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A multiple genomic data fused SF2
prediction model, signature identification,
and gene regulatory network inference for
personalized radiotherapy
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Abstract
Radiotherapy is one of the most important cancer treatments, but its response varies greatly among individual patients.
Therefore, the prediction of radiosensitivity, identification of potential signature genes, and inference of their regulatory networks
are important for clinical and oncological reasons. Here, we proposed a novel multiple genomic fused partial least squares deep
regression method to simultaneously analyze multi-genomic data. Using 60 National Cancer Institute cell lines as examples, we
aimed to identify signature genes by optimizing the radiosensitivity prediction model and uncovering regulatory relationships. A
total of 113 signature genes were selected from more than 20,000 genes. The root mean square error of the model was only
0.0025, which was much lower than previously published results, suggesting that our method can predict radiosensitivity with the
highest accuracy. Additionally, our regulatory network analysis identified 24 highly important ‘hub’ genes. The data analysis
workflow we propose provides a unified and computational framework to harness the full potential of large-scale integrated
cancer genomic data for integrative signature discovery. Furthermore, the regression model, signature genes, and their regulatory
network should provide a reliable quantitative reference for optimizing personalized treatment options, and may aid our
understanding of cancer progress mechanisms.
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Introduction

Radiotherapy is a major cancer treatment, but the radiosen-

sitivity of different tumors or even the same type of tumor in

different patients varies widely.1 Therefore, predicting the

radiosensitivity of patients before radiation therapy, identify-

ing underlying molecular signatures, and constructing their

regulatory network have high clinical and oncological

importance.
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Radiosensitivity can be measured as the fraction of cells

surviving a single 2 Gy dose of radiation (SF2), with high

values indicating radiation resistance. While other methods are

available to measure cellular radiation sensitivity in cell lines,

SF2 is considered to be the gold standard and is supported by

strong clinical evidence.2

Variations in mRNA expression values (GE), copy num-

bers, and other genomic patterns are thought to be the main

underlying factors for different radiation responses. Accumu-

lating large amounts of these data provides an effective but

challenging way to predict the radiosensitivity of tumor cells.

Torres-Roca et al predicted the radiosensitivity of 35 human

cell lines in a NCI-60 panel using a linear classifier of expres-

sion values of tens of genes selected by the significance anal-

ysis of microarrays (SAM) method in 2005.3 They developed a

radiosensitivity index (RSI) as a biomarker of cellular radio-

sensitivity in 48 NCI-60 cancer cell lines in 2009. SF2 was the

central criterion for both feature selection and final model

training for RSI development. Ten of the selected ‘hub’ genes

were then used to construct a linear prediction model of SF2.4

Additionally, Tewari et al investigated the feasibility of inte-

grating an in vitro chemo-radiosensitivity assay with a gene

microarray system,5 identifying 54 genes correlated with radio-

sensitivity using an integrated nearest neighbor model with

Pearson correlation coefficient. Moreover, Amundson et al per-

formed large-scale comparisons of gene expression variations

in response to different doses (2, 5, and 8 Gy) of g-ray radia-

tion,6 and identified 22 genes that could discriminate the SF2

values of 63 cell lines (including NCI-60 and three other cell

lines) between low and high groups.

Besides GE data, copy number variation (CNV) and methy-

lation (ME) data are also related to radiosensitivity. Work by

Moelans et al indicated that allelic loss and amplification at the

8p11-12 breakpoint region are associated with poor radiother-

apy responses,7 while Zhu et al reported a pivotal role for DNA

ME in tumor radiosensitivity.8

Unfortunately, none of the individual types of genomic data

thoroughly capture the complexity of the cancer genome or

precisely pinpoint the cancer-driving mechanism.9 Addition-

ally, it has become increasingly clear that the integrative anal-

ysis of multi-omic data types can aid the search for potential

“drivers” by uncovering genomic features dysregulated by

multiple mechanisms.10 More importantly, true oncogenic

mechanisms are more visible when combining evidence across

patterns of alterations in DNA CNV, ME, GE and mutational

profiles.11,12 A well-known example is the HER2 oncogene

that can be activated through DNA amplification and mRNA

over-expression.9 Therefore, the development of tumor mole-

cular analysis using multiple genomic data may lead to a more

comprehensive prediction of molecular signatures.

