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metabolomics data hints at the relevance
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Abstract

Background: Metabolomics has a great potential in the development of new biomarkers in cancer and it has
experiment recent technical advances.

Methods: In this study, metabolomics and gene expression data from 67 localized (stage I to IIIB) breast cancer
tumor samples were analyzed, using (1) probabilistic graphical models to define associations using quantitative data
without other a priori information; and (2) Flux Balance Analysis and flux activities to characterize differences in
metabolic pathways.

Results: On the one hand, both analyses highlighted the importance of glutamine in breast cancer. Moreover, cell
experiments showed that treating breast cancer cells with drugs targeting glutamine metabolism significantly
affects cell viability. On the other hand, these computational methods suggested some hypotheses and have
demonstrated their utility in the analysis of metabolomics data and in associating metabolomics with patient’s
clinical outcome.

Conclusions: Computational analyses applied to metabolomics data suggested that glutamine metabolism is a
relevant process in breast cancer. Cell experiments confirmed this hypothesis. In addition, these computational
analyses allow associating metabolomics data with patient prognosis.
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Background
Breast cancer is one of the most common malignancies,
with 266,120 estimated new cases and 40,920 estimated
deaths in the United States in 2018 [1]. In clinical prac-
tice, the expression of hormonal receptors and HER2 al-
lows the classification of this disease into three groups:
hormonal receptor-positive (ER+), HER2+ and triple
negative (TNBC).
Metabolomics, a technique focused in the holistic

study of the metabolites present in a biological system, is
considered the most recent -omics. It consists of meas-
uring the entire set of metabolites present in a biological
sample [2]. The most common techniques in metabolo-
mics experiments are mass spectrometry-related
methods, which are based on the mass/charge relation-
ships of each metabolite or its fragments [3]. Recent ad-
vances in this technique allow the measurement of
thousands of metabolites from minimal amounts of bio-
logical samples [3, 4]. Therefore, metabolomics is a
promising tool for the development of new biomarkers
[5]. Metabolomics has emerged in the field of oncology
as a very informative technique for characterizing meta-
bolic profiles associated with oncogenotypes, disease
progression, and therapeutic targets [6]. For instance, in
early breast cancer, a previous study identified an associ-
ation between levels of choline, glycine, and lactate and
histopathological grades and tumor size [7, 8].
Transcriptomics and metabolomics data offer comple-

mentary information. We used two different methods to
merge metabolomics and gene expression data in breast
cancer. In previous studies, we used probabilistic graph-
ical models (PGMs) to study differences between breast
tumor subtypes and to characterize muscle-invasive
bladder cancer at a functional level using proteomics
data [9–11]. Flux Balance Analysis (FBA), however, is a
method that has been widely used to study biochemical
networks [12]. FBA predicts the growth rate or the rate
of production of a given metabolite [13], and it has pre-
viously been used to characterize breast cancer cell re-
sponses against drugs targeting metabolism [14]. In this
study, flux activities were proposed as a feasible method
to compare flux patterns in metabolic pathways.
Glutamine has a relevant role in tumor metabolism.

The entrance of glutamine in the tricarboxylic acid
cycle (TCA) generates lactate, a process known as
glutaminolysis. The metabolism of glutamine serves to
maintain the availability of non-essential aminoacids
and to maintain TCA intermediates while NADH is
generating [15]. Glutamine is necessary to cellular
proliferation and its metabolism is regulated by the
levels of MYC oncogene [16, 17].
In the present study, metabolomics and gene expres-

sion data from 67 fresh tissue samples [18] were ana-
lyzed through PGMs and FBA. Our aim was to find

associations between metabolomics and gene expression
data and the characterization of breast cancer from a
metabolomics point of view.

