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SUMMARY

DNA Encoding, as a key step in DNA storage, plays an important role in reading
and writing accuracy and the storage error rate. However, currently, the encod-
ing efficiency is not high enough and the encoding speed is not fast enough, which
limits the performance of DNA storage systems. In this work, a DNA storage en-
coding system with a graph convolutional network and self-attention (GCNSA) is
proposed. The experimental results show that DNA storage code constructed by
GCNSA increases by 14.4% on average under the basic constraints, and by 5%-
40% under other constraints. The increase of DNA storage codes effectively im-
proves the storage density of 0.7-2.2% in the DNA storage system. The GCNSA
predicted more DNA storage codes in less time while ensuring the quality of co-
des, which lays a foundation for higher read and write efficiency in DNA storage.

INTRODUCTION

The information age is generating massive amounts of data. International Data Corporation (IDC) has

predicted that by 2025,1 the volume of data will reach 163 ZB (i.e., 1.63 3 1011 TB). Massive data (such

as metagenomic sequencing data,2 video surveillance data, and so forth) poses challenges to traditional

data storage methods and storage media. DNA is a storage medium with high density, high durability,

and widespread existence in nature. Compared to traditional storage media, DNA storage has virtually

zero maintenance energy requirement, and it can be preserved at room temperature and in dry conditions

for thousands of years. The use of DNA to store abiotic information dates back to 1940, when Davis cloned

DNA into plasmids for data preservation.3 However, at that time, the prevailing synthesis and sequencing

technologies limited the development of DNA storage. In recent years, synthesis and sequencing technol-

ogies have continued to advance, and DNA storage has once again become a hotspot of global

research.4–7 In 2012, Church et al. used a binary model for DNA storage.8 Subsequently, Yazdi et al. pro-

posed a DNA storage system with error correction.9 Fountain code is a high-density coding scheme

with error tolerance mechanism. It was used by Erlich et al.10 to improve the coding rate in DNA storage.

In 2019, Ceze et al.11 completed a systemically integrated DNA storage system for digital microfluidics. In

order to better predict the hybridization reaction process in DNA storage, Buterez12 proposed a deep

learn-based hybridization prediction method, which reduced the prediction time by two orders of magni-

tude in the case of high fidelity. In order to expand the storage density,13,14 synthetic bases are also used in

DNA storage.15 In terms of DNA storage miniaturization, some researchers have also proposed DNA stor-

age systems based on nanopore sequencing16 and nanoscale electrodes.17 To reduce the rate of DNA

degradation and its resistance to harsh conditions, the researchers combined the information stored in

DNA with non-biological materials, such as nano-silicon balls,18 3D-printed rabbits,5 and magnetic nano-

particles,19 to further improve the durability of DNA storage.

The first step of DNA storage is DNA encoding, which is an important step in the overall storage system.

Huffman encoding is an encoding method widely used for data file compression. Goldman et al.20 pro-

posed a scheme using Huffman encoding to improve the coding potential of DNA storage to 1.58 bits/

nt. In 2015, Grass et al.18 used GF (Galois Field) and RS (Reed-Solomon) codes to correct storage-related

errors. The fountain code scheme proposed by Erlich et al.10 prevents homopolymers and extreme GC con-

tent. Jeong21 and Anavy7 made improvements by using fountain code, which respectively reduced the

reading cost and increased the storage density, but they were still distant from the theoretical optima.

In addition to fountain code, other error-correcting codes applied to DNA storage include WMU (weakly

mutually uncorrelated) code,22 RS code,18 HEDGES,23 and the error-correcting storage system proposed

by Lenz et al.24 In 2020, Liu’s team25 proposed a DNA storage system based on Base64 encoding and
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inserted circular plasmids for long-term storage. Subsequently, they proposed a storage system based on

RaptorQ,26 which realized DNA error correction and reduced homomers. A coding efficiency of 1.50 bits/nt

was achieved for natural bases. Limbachiya et al.27 proposed a constraint family DNA storage coding, but

only the distance constraint and GC content were considered. Subsequently, Cao et al. proposed storage

coding based on the DMVO (Damping Multiulti-Verse Optimizer),28 which satisfied more constraints, and

proposed a coding scheme based on thermodynamic MFE (minimum free energy) constraints, which was

closer to the nature of biochemical reactions. Rasool et al.29 proposed a DNA storage constraint coding

based on LSTM, but unfortunately not based on learning features, LSTM is only used to screen sequences

that meet constraints. Zhang’s research group successively proposed the DBWO (Double-strategy Black