No widely accepted threshold exists between radiation-

sensitive or -resistant phenotypes and SF2 values from 0 to 1.

Therefore, instead of roughly dividing cell lines into different

groups by subjective cutoffs of SF2 values, it may be more

useful to consider a regression issue for continuous variables

of SF2. To this end, we propose a novel integrated multiple

genomic data regression method for SF2 prediction, focusing

on identifying signature genes for functional and genetic net-

work analysis, rather than “hotspot” or “hot-loci” from GE,

CNV, and ME data.13,14

Studying the gene regulatory network (GRN) structure pro-

vides important insights into the mechanisms of complex dis-

eases.15,16 Several studies have shown that gene expression is

influenced not only by the expression of other genes but also by

CNV or other biological variations.17 Therefore, it is also nec-

essary to infer GRN using multi-genomic data. Correspond-

ingly, the aims of this study were two-fold: 1) to identify

signature genes strongly associated with radiosensitivity from

fused multiple genomic data to further corroborate and expand

the evidence of radiosensitivity-associated signature genes in

the prediction of radioresponses; and 2) to uncover regulatory

relationships among identified signatures using fused multiple

genomic data, employing least absolute shrinkage and selection

operator (LASSO) regression based on coordinate descent

algorithms to construct GRN. Figure 1 shows the study outline.

Materials and Methods

Datasets

GE, CNV, and ME data of NCI-60 cell lines were downloaded

from (https://discover.nci.nih.gov/cellminer/loadDown-

load.do). GE data were collected via five platforms (Affyme-

trix: HG-U95, HG-U133, HG-U133 Plus 2.0, HG Exon 1.0 ST;

and Agilent: Whole Human Genome Oligo array).18 CNV data

were collected via four different platforms (Agilent Human

Genome CGH Microarray 44A, Nimblegen HG19 CGH

385K WG Tiling v2.0, Affymetrix GeneChip Human Mapping

500k Array Set, and Illumina Human1Mv1_C Beadchip).19

ME data were collected using the Infinium HumanMethyla-

tion450 BeadChip Kit platform. The measured SF2 values of

corresponding cell lines were collected from the study of

Eschrich et al4 and are listed in Table 1.

Data preprocessing

Before training the dataset, we performed the following pre-

processing on the downloaded data:

(1) Considering that there are only 3–4 samples per cancer

type in the NCI-60 cell line panel, if the value of a gene

is missing in one sample then it is absent from >25% of

the samples of that cancer type. Therefore, these genes

were removed from the analysis.

(2) Common genes in all GE, CNV, and ME datasets were

identified.

(3) Because GEs and CNVs of genes that are strongly

related to each other are more likely to contain less

noise,19 they were selected using Pearson correlation

coefficients (cutoff, 0.5).

(4) GE, CNV, and ME data were respectively standardized

with the Z-Score method for further regression

analysis.
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A multiple genomic data fused partial least square deep
regression (MGPLS) method

Partial least squares (PLS) is a widely used algorithm for mod-

eling relationships between sets of observed variables using

latent variables. It comprises regression and classification tasks

as well as dimension reducing and modeling.20 Instead of iden-

tifying hyperplanes of minimum variance between the response

and independent variables, it finds a linear regression model by

projecting the predicted variables (regression or classification

labels) and the observed variables (fused GE, CNV, or ME

values of genes in our case) to a new lower space.21 This is

highly suited to the analysis of high-dimension, low-sample-

size data in bioinformatics.

To integrate multiple genome data for improved regression

performance, we proposed an MGPLS method:

Given the predictor matrix X 2 Rn�p and the response

matrix Y 2 Rn�q,

X ¼ ½GE; CNV; ME�
¼ ½ge1; ge2; . . . ; geg; cnv1; cnv2; . . . ; cnvc;me1;me2; . . . ;mem�

ð1Þ

where p ¼ g þ c þ m, g is the number of variables in GE data,

c is the number of variables in CNV data, and m is the number

of variables in ME data.