Methods
Patients included in the study
Metabolomics and gene expression data from 67 fresh
tumor tissue samples originally analyzed by Terunuma
et al. were included in this study. Untargeted metabolo-
mic quantification was performed by Metabolon Inc.
Samples were prepared using the automated MicroLab
STAR system from Hamilton company and mass-
spectrometry experiments were done in a Waters
ACQUITY UPLC and a Thermo-Finnigan linear trap
quadrupole mass spectrometer and in a Thermo-
Finnigan Trace DSQ fast-scanning quadrupole mass
spectrometer [18].

Preprocessing of gene expression and metabolomics data
Metabolomics data contains information about 536 me-
tabolites. Log2 was calculated. As quality criteria, data
were filtered to include detectable measurements in at
least 75% of the samples. Missing values were imputed
to a normal distribution using Perseus software [19].
After quality control, 237 metabolites were considered
for subsequent analyses.
In terms of gene expression data, the 2000 most vari-

able genes, i.e., those genes with the highest standard de-
viation, were chosen to build the PGM. This data was
from an Affymetrix array and they are available in Gene
Expression Omnibus Database under the identifier
GSE37751.

Probabilistic graphical models and gene ontology
analyses
As previously described [10, 11, 14, 20], PGMs compat-
ible with high dimensional data were used, using correl-
ation as associative criteria. PGMs were built using
metabolomics, gene expression or flux activity data with-
out any a priori information. The grapHD package [21]
and R v3.2.5 [22] were employed to build the PGMs. In
this case, PGMs use gene expression or metabolomics
quantification without any a priori information, making
connections based on correlation as associative method.
PGM construction is based on two sequential steps: first,
finding the spanning tree with the maximum likelihood
and, second, reduce the graph edges based on the reduc-
tion of Bayesian Information Criterion (BIC) and the
preservation of decomposability [23]. The visualization
of the resulting network was done using Cytoscape soft-
ware [24] (Sup Files 1–3). The resulting networks were
divided into branches and ontology analyses were done
to assign a majority function/metabolic pathway to each
branch, defining in this way different functional nodes in
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the networks. In the case of genes, gene ontology ana-
lyses were performed using the DAVID web tool with
“Homo sapiens” as background and GOTERM, KEGG
and Biocarta selected as categories [25]. In the case of
metabolites, the Integrated Molecular Pathway Level
Analysis (IMPaLA) web tool was used to assign a main
metabolic pathway to each branch [26].
Once the functional structure was defined, functional

node activities were calculated in order to make compar-
isons between groups, as previously described [10, 11,
14, 20]. Briefly, each functional node activity was calcu-
lated as the mean of the expression/quantity of genes/
metabolites of each node that are related to the main
node function/metabolic pathway.

Flux balance analysis and flux activities
FBA is a method that allows the estimation of tumor
growth rate and the model of the flow of metabolites in a
metabolic network. FBA was performed using the library
COBRA Toolbox v2.0 [27] available for MATLAB. FBA
was calculated using the whole human metabolic recon-
struction Recon2 [28]. This metabolic reconstruction in-
cludes 2191 genes collected into the Gene Protein
Reaction rules (GPRs), 5063 metabolites and 7440 reac-
tions. GPRs represent the relationships between genes and
metabolic reactions and they are included into the model
as Boolean expressions. GPRs were solved as described in
previous studies [11, 14], using a modification of the
Barker et al. algorithm [29], which were incorporated into
the model by a modified E-flux method [14, 30]. Briefly,
the “OR” operators were solved as the sum and the
“AND” operators were solved as the minimum. Then, the
GPR data were normalized using the Max-min function
and introduced into the model as the reaction bounds. As
the objective function, the biomass reaction proposed in
the Recon2 was used as representative of tumor growth.
This biomass reaction was based on experimental mea-
surements of leukemia cells. The 7440 reactions are
grouped into 101 metabolic pathways. The formulated
mathematical problem was solved by linear programming.
Finally, an estimation of tumor growth rate and a value of
flux for each reaction in the model were obtained.
Flux activities were previously proposed as a measure-

ment to compare differences at the metabolic pathway
level [14]. Briefly, they were calculated as the sum of the
fluxes of the reactions included in each pathway defined
in Recon2.