Widow Optimization)30 and CLGBO (Cauchy and Levy mutation strategy)31 algorithms and new combina-

tive constraints for DNA storage coding and constructed coding sets with stronger stability, but the time

complexity of the coding process was too high. Although researchers have proposed a variety of DNA stor-

age coding schemes and preliminarily verified the coding potential of DNA storage and the possibility of

replacing silicon-based storage,32 the recently proposed DNA storage systems still have the problems of

low coding density and slow coding speed.33

Although theoretical derivation34 and heuristic algorithms35 have led to some achievements in DNA storage

coding, and the disadvantage of theoretical derivation is that it does not get an exact value. The search speed

of heuristic algorithms is not fast enough, and the optimal solution still has a distance from the Pareto bound-

ary of theDNA coding problem.36Moreover, DNA storage codewords have higher requirements in DNA stor-

age systems37 with a random access.14,38–40 Inspired by convolutional neural networks, cyclic neural networks,

complex systems, the concept of graph neural networks was first proposed by Gori et al.41 Graph neural net-

works can capture the interdependence between data in more non-Euclidean spaces. Moreover, the GCN

proposed by Li et al.42 is focused on dealing with combinatorial optimization problems, which promotes

the application of graph neural networks in practical problems. In recent years, graph neural networks have

been widely applied in systems biology and bioinformatics,43 especially in the fields of drug prediction44,45

and gene interaction.46,47 In this article, a DNA storage encoding with a graph convolutional network48 and

self-attention43 is proposed. More features are extracted by the graph convolutional network, and the contri-

butions of different coding vectors are learned by an attention mechanism. To solve the problem of low effi-

ciency of DNA storage encoding, a dataset was established by screening the DNA storage codes that met the

constraints, and the GCNSA was used for prediction after training (Figure 1). In the GCNSA, the original code

graph is reduced to an equivalent smaller graph to reduce the time complexity of the encoding process. Sec-

ond, the GCNwas used to extract features and the self-attentionmechanismwas used to capture the relation-

ship between local DNA code words. Weighted aggregation of corresponding vectors of DNA code words

was carried out to improve the efficiency of DNA storage and coding. Finally, the performance of GCNSA

is verified by comparing it with baseline methods on DNA stored coding datasets. To further evaluate the

GCNSA,DNA storage codeswere predicted under a variety of combinatorial constraints. Experimental results

show that the GCNSA is superior to other advanced algorithms. It significantly increased the number of DNA

storage codes by 5%-40%, encoding speed by up to 15 times, and storage density by 0.7%-1.0% in a DNA

random access storage system. In addition, lexicographic encoding using the coding set generated by

GCNSA can also improve the coding density by 2.2% under the same constraints.

RESULTS

In this article, i7-9900K and RTX3090 were used to carry out all experiments on the same platform. Due to

the nature of graph data (Figure 6) and the particularity of DNA storage code constraints, it is difficult to

evaluate themodel by using themethod of 5-fold cross-validation. Therefore, this article uses amodel eval-

uation method that divides the data into a fixed training set and test set. The dataset of each type was

divided into 8:1:1 (Table 11), corresponding to the training set, test set, and prediction set. In order to bet-

ter illustrate the performance of the GCNSA model, the trained model was used to predict DNA storage

codes under fixed constraints, and the number of codes and encoding time was compared with several

representative construction codes. In the DNA random access storage system, the influence of the DNA

storage code predicted by the GCNSA on storage density was compared and analyzed.

Ablation experiments

In order to verify the influence of different network structure models on the performance of the GCNSA, we

performed ablation experiments (Figure 2, Table 1) on theGCNSAmodel and fine-tuned themodel param-

eters, and the corresponding hyperparameters are given in the Table S1. The abbreviations of the relevant
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constraints are shown in Table 2. Two different network structures were first designed, namely GCNSA with

self-attention and GCN without attention. The convolution layer was set to five layers. The DNA storage

codes results are shown in Table 1. The GCNSA with self-attention is superior to the GCN. After deter-

mining the use of the self-attention mechanism, the influence of the depth of the convolutional layers on

optimization performance and time complexity was explored. The convolutional layers were set as 5, 10,

20, and the GNH_db dataset was used to evaluate the model results. The results show that the GCNSA

with 20-layer convolution has better performance. GCNSA-20 was selected as the final framework, which

is abbreviated as GCNSA in this article.