MGPLS may be applied to cases where the aim is to

describe the linear relationship between X and Y,

Y ¼ XBþ ε ð2Þ

based on the basic latent variable decomposition:

X ¼ TP
0 þ E ð3Þ

Y ¼ TQ
0 þ F ð4Þ

where B 2 Rp�q is the regression coefficient matrix, E 2 Rn�q
is the residual matrix, T 2 Rn�k is the orthogonal latent vari-

able (LV) matrix, P 2 Rp�k and Q 2 Rq�k are loading

matrices, E 2 Rn�p and F 2 Rn�q are residual matrices, and k

is the number of LVs. According to the regular PLS, T is a

linear transformation of X,

T ¼ XW ð5Þ

where W 2 Rp�k is a matrix of weights.

From Eq.(1) and Eq.(5), it is obvious that

ti ¼ wi1ge1 þ wi2ge2 þ . . . þ wiggeg þ wiðgþ1Þcnv1

þ wiðgþ2Þcnv2 þ . . . þ wiðgþcÞcnvc þ wiðgþcþ1Þme1

þ wiðgþcþ2Þme2 þ . . . þ wipmem

ð6Þ

where ti is the ith LV (i.e., ith column of T), and wi is ith column

of W. Hence, by the projection of the MGPLS algorithm, the

p-dimensional X-space, consisting of GE, CNV, and ME, is

integrated and compressed into the k-dimensional LV-space

(k<<p in common cases) to remove the noise and the multi-

collinearity of the raw data. This leads to a biased but lower

Figure 1. The overall structure of this paper. Based on the fact that the current standard approaches rely on separate mono-genomics data

analyses followed by manual integration, multiple genomic data fused regression approach (MGPLS) is proposed to identifying signature genes.

MGPLS method can analysis all data types simultaneously using a single integrated regression model as well as eliminating noise effects. VIP:

variable importance on projection; CV: cross-validation; UVE: uninformative variable elimination.
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Table 1. Measured and predicted SF2 values for NCI-60 cell lines

Cell line Measured SF2 Predicted SF2(MGPLS) Predicted SF2(SVM) Error(MGPLS) Error(SVM)