Statistical analyses
The statistical analyses were performed with GraphPad
Prism v6. Predictor signatures were built with the BRB
Array Tool from Dr. Richard Simon’s team [31]. Vari-
ables related to overall survival were ranked on the basis
of their p-values for the long-rank test, using the overall

survival as endpoint. Leave-one-out cross-validation was
used to evaluate the predictive accuracy of the profiles.
The cutoff point was established a priori and to test the
statistical significance, the p-value of the log-rank test
statistic for the risk groups was evaluated using 1000
random permutations. Then, the independence between
the defined predictors and clinical parameters was
checked using Cox regression models. All p-values are
two-sided and are considered statistically significant
under 0.05.

Cell culture and reagents
Breast cancer cell lines (MCF7, T47D and CAMA1
[ER+], and MDAB231, MDAMB468 and HCC1143
[TNBC]) were cultured in RPMI-1640 medium with
phenol red, supplemented with 10% heat-inactivated
fetal bovine serum, 100 mg/mL penicillin and 100mg/
mL streptomycin. Cell lines were cultured at 37 °C in a
humidified atmosphere with 5% (v/v) CO2 in the air.
The MCF7 (ATCC® HTB-22™), T47D (ATCC® HTB-
133™) and MDA-MB-231 (ATCC® HTB-26) cell lines
were kindly provided by Dr. Nuria Vilaboa (La Paz Uni-
versity Hospital, previously obtained from ATCC in Janu-
ary 2014). The MDAMB468 (ATCC® HTB-132™),
CAMA1 (ATCC® HTB-21™) and HCC1143 (ATCC® CRL-
2321™) cell lines were obtained from ATCC (July 2014).
Cell lines were routinely monitored and authenticated by
morphology and growth characteristics, tested for Myco-
plasma and frozen, and passaged for fewer than 6months
before experiments. The aminooxyacetic acid (AOA)
(Sigma Aldrich C13408) and L-Glutamic acid γ-(p-nitroa-
nilide) hydrochloride (GPNA) (Sigma Aldrich G6133)
were obtained from Sigma-Aldrich (St. Louis, MO, USA).

Cell viability assays
Dose-response curves were designed for AOA and GPNA.
As the preparation of GPNA needs an acid medium,
HEPES (50mM) was added to buffer the medium. About
5000 cells were seeded in each well in 96-well plates and
after 24 h, drugs were added. After an incubation of 72 h,
cell viability was determined using CellTiter 96 AQueous
One Solution Cell Proliferation Assay (Promega) kit and
absorbance was quantified on a microplate reader
(TECAN). As a control untreated cells were used and all
the experiments were performed by triplicate.

Results
Patient characteristics
With the aim of study the relationships between metabo-
lomics, gene expression, and FBA results, metabolomics
and gene expression data, analyzed by mass-spectrometry
and microarrays GeneChip Human Gene 1.0 ST (Affyme-
trix) respectively and published by Terunuma et al., were
analyzed [18].
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A total of 67 tumor fresh tissue samples from patients
with breast cancer recruited in Baltimore hospital were
studied. This patient cohort comprises 33 ER+ and 34
ER- (of which 14 were also TNBC). The median follow-
up was 50 months, and 31 deaths occurred during this
time. No significant differences regarding overall survival
(OS) were observed between patients with ER+ or ER-
tumors. Patient characteristics are shown in Table 1.