Performance of the graph convolutional network and self-attention

To illustrate the performance of the proposed model, the GCNSA is compared with the following bench-

marks. Both KMVO49 and BMVO28 are improved algorithms based on the MVO algorithm by K-means clus-

tering and Brownian motion, which reduces the possibility of the algorithm falling into local optimal in the

optimization process. However, there is still a defect in that the coding results have certain randomness.

BC29 was the first to use neural networks to encode DNA storage, but it only used LSTM as an encoder

without the training process. NHO51 and EP30 are recently proposed DNA storage coding methods, which

further improve the performance of coding results under new constraints, but the iteration speed is slow

and the time cost is high. In DNA storage, more DNA codes can not only ensure storage density but

also reduce the synthesis and sequencing costs under the condition of quality assurance. Therefore, in

this section, the DNA storage encoding of the GCNSA method is compared with other benchmark

methods on GNH_db. In training, GNH_db was divided into 10 parts, eight of which were used as training

Figure 1. Schematic diagram of the GCNSA model

The equivalent smaller streamline graph is obtained by the reduction of the input DNA coding graph, which is input into the graph neural network to predict

the DNA storage codes that satisfying the constraints.
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sets, and the remaining two were used as test sets and prediction sets, respectively. Acc and Loss in the

training process are shown in Figure 2. It can be seen from the figure that the GCNSA model has an ideal

convergence process in the training.

GNH_db is composed of DNA storage codes that satisfy the GC content, no-runlength, and Hamming dis-

tance constraints. In Table 3, n represents the length of the current DNA storage code, and d represents the

threshold that meets the Hamming distance constraint. Because the number of DNA storage codes is small

and unrepresentative when n and d are too small or d is too close to N, only the situation of 5 < n < 9,

2 < d < n�1 in GNH_db is compared.

As seen in Table 3, the GCNSA achieved the best results in most cases. The first column shows different

DNA storage coding methods. The percentage represents the ratio between the number of codewords

generated by this coding method and the number of existing optimal coding sets, and the bold represents

the optimal value under the current coding length (n) and Hamming distance value (d). In the optimal case

of n = 8, d = 6, the GCNSA increased the number of DNA stored codes by 30% and had good predictive

performance for GNH_db. When n = 6, 7, and 8, respectively, the average prediction results were 100%,

96.91%, and 99.96%, which improved the EP30 by 1.65% compared with the suboptimal result when n =

6 and BMVO28 by 21.47% compared with the suboptimal result when n = 8. However, when n = 7, the

GCNSA model was weaker than BC,29 which may be related to the calculation method of the GC content

when it is odd. However, from a global perspective, the GCNSA model achieved an average improvement

of 14.42% in each case compared with BC, achieving an ideal result. The GCNSA was also significantly bet-

ter than the spectral GCN, with an average improvement of 7.18% in each case.

DNA storage encoding results

The strong performance of the GCNSA was verified by multiple comparisons on GNH_db. However, the

GNH considers fewer constraints and has insufficient performance in reducing the error rate in DNA

Figure 2. Acc and loss of GCNSA training

In the curve of Loss and ACC in the training process, the red line represents the training Loss corresponding to the primary

coordinate axis, while the blue dashed line represents the training ACC corresponding to the secondary coordinate axis.

Table 1. Ablation experiments on GNH_db

Solved Code Time (s)

GCN-5 90.7% 353 43

GCNSA-5 91.7% 357 50

GCN-10 95.8% 373 54

GCNSA-10 96.4% 375 59

GCN-20 95.1% 370 60

GCNSA-20 99.7% 388 64
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storage. Therefore, in recent years, researchers have proposed some advanced constraints based on ther-

modynamic properties, distance, and DNA structure. In order to better explain the actual performance of

the GCNSA model in DNA storage, in this section, the GCNSA model is used to predict DNA storage cod-

ing under more advanced constraints, and it is compared with the current optimal work. A description of

superscripts and meanings is given in Table 4.