CNS:U251 0.57 0.568 0.57 0.002 0
OV:OVCAR-4 0.29 0.293 0.291 -0.003 -0.001
LE:CCRF-CEM 0.185 0.180 0.186 0.005 -0.001
CNS:SNB-19 0.43 0.425 0.43 0.005 0
RE:SN12C 0.62 0.611 0.618 0.009 0.002
BR:T-47D 0.52 0.531 0.52 -0.011 0
RE:ACHN 0.72 0.707 0.722 0.013 -0.002
LE:HL-60(TB) 0.315 0.335 0.319 -0.020 -0.004
ME:MALME-3M 0.8 0.779 0.797 0.021 0.003
ME:SK-MEL-5 0.72 0.697 0.72 0.023 0
OV:OVCAR-8 0.6 0.572 0.597 0.028 0.003
ME:UACC-257 0.48 0.510 0.48 -0.030 0
ME:SK-MEL-28 0.74 0.709 0.737 0.031 0.003
LE:RPMI-8226 0.1 0.069 0.1 0.031 0
PR:DU-145 0.52 0.488 0.52 0.032 0
BR:HS 578T 0.79 0.757 0.79 0.033 0
CO:HCT-15 0.4 0.435 0.4 -0.035 0
CO:HCT-116 0.38 0.418 0.38 -0.038 0
PR:PC-3 0.484 0.445 0.486 0.039 -0.002
LC:EKVX 0.7 0.660 0.694 0.040 0.006
OV:OVCAR-5 0.408 0.452 0.409 -0.044 -0.001
RE:TK-10 0.52 0.475 0.522 0.045 -0.002
LE:K-562 0.05 0.100 0.054 -0.050 -0.004
OV:NCI/ADR-RES 0.57 0.520 0.572 0.050 -0.002
CNS:SNB-75 0.55 0.602 0.55 -0.052 0
ME:M14 0.42 0.477 0.42 -0.057 0
ME:UACC-62 0.52 0.461 0.519 0.059 0.001
OV:OVCAR-3 0.55 0.491 0.548 0.059 0.002
LC:NCI-H322M 0.65 0.587 0.65 0.063 0
RE:UO-31 0.62 0.686 0.619 -0.066 0.001
CO:COLO 205 0.69 0.762 0.687 -0.072 0.003
OV:IGROV1 0.39 0.463 0.39 -0.073 0
LE:SR 0.07 0.143 0.072 -0.073 -0.002
CNS:SF-539 0.82 0.746 0.817 0.074 0.003
BR:MCF7 0.576 0.500 0.574 0.076 0.002
ME:SK-MEL-2 0.66 0.737 0.66 -0.077 0
RE:RXF 393 0.67 0.754 0.669 -0.084 0.001
LC:NCI-H522 0.43 0.344 0.431 0.086 -0.001
ME:LOX IMVI 0.68 0.588 0.68 0.092 0
LC:HOP-92 0.43 0.522 0.43 -0.092 0
CNS:SF-268 0.45 0.543 0.45 -0.093 0
ME:MDA-MB-435 0.1795 0.273 0.183 -0.094 -0.0035
BR:BT-549 0.632 0.537 0.635 0.095 -0.003
ME:MDA-N 0.45 0.352 0.449 0.098 0.001
CNS:SF-295 0.73 0.631 0.73 0.099 0
LE:MOLT-4 0.05 0.149 0.052 -0.099 -0.002
RE:786-0 0.66 0.551 0.659 0.109 0.001
LC:HOP-62 0.164 0.277 0.166 -0.113 -0.002
CO:KM12 0.42 0.535 0.418 -0.115 0.002
LC:A549/ATCC 0.61 0.730 0.61 -0.120 0
RE:A498 0.61 0.734 0.62 -0.124 -0.001
CO:HCC-2998 0.44 0.572 0.439 -0.132 0.001
OV:SK-OV-3 0.9 0.767 0.894 0.133 0.006
RE:CAKI-1 0.37 0.517 0.37 -0.147 0
CO:SW-620 0.62 0.473 0.622 0.147 -0.002
LC:NCI-H226 0.63 0.786 0.626 -0.156 0.004
LC:NCI-H460 0.84 0.671 0.835 0.169 0.005
BR:MDA-MB-231 0.82 0.613 0.82 0.207 0
CO:HT29 0.79 0.567 0.785 0.223 0.005
LC:NCI-H23 0.086 0.315 0.0925 -0.229 -0.0065

* Cell lines sorted by multiple genomic data fused partial least square deep regression (MGPLS).

4 Technology in Cancer Research & Treatment



variance estimate of the regression coefficients compared with

the least squares method.22

The regression coefficient matrix B can be obtained as

B ¼WðT0TÞ�1T0Y ð7Þ

where, in our case, SF2 is the response variable. As a result, the

regression model of SF2 is a combination of GE, CNV, and

ME, which means they are integrated at the raw data level.

MGPLS incorporates principal component analysis and LV

extraction together so that it can simultaneously analyze mul-

tiple genomic data using a single integrated regression model.

The measurement of regression/prediction performance

The root mean square error (RMSE) was used to evaluate the

accuracy of the radiosensitivity prediction model:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðyi�ŷiÞ2

n

s
ð9Þ

where yi is the measured SF2 value of the ith cell line, ŷi is the

corresponding predicted value, and n is the number of the

samples. The smaller the RMSE value is, the closer the pre-

dicted values are to the real values. That is, smaller RMSE

values represent a more accurate prediction model.

The identification of signature genes by optimizing SF2
regression accuracy

Because of the missing information on ME data (see Discus-

sion), we only used GE and CNV data to complete our analysis.