Analysis of metabolomics data
After Kaplan-Meier analysis, 29 metabolites were found
related to OS (p < 0.05) (Sup Table 1).
Then, an OS predictor using this metabolomics data was

built. This metabolite-based signature included five metab-
olites: glutamine, 2-hydroxypalmitate, deoxycarnitine,
butyrylcarnitine and glycerophosphorylcholine (p-value =
0.003, hazard ratio [HR] = 0.34, 50:50%) (Fig. 1). A multi-
variate analysis showed that the signature provided add-
itional prognostic information to clinical data (S1 Table).
Metabolomics data without using any a priori informa-

tion were analyzed through PGM. Metabolomics data-
base, including information about 536 metabolites, was
reduced to 237 metabolites due to quality criteria (de-
tected in at least 75% of the samples). A main metabolic
pathway was assigned to each functional node of the
resulting network using IMPaLA. IMPaLA is a tool that
allows ontology analyses based on metabolic pathways
and metabolites instead of other platforms such as DA-
VID which are based on genes and biological processes.
Strikingly, this network had a functional structure,
grouping the metabolites into metabolic pathways as it
has been previously shown for gene and protein PGMs
[10, 11, 14, 20]. This is relevant because this type of net-
works is built based on the gene expression data or, in
this case, the metabolomics data, without any a priori in-
formation, meaning that those metabolites that are in-
volved in a concrete metabolic pathway had a correlated
quantification profile across the series. Five functional
nodes were defined, each with a different overrepre-
sented metabolic pathway (Fig. 2).
The activity of each functional node was calculated as

previously described and comparisons between ER+ and
ER- were done [10, 11, 14, 20]. Significant differences
were found between ER+ and ER- tumors regarding lipid
and purine metabolism (p < 0.05) (S1 Fig).
Moreover, the lipid metabolism functional node showed

prognostic value in this cohort in a Kaplan-Meier analysis
(p-value = 0.008, FDR = 0.04). Then, a predictor signature
was built (p = 0.045, HR = 0.48, 50:50%) (Fig. 3). However,
a multivariate analysis showed that the predictor do not

Table 1 Patient characteristics

n (%) ER+ ER-

Number of patients 67 33 34

Age (years)

Median 51 57 48

Range 30–93 34–93 30–75

TNM stage

I 6 (9%) 4 (12%) 2 (6%)

II 2 (3%) 1 (3%) 1 (3%)

IIA 23 (35%) 12 (37%) 11 (32%)

IIB 21 (31%) 7 (21%) 14 (41%)

IIIA 9 (13%) 5 (15%) 4 (12%)

IIIB 6 (9%) 4 (12%) 2 (6%)

N category

pN0 37 (55%) 17 (52%) 20 (59%)

pN1 24 (35%) 13 (39%) 11 (32%)

pN2 5 (8%) 3 (9%) 2 (6%)

Missing 1 (2%) 0 (0%) 1 (3%)

Grade

G1 8 (12%) 8 (24%) 0 (0%)

G2 20 (30%) 14 (43%) 6 (18%)

G3 29 (43%) 7 (21%) 22 (64%)

Missing 10 (15%) 4 (12%) 6 (18%)

Neoadjuvant therapy

Yes 6 (9%) 2 (6%) 4 (12%)

No 50 (75%) 26 (79%) 24 (70%)

Missing 11 (16%) 5 (15%) 6 (18%)

Fig. 1 Predictive signature built using metabolomics data
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add additional prognostic information to that provided by
clinical features (S2 Table).

Analyses combining gene expression with metabolomics
data
On the other hand, a network combining metabolo-
mics and gene expression data was built. Due to the
differences between both kinds of data, most of the
metabolites were grouped together. However, some
metabolites were integrated into gene branches
(Fig. 4).
This combined network was then functionally charac-

terized based on the majority function of the genes con-
tained in each branch. The resulting network had eleven
functional nodes and a twelfth branch that include the
majority of the metabolites (Fig. 4).
Once the main functions were assigned, a literature re-

view was performed to study the relationship between
metabolites included in the gene functional nodes and
the main function of each functional node. We found

out that a relationship with functional nodes had been
previously described for 4 of 20 metabolites: succinate,
cytidine, histamine and 1,2-propanediol. The relation-
ships between metabolites and their node function are
shown in Table 2.

