruses, immunotherapies need to gain access

to the anatomical niches despite low levels of neuroin-

flammation — a scenario often encountered during states

of viral persistence. Second, immunotherapeutic regimes

have the potential to cause a great deal of tissue pathology

[68], which must be considered when attempting to purge

a virus from a sensitive compartment like the CNS. Using

adoptive T cell therapies, it is possible to eradicate a virus

from the CNS parenchyma without causing immunopa-

thology, although this might not be the case with every

pathogen [69��].

Tailored immunotherapy for treatment of persistent viral

infections can consist of immunomodulators or adoptive

cell transfer. During peripheral viral infection, immuno-

modulatory therapy has focused primarily on cytokine or

interferon-based treatments. However, these treatments

alone often fail to clear viral reservoirs but instead reacti-

vate or facilitate adaptive immune clearance [70]. For

example, TNFa blockade paradoxically reactivates CD4+

and CD8+ T cell effector function to stimulate viral

control during a persistent LCMV infection [71]. Accord-

ingly, immunomodulatory treatment has immense poten-

tial to resolve infectious diseases where adaptive immune

function remains intact and the nature of the infection is

understood. For example, during WNV infection,

CXCR4 antagonism increases CD8+ T cells entry into

the brain from the perivascular spaces, thereby decreasing

viral load and mortality [49]. Similarly, administration of

CXCL9 into the CNS during HSV-1 infection increases

the recruitment of antiviral CD8+ T cells and promotes

survival by bypassing the role of the UL13 kinase — a

viral protein that downregulates neuronal CXCL9 release

during infection [72]. Alongside chemokine-based and

cytokine-based treatments, checkpoint inhibitors, such as

PD-1/PDL-1 blockade, have also been used to modulate

immune responses during persistent viral infection

[73,74�]; however, their efficacy in treating CNS infec-

tions is currently unknown. To address this question, a

current clinical trial (NCT03239899) is underway to

determine whether PD-1 blockade is safe in HIV-1
www.sciencedirect.com
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patients and can be used to improve antiviral immunity in

the CNS, which is thought to be a reservoir for the

pathogen.

Immunocytotherapy or adoptive immunotherapy is

another potentially effective strategy to purge a persistent

CNS viral infection when the host immune system is

incapable of doing so [75,76]. During a persistent LCMV

infection, adoptive transfer of virus-specific memory

CD8+ and CD4+ T cells can eradicate virus from the

CNS parenchyma, meninges, and choroid plexus without

causing cytopathology or BBB breakdown [69��,77]. Dur-

ing this clearance process, antiviral T cells convert micro-

glia into CD11c+ antigen presenting cells that they purge

of virus non-cytopathically [69��]. These data demon-

strate that antiviral T cells are not inherently pathogenic

to the CNS and have the potential to clear a virus without

causing damage [78].

One of the suggested etiologies of multiple sclerosis (MS)

includes Epstein-Barr virus (EBV) infection [79]. Because

of incomplete EBV clearance and T cell exhaustion,

infected B cells persist in the meninges as well as peri-

vascular spaces and associate with MS lesions [80,81].

Therefore, removal of these inflammatory B cells may

ameliorate some of the CNS dysfunction associated with

MS [82]. A recent case report revealed that adoptive

transfer of autologous EBV-specific CD8+ T cells

improved cognition and motor function in a patient with

secondary progressive MS [83]. Following treatment, the

patient showed expansion of EBV-specific CD8+ T cells

in the blood, decreased intrathecal immunoglobulin pro-

duction, and reduced CNS lesions by MRI. These prom-

ising preliminary data suggest that adoptive immunother-

apy directed against EBV might be efficacious in treating

MS patients, and an expanded clinical trial will evaluate

this possibility more definitively.

Another virus-induced CNS disease that might benefit

from adoptive immunotherapy is progressive multifocal

leukoencephalopathy (PML) — a progressive demyelin-

ating disease caused by JC virus. JCV has a high sero-

prevalence within the general population; most carriers

remain asymptomatic unless immunocompromised. In a

recent study, a patient with JCV-induced PML was

successfully treated by adoptively transferring JCV-spe-

cific CD8+ T cells directed against the VP1 and large T

viral proteins [84]. This treatment cleared virus from the

CSF and improved neurological function. A clinical trial

(NCT02694783) is currently underway to test this

approach in a larger cohort of PML patients. It will be

interesting to find out whether JCV-specific CD8+ T cells

alone can provide lasting viral control in all patients.

Similar to adoptive immunotherapy against LCMV

[85], the antiviral defense against JCV might require

CD4+ T cell support of CD8+ T cells to provide durable

control [86].
www.sciencedirect.com 
Future directions
Understanding how peripheral immune cells are recruited

to the CNS and interact with resident cells to fight viral

infections can greatly improve the development of immu-

notherapeutics regimens. The need for treatments has

become more relevant than ever with the (re)emergence

of pathogens like Zika virus, which can cause neonatal

microcephaly, adult encephalitis, and neural precursor cell

death [87,88], and Ebola virus, a pathogen that causes

acute hemorrhagic fever and can reactivate up to nine

months after an acute infection, leading to meningoen-

cephalitis [89,90]. Thus far, research on these pathogens

has focused on vaccine development [91,92]; however, this

approach will not necessarily resolve infection in persis-

tently infected hosts. Therefore, continued development

of therapies to treat patients persistently infected with

neurotropic viruses must remain a high priority.
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