With integrated GE and CNV as the input matrix, real signature

genes can be identified using MGPLS by optimizing the SF2

regression model. Considering the large number of variables

(n¼7622), two types of uninformative variable elimination

(UVE) were processed iteratively to balance the calculating

time and the prediction accuracy. To improve the modeling

accuracy, 10 6-fold cross-validation methods were used for

model training as shown in Figure 2. The details of the

MGPLS-UVE algorithm and corresponding pipeline are avail-

able in the Supplementary material.

Support vector machine (SVM)

SVM is a supervised machine learning method used for clas-

sification and regression analysis. The key concept is to non-

linearly map input vectors to a very high-dimension feature

space Z, where a linear decision surface is constructed with

special properties that ensure the high generalization ability

of the model.23 This is usually conducted by the “kernel

function” trick. The final estimated regression line (or hyper-

plane) can be constructed only by considering a small amount

of the training data, i.e., the so-called support vectors. For the

same set of data, SVM with nonlinear kernels can achieve a

better fitting accuracy than linear methods such as PLS. In this

study, SVM regression was implemented using a “LIBSVM”

MATLAB package.24

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes Pathway (KEGG) analysis

The GO knowledgebase is the largest source of information

worldwide regarding gene function. It provides a comprehen-

sive, computational model of biological systems, ranging from

the molecular to the organic level, across the multiplicity of

species in the tree of life.25

KEGG is a knowledgebase for the systematic analysis of

gene functions at the molecular level in biological systems,

from cells to organisms and ecosystems. It has been generated

by genome sequencing and other high-throughput experimental

technologies.26 Both GO and KEGG pathway enrichment anal-

yses for all signature genes were performed using OmicShare

Figure 2. Flow chart of signature genes selection using GE and CNV

data. MGPLS-UVE algorithm with 10 times of 6-fold cross-validation

is employed to select the genes with the stably highest contribution to

SF2 predicting model. There are 7622 variables at the beginning and

500 variables are left after MGPLS rough selection.

He et al 5



tools, which is a free online platform for data analysis (www.

omicshare.com/tools).

Sparse GRN inference based on the LASSO method

Let E 2 R113�60 denote the matrix of GE data and C 2 R113�60
denote the matrix of CNV data. If E ¼ ½e1; e2; . . . e113� and

C ¼ ½c1; c2; . . . c113� where ei and ci are the ith row vector of

matrices E and C, respectively, then the GRN is defined as

follows:

ei ¼ biEþ fiCþ μ i þ εi ð10Þ

where bi; and fi denote the ith row vectors of adjacency

matrices B 2 R113�113 and F 2 R113�113, respectively. The

element bij represents the activation (positive) or deactivation

(negative) weight of edge from jth gene to ith gene; μi is a

model bias that can be removed by mean centered; and εi is a

residual. Our goal is to estimate row vectors bi; and fi that

minimize εi.
Eq.(10) can be rewritten in a least square minimization

problem as:

min
bi;fi
jjei � biE� fiCjj22 ð11Þ

where jj � jj2 denotes 2 norm.

To obtain a sparse model and avoid overfitting, we added

the L1 regularization term to Eq.(11) to make it a LASSO

regression form as follows:

min
bi; fi
jjei � biE� fiCjj22 þ l1jjbijj1 þ l2jj fijj1 ð12Þ

where ls are penalty coefficients.

LASSO is a multivariate linear regression method. When

there are many features and the number of samples is relatively

small, LASSO can effectively avoid overfitting and obtain

sparse solutions via an l1-norm penalty.

There are two hypotheses in the model:

(1) There is no self-regulation, i.e., the diagonal elements

of the B matrix are all zero.

(2) A gene can be directly regulated only by CNV for the

gene itself not for other genes, i.e., only diagonal ele-

ments of the F matrix can be non-zero.

After obtaining adjacency matrices B and F, the genes with

absolute values greater than 0.1 in B and F were selected. For a

gene gi, other genes whose absolute values of regression coef-

ficients were greater than 0.1 were selected as regulatory genes

of gi. Table S1shows the steps of inferencing a spare GRN.