Flux balance analysis and flux activities
FBA and flux activities were calculated as previously de-
scribed [14]. Briefly, gene expression data from 67 tumor
samples were used, GPR rules were solved and the nor-
malized values were introduced into the metabolic
model using modified E-flux algorithm [11, 30]. Finally,
FBA was calculated using a biomass reaction representa-
tive of tumor growth. No significant differences were
found in the tumor growth rate between ER+ and ER-
tumors (S2 Fig).
Flux activities showed significant differences between

ER+ and ER- in glycerophospholipid metabolism, phos-
phatidyl inositol metabolism, urea cycle, propanoate

Fig. 2 Probabilistic graphical model from metabolomics data

Fig. 3 Predictor based on lipid metabolism node activity
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metabolism, pyrimidine catabolism and reactive oxygen
species (ROS) detoxification (S3 Fig).
In addition, the combination of glutamate metabol-

ism (the pathway that includes the glutamine) and
alanine and aspartate metabolism flux activities
showed prognostic value in this cohort (p-value =
0.024, HR = 0.41, 50:50%) (Fig. 5). A multivariate ana-
lysis showed that this flux activity-based predictor
provides prognostic information independently from
clinical data (S3 Table).

PGM analysis combining flux activities with metabolomics
data
Flux activities were calculated for each metabolic path-
way defined in the Recon2. Then, using flux activities
and metabolomics data, a new PGM was built to study
association between both types of data. Interestingly,
both types of data appeared mixed in the network; with
the peculiarity that flux activities appeared usually at the
periphery of the network (Fig. 6).
The resulting network was split into several branches

to study the relationship of the metabolites with the
flux activities included in each branch (Fig. 6). Coher-
ence between both types of data was shown by the
PGM, associating flux activities and metabolites related

to these flux activities in the same branch. For instance,
branch 1 includes glycolysis flux activity and three
metabolites previously related to glycolysis (S4 Table).
Regarding vitamins and cofactors, it was not possible
make comparisons because the IMPaLA label for this
category is “Vitamin and co-factor metabolism” and
Recon2 labels differentiate between the various vitamins,
labeling them as “Vitamin B6 metabolism”, “Vitamin A
metabolism”, etc.

Cell viability assays using drugs targeting glutamine
metabolism
As the computational analyses pointed out the relevance
of glutamine and its metabolism in breast cancer (glu-
tamine and glutamate metabolism appeared recurrently
in the analyses), cell viability assays employing two drugs
targeting glutaminolysis (aminooxyacetic acid [AOA],
and L-Glutamic acid γ-(p-nitroanilide) hydrochloride
[GPNA]) were performed. Dose-response curves of these
two drugs confirm that targeting glutamine metabolism
affected cell viability (Fig. 7).
In AOA-treated cell lines, the IC50 did not show any

differential response between breast cancer subtypes.
However, in GPNA-treated cells, IC50 for ER+ cell lines
were lower than IC50 for TNBC cells (Table 3).

Fig. 4 a Network associating genes (red) and metabolites (blue). b Metabolite and gene network functionally characterized

Table 2 Previously described relationships between metabolites included in gene nodes and the function of these nodes

Metabolite Node Described relationship Reference

Succinate Immune response Increases immune response, induces IL-1b production, promotes
adaptive immune response.

PMID: 28109906

Cytidine Immune response 5-aza-2′-deoxycytidine potentiates antitumor immune response,
role in innate immune response.

PMID: 23865062, PMID: 24559534

Histamine Angiogenesis Histamine promotes angiogenesis by enhancing VEGF production. PMID: 23225320

1,2-propanediol
(prev.X-4796)

Angiogenesis Modulates the immune system through S1P, which promotes
angiogenesis and proliferation. 14C-sulfoquinovosyl acylpropanediol
is an antiangiogenic drug.