Satisfying GC content, no-runlength, non-adjacent subsequence, Hamming distance（GNHN）
combination constraints

AGC;NL;NS
4 ðn;d;wÞ is defined as a set of DNA storage codes satisfying GC content constraint, no-runlength

constraint, non-adjacent subsequence constraint, and hamming distance constraint. Non-adjacent subse-

quence can better reduce the cross-talk in synthesis and sequencing relative to the no-runlength

constraint. In this section, the GCNSAmodel is used to predict the combined constraint DNA storage cod-

ing set containing non-adjacent subsequence. The variables n, d, and w represent the coding length, ham-

ming distance and GC content weight respectively, and the results in the table are the coding numbers of

GCNSA and CLGBO. As can be seen from Table 5, compared with the coding results of CLGBO, GCNSA

has significantly improved in quantity. When n = 7 and d = 3, the number of codes increased by 13%, and

when n = 8 and d = 5, it increased by 14%. With the same code length, more available high-quality codes

can be predicted and more valid data can be indexed. In addition, Table 6 shows the coding time of some

representative CLGBO andGCNSA.When n = 7 and d= 4, the coding time is reduced by 88.8%.When n = 8

and d = 5, the reduction is more than an order of magnitude, and overall the coding time is significantly

reduced in each case. In this article, the values for the optimal results in the table are bolded, which is help-

ful for readers to quickly evaluate the performance of different methods.

Satisfying GC content, no-runlength, storage edit distance（GNE） combination constraints

Compared with Hamming distance, edit distance can better reduce the error rate in DNA storage because

the calculation method of insert, delete, and replace of storage edit distance is quite consistent with the

common insert, delete, and replace errors in DNA sequencing. AGC;NL
4 ðn;d1;wÞ is defined as the DNA stor-

age code set that meets the GC content constraint, no-runlength constraint, and storage edit distance

Table 2. The abbreviation of DNA storage encoding constraints and meanings

Abbreviation Meaning

d Hamming distance threshold49

d1 Store edit distance threshold28

GC GC content constraint28

NL No-runlength constraint28

NS Non-adjacent subsequence constraint31

ED End constraint30

SC Self-complementary constraint50

Table 3. GCNSA compares the number of encodings dataset that satisfy the GC content, no-runlength, and Hamming distance constraints with

different baseline methods

n = 6, d = 3 n = 6, d = 4 n = 7, d = 3 n = 7, d = 4 n = 7, d = 5 n = 8, d = 3 n = 8, d = 4 n = 8, d = 5 n = 8, d = 6

BC29 95.16% 67.86% 100.0% 100.0% 100.0% 78.09% 89.84% 80.00% 50.00%

EP30 96.77% 100.0% 88.81% 88.46% 84.21% 84.02% 85.94% 82.22% 70.00%

NHO51 88.71% 82.14% 84.62% 80.77% 73.68% 87.37% 84.38% 77.78% 65.00%

KMVO49 90.32% 82.14% 88.81% 86.54% 89.47% 82.22% 73.44% 71.11% 65.00%

BMVO52 93.55% 85.71% 87.41% 84.62% 89.47% 83.51% 82.81% 77.78% 70.00%

GCN 93.55% 85.71% 93.01% 90.38% 94.74% 95.36% 91.41% 86.67% 95.00%

GCNSA 100.0% 100.0% 96.50% 94.23% 100.0% 99.74% 100.0% 100.0% 100.0%

The percentage in the table is the ratio of the current method to the optimal number. and the bold represents the optimal value under the current coding length

(n) and Hamming distance value (d).
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constraint.28 When the DMVO algorithm is used to encode under combinatorial constraints including stor-

age edit distance, it often adds a large time cost. The GCNSA proposed in this article overcomes this short-

coming and can obtain a better solution in a shorter time.

In Table 7, n and d1 represent encoding length and edit distance threshold, respectively, and the results in

the table are the results of DNA storage encoding under the current constraints. When n and d are too

small and d is too close to n, the number of DNA storage codes is small and unrepresentative; so, we

compared 6 < n < 10. As can be seen in Table 7, the GCNSA predicted more DNA storage codes in the

combinatorial constraints containing the storage edit distance