With the exception of KEGG and GO, all analyses were

performed using MATLAB codes. The corresponding

MATLAB toolkit, MGPLS-UVE, can be freely downloaded

from our website https://www.clickgenome.org/papers/

MGPLS.html. Further details of LASSO, GRN inference, and

other methods and algorithms are included in the Supplemen-

tary materials.

Results

Identified signature genes and their SF2 prediction
performance

According to the RMSE values obtained by different numbers

of genes shown in Figure S1a, 113 genes corresponding to the

smallest RMSE were selected as signature genes. The smallest

RMSE obtained by these 113 genes means this gene set has the

highest prediction performance or closest relationship to SF2.

The gene names, Entrez gene IDs, and other detailed informa-

tion of these 113 genes are listed in Table S2. Five (YY1AP1,

INPP5A, DAP3, GON4L and JTB) of the 113 genes were high-

lighted because their CNV values were selected as signature

variables while GE values of other genes were selected as

signatures (known as CNV signatures for clarity). The other

108 genes were identified as GE signatures.

Using only the CNV values of the five CNV signatures and

the GE values of the 108 GE signatures, the RMSE was opti-

mized to 0.094 with MGPLS, a linear method. The correspond-

ing predicted SF2s are listed in Table 1. The smallest difference

between the measured and predicted SF2s of all 60 cell lines

was 0.002 (CNS:U251), while the largest was 0.229 (LC:NCI-

H23). The average error of the 60 cell lines was 0.075. Five cell

lines (CNS:U251, OV:OVCAR-4, LE:CCRF-CEM,

CNS:SNB-19, and RE:SN12C) had predicted errors <0.01 and

the other 46 cell lines had predicted errors <0.1.

To improve their prediction accuracy, SVM with radial

basis kernel function was explored to predict SF2 values with

the CNV and GE of the 113 signature genes. The corresponding

predicted SF2s are listed in Table 1. The RMSE value of the

SVM prediction model was 0.0025. Twenty-two cell lines had

differences between measured and predicted SF2s of 0. Only

five cell lines had an absolute error >0.005 (LC:EKVX,

OV:SK-OV-3, LC:NCI-H460, CO:HT29, and LC:NCI-H23).

GRN

The inference of GRN using these 113 genes was performed

using the LASSO method to analyze regulatory relationships,

as shown in Figure S2. Twenty-four genes with linkages >10

were selected as “hub” genes. Thus, these 24 “hub” genes can

directly regulate the expression of at least 10 other genes. The

GRN of the 24 “hub” genes is shown in Figure 3 and further

details are listed in Table 2.

Discussion

Variations in GE are thought to be the main underlying factors

for different radiation responses, and several studies have

attempted to correlate the relationship between radiation

response and GE. Because ME and CNV are two of the main

factors regulating GE, it is very important to take them into

consideration.
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The integration of multi-genomics data can compensate for

the noise impact of mono-genomics data. This concept has been

widely used in clustering and cancer subtype classification. For

example, Hoadley et al27 used data on chromosome arm-level

aneuploidy, DNA hypermethylation, mRNA and microRNA

expression levels, and reverse-phase protein arrays to conduct

comprehensive integrative molecular analyses of the Pan-Cancer

Atlas to reclassify human tumors and provide future directions

for exploring clinical prognosis in cancer treatment.

Additionally, because SF2 values range from 0 to 1 con-

tinuously, it is reasonable to predict the SF2 values of samples

rather than to roughly classify them into sensitive or resistant

groups. In this study, for the first time, we applied the concept

of multi-genomic data integration analysis in regression issues

using radiosensitivity prediction as an example.

In theory, all types of data can be processed simultaneously

using a single integrated regression model. Indeed, ME values

of more than 480,000 probes can be collected using the Illu-

mina Infinium Human Methylation 450K BeadChip. However,

available ME data for NCI-60 consists of fewer than 20,000

variables, representing the loss of 96% of useful ME informa-

tion. Because raw ME data of the NCI-60 platform are missing

and available preprocessed ME data are inadequate, the pre-

diction performance is much worse with than without ME data

(see Figure S1b). This was apparent from our prediction RMSE

which was smaller using only GE and CNV data than using all

GE, CNV, and ME data (0.094 vs. 0.170 for the linear model,

respectively). Therefore, for the final SF2 prediction model,

only GE and CNV data were used.