PMID: 21632869, PMID: 29543539
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Discussion
Metabolomics is attracting considerable interest as a
technique for finding new biomarkers in cancer. In this
study, a computational analytical workflow for the man-
agement and study of metabolomics data was proposed.
This workflow allowed global metabolic characterization,
beyond analyses based on unique metabolites. On the
other hand, this workflow pointed out the relevance of
glutamine metabolism in breast cancer (which appears
recurrently as a relevant process in the computational
analyses), a hypothesis that was confirmed by cellular
experiments.
Genomics and metabolomics data from Terunuma

et al. have previously been used by The Cancer Genome
Atlas Consortium to correlate gene expression data with
metabolomics data [18, 32]. Based on this dataset, we
applied PGMs for the first time in metabolomics data
from tumor samples and also in metabolomics data
combined with gene expression data and flux activities,

with the aim of confirming known associations and find-
ing new ones.
First, we evaluated whether metabolomics data were

related to OS in patients with breast cancer. An OS pre-
dictive signature was built that included the expression
values of glutamine, deoxycarnitine, butyrylcarnitine,
glycerophosphorylcholine and 2-hydroxypalmitate [15].
The first four metabolites have been previously related
to survival in breast cancer [33, 34]. However, to our
knowledge, this is the first report associating 2-
hydroxypalmitate with cancer survival. Additionally, in
the previous study by Terunuma et al., 2-
hydroxyglutarate was associated with poor prognosis in
patients with breast cancer [18]. 2-hydroxyglutarate is a
glutamine intermediate in the tricarboxylic acid cycle,
involved in the conversion of glutamine into lactate, a
process known as glutaminolysis [15]. The negative sign
in the predictor of glutamine points a protective effect
(the more glutamine the better prognosis). An increased

Fig. 5 OS predictor based on glutamate metabolism and alanine and aspartate metabolism flux activities

Fig. 6 Probabilistic graphical model combining flux activities and metabolomics data. a Network combining flux activities (purple) and metabolite
(pink) expression data. b Division in branches of the network formed by flux activities and metabolomics data
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presence of glutamine could indicate that it has not been
introduced into the Krebs cycle and transformed into
lactate, a fact associated with a more aggressive pheno-
type and a worst prognosis.
A metabolite network using metabolomics data was

built using PGMs. PGMs are based on expression data,
or quantification data in the case of metabolomics, and
they do not need any additional information. The output
of this analysis is a network that reflects the correlations
between genes, proteins or metabolites. On the other
hand, IMPaLA assigned a dominant metabolic function
to each resulting node. In previous studies, we demon-
strated that PGMs are useful for functionally

characterizing gene or protein networks [10, 11, 20].
However, to our knowledge, this is the first time a PGM
has been applied to metabolomics data from tumor sam-
ples. Just as observed in genes or proteins, metabolites
are grouped into metabolic pathways, allowing the
characterization of differences in metabolic pathways be-
tween ER+ and ER- tumors. For example, both lipid me-
tabolism and purine metabolism node activities were
higher in ER- tumors. Although there has not been de-
scribed a relationship between lipids and breast cancer
subtypes, it was described that ER- tumors usually over-
express genes related to lipid metabolism [35]. More-
over, the activity of the lipid metabolism node had
prognostic value. No relationship between purine metab-
olism and breast cancer has previously been defined.
On the other hand, the network combining gene expres-

sion data and metabolomics data grouped most of the me-
tabolites into an isolated branch. Yet, some metabolites
were included into gene branches. We found that four out
of twenty metabolites showed a previously reported rela-
tionship with the main function of the gene functional
node in which they were included. Succinate and cytidine
were located in the immune response functional node.
Succinate acts as an inflammation activation signal, indu-
cing IL-1β cytokine production through hypoxia-inducible
factor 1 [36]. In addition, succinate increases dendritic cell
capability to act as antigen-presenting cells, prompting an
adaptive immune response [37]. Regarding cytidine,
Wachowska et al. described that 5-aza-2′-deoxycytidine
modulates the levels of major histocompatibility complex
class I molecules in tumor cells, induces P1A antigen and
has immunomodulatory activity when combined with
photodynamic therapy [38].
Both histamine and 1,2-propanediol appeared to be re-