In our previous work (Zhang et al, 2014), we built a nonlinear

SF2 prediction model for the NCI-60 panel using only GE data

of 19,162 genes.28 The RMSE value was as low as only 0.011.

To test whether multi-genomic data model could identify more

essential signature genes, we herein used the same nonlinear

method, SVM, to train a nonlinear SF2 model. The comparison

results are summarized in Table 3. Clearly, regardless of whether

a linear or nonlinear model is used, our RMSE values are notably

smaller than those of Zhang et al (0.094 vs. 0.16 and 0.0025 vs.

0.011, respectively). These results indicate that our 113 signature

genes are more useful at predicting radiosensitivity than the

genes identified by our previous study.

Previous work by Torres-Roca et al used the expression values

of selected genes to predict SF2 values of NCI-60 cell lines

(RMSE¼0.20), then at a later date simplified this to a 10-hub-

gene model to predict 12 independent cell lines (RMSE¼0.38).3,4

Limited by the techniques available at the time, however, only GE

data and some of the 60 cell lines were used. Additionally, two

different types of cross-validations were employed to train the

model. A comparison of these studies and our own would be

unfair, so we instead compared the results obtained from fused

multiple genomic data with those obtained from mono-genomic

data. Correspondingly, RMSEs obtained using only GE or CNV

values of 113 signature genes and 24 “hub” genes are shown in

Table 3. The RMSE obtained using fused multiple genomic data

is the smallest, indicating these data should be used to achieve the

highest prediction performance or closest relationship to SF2.

Because our data had only five CNV signatures among 113

genes, the predominance in the number of GE signatures resulted

in the RMSE value of the GE-only model being just slightly

worse than what was obtained using fused multiple genomic

data. For the same reason, the RMSE value of the CNV-only

model was much worse. The poor SF2 prediction performance

of the “hub” genes is consistent with what we expected because

they only number 24, which is one fifth the number of signature

genes. Measured SF2 values and predicted values in different

models for each cell line are shown in Figure 4.

Overfitting is almost unavoidable for cases with over-

whelming high variable dimensions but small sample sizes, and

our case is typical. Therefore, we attempted to overcome this in

the present study as follows: 1) rather than the attempting the

leave-one-out method used widely in small-sample cases, we

employed 10 6-fold cross-validations in the training process; 2)

we used the PLS method to reduce the original high variable

dimension to a much lower LV dimension; 3) two types of

UVE were processed iteratively to remove uninformative genes

step by step rather than removing them in one step; and 4) we

used LASSO to infer the GRN of identified signature genes

because this is good at overcoming the overfitting problem in

high-dimension small-sample cases.

Figure 3. Gene regulatory network among 24 “Hub” genes. The color

of a gene (circle or triangle nodes) matches the color of its arrows to

identify regulatory relationships between these genes more efficiently.

There are two types of arrows: sharp arrows indicate the promotion of

expression and blunt arrows mean the inhibition of expression. In

addition, there are 12 genes (triangular nodes) whose CNV have a

significant promoting effect on their respective expression process.

They are SRRM1, PDCD2, RPL9, SNRPD1, ATP5A1, BLM, EWSRI,

MIPEP, MCM3, MYB, CLNSIA and RPL34. it is worth noting that

genes regulated by these 24 genes but not the “Hub” are not included

in Figure 3.
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Despite these methods, the number of samples remained

extremely small compared with the number of variables, so

we could not ensure that the overfitting problem was com-

pletely overcome. Therefore, molecular function analysis and

pathway analysis were performed to verify the essentiality of

identified signatures.

From our results, we can identify the absolute values of the

regression coefficients of five CNV signatures (YY1AP1,

INPP5A, DAP3, GON4L, and JTB) as the largest, suggesting

that these CNV signature genes may be more useful than GE

signatures in predicting radiosensitivity.

Several studies have found that some cellular functions

enriched by 113 genes are closely associated with radiosensitiv-

ity29,30 or cancers such as breast cancer, lung cancer, bladder

cancer, and leukemia.31-37. For example, SNX7 and PTK2 were

also selected by our previous study. Gene set enrichment analysis

coupled with genomic CNV assessment previously identified

YY1AP1 as an oncogenic driver in hepatocellular carcinoma,38

while the fusion of EWSR1 with MYB promoted leukemia

transformation by sustaining MYB expression and deregulating

its target BCL2 or by fulfilling its own oncogenic potential.30,39

Additionally, BLM inactivation caused by CNV was reported

to cause Bloom syndrome and increase the risk of cancer,40

while MCM3 is a potential biomarker for gastric cancer

because of the strong correlation between its copy number and

expression.41

According to our KEGG and GO analysis of all 113 genes

shown in Figures S3 and S4, MLB, MCM3, MCM7, CDC47,

POLD1, and ANAPC4 are associated with DNA replication and

repair, and cell growth and death simultaneously, so they may

be involved in cancer progression. Additionally, pathways

involving signal transduction, focal adhesion, ErbB signaling,

Wnt signaling, and vascular endothelial growth factor signaling

also appear in our pathway enrichment results.

Table 2. Details of 24 “hub” genes

Serial number

Gene

name Entrez gene id Chromosome Cytoband

Regression

coefficient

Data

type

1 ATP5A1 498 18 18q21 0.0114 GE

2 BLM 641 15 15q26.1 -0.0033 GE

3 CENPC 1060 4 4q13.2 -0.0009 GE

4 CLNS1A 1207 11 11q13.5-q14 -0.0009 GE

5 EWSR1 2130 22 22q12.2 0.0069 GE

6 MCM3 4172 6 6p12 0.0007 GE

7 MIPEP 650794 13 13q12.11 0.0121 GE

8 MYB 4602 6 6q22-q23 -0.0026 GE

9 PDCD2 5134 6 6q27 0.0016 GE

10 PRCC 5546 1 1q21.1 -0.0118 GE

11 RPL9 6133 4 4p13 -0.0028 GE

12 RPL34 6164 4 4q25 -0.0053 GE

13 SMARCC1 6599 3 3p21.31 -0.0110 GE

14 SNRPD1 6632 18 18q11.2 0.0011 GE

15 ZBTB39 9880 12 12q13.3 -0.0039 GE

16 DENND4B 9909 1 1q21 -0.0066 GE

17 SRRM1 10250 1 1p36.11 -0.0082 GE

18 PAICS 10606 4 4q12 -0.0023 GE

19 NISCH 11188 3 3p21.1 -0.0151 GE

20 LRCH1 23143 13 13q14.11 0.0068 GE

21 CNOT10 25904 3 3p22.3 -0.0061 GE

22 GAR1 54433 4 4q25 -0.0041 GE

23 MED28 80306 4 4p16 -0.0066 GE

24 SHPRH 257218 6 6q24.3 -0.0021 GE

Half of the 24 “hub” genes uncovered by GRN inference showed strong correlations between their own GE and CNV values (Figure 3). Corresponding Pearson

correlation coefficients between GEs and CNVs are listed in Table S3, of which 12 out of 24 genes are >0.5.

Table 3. RMSE comparison of different models.

Linear method Nonlinear method

Only GE Only CNV Multi-genomics Only GE Only CNV Multi-genomics

This paper 113 genes 0.10 0.21 0.094 0.0031 0.015 0.0025

24 hub gene 0.22 0.40 0.18 1.0

Zhang et al 0.16 0.011
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Conclusion

On the basis of the advantages of integrating multiple genomic

data, we proposed a novel multiple genomic data fused partial

least squares deep regression method (MGPLS), which we used

to identify 113 signature genes closely related to radiosensitivity.

We further inferred the GRN using GE and CNV data belonging

to these signature genes. The joint regression method we propose

provides a unified framework to analyze large-scale cancer

genomic data. These findings provide a reliable quantitative

reference for optimizing “personalized” treatment options, and

might aid our understanding of cancer mechanisms.
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