lated to the angiogenesis functional node. Histamine is
known to promote angiogenesis through vascular epithe-
lial growth factor [39]. On the other hand, sulfoquinovo-
syl acylpropanediol, an 1,2-propanediol derivate, inhibits
angiogenesis in murine models with pulmonary carcin-
oma [40].
The remaining sixteen metabolites require an in-depth

study to establish associations with their respective func-
tional nodes. These results support the potential of
PGMs as a tool to generate hypotheses without the need
of a priori knowledge.
FBA was used to model metabolism using gene ex-

pression data. Although FBA-predicted biomass did not
show significant differences between ER+ and ER- tu-
mors, differences in flux activities were shown between
both subtypes. Some of these activities were also related
to prognosis, such as “Glutamine metabolism”, which
agrees with the results obtained from the metabolomics
data, including glutamine in the metabolite signature
capable of predicting OS. These results highlighted the

Fig. 7 Dose-response curves using two drugs targeting glutamine
metabolism in breast cancer cell lines. a Dose-response curve for
AOA (0–6 Mm). b Dose-response curve for GPNA (0–4 Mm)

Table 3 IC50 calculated for each drug in each breast cancer cell
line

Cell Line Subtype AOA IC50 (mM) GPNA IC50 (mM)

T47D ER+ 2.05 0.48

MCF7 ER+ 3.89 0.69

CAMA1 ER+ 2.90 1.10

MDAMB231 TNBC 0.64 1.73

MDAMB468 TNBC 2.29 2.50

HCC1143 TNBC 4.22 2.59
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relevance of glutamine metabolism in breast cancer, sug-
gesting the utility of drugs targeting this pathway such as
GPNA, which it has already been described as affecting
proliferation in lung cancer cells [41]. Strikingly, cell via-
bility experiments using GPNA and AOA, two drugs tar-
geting glutamine metabolism, showed a decreased in cell
viability, confirming the relevant role of this process in
breast cancer. Despite the highest levels of glutamine-
related enzymes described in TNBC and HER2 tumors
comparing with luminal tumors, dose-response curves did
not show any differential response between ER+ and
TNBC breast cancer cells in the case of AOA [42, 43]. In
addition, ER+ cells seem to be more sensible to GPNA.
On the other hand, AOA has been successfully tested in
ER+ and ER- breast cancer xenograft models [44].
With the aim of associating metabolomics and FBA re-

sults, flux activities and metabolomics data were com-
bined to form a new network. As opposed to gene and
metabolite data, metabolomics data and flux activities
combined well in the network. Interestingly, flux activ-
ities are dead-end nodes, perhaps due to the fact that
they are by definition a final summary of each pathway.
IMPaLA assigned a main metabolic pathway to resulting
branches; thus, it was possible to know how many me-
tabolites were related to flux activity in each branch. In
most cases with available information, there was coher-
ence between metabolites included in the branch and its
flux activity. This validates FBA and flux activities, both
based on gene expression, as a method of simulating
metabolism.
Our study has some limitations. The limited number

of samples leads us to consider the results as prelimin-
ary, and validation in an independent cohort is needed.
Additionally, our results are difficult to place in the
current clinical landscape, given that tumors in the ori-
ginal series had not been assessed for HER2 expression.
On the other hand, evolving techniques currently allow
the detection of more metabolites, which would permit a
more thorough analysis.

Conclusions
Metabolomics is postulated as a booming technique for
the biomarker search in cancer. Additionally, PGMs re-
veal their utility in the analysis of metabolomics data
from a functional point of view, not only metabolomics
data alone, but also in combination with flux or gene ex-
pression data. Therefore, PGM is postulated as a method
to propose new hypotheses in the metabolomics field.
We also found that it is possible to associate metabolo-
mics data with clinical outcomes and to build prognostic
signatures based on metabolomics data. Finally, these
computational analyses suggested a main role of glutam-
ine metabolism in breast cancer, a fact that was experi-
mentally validated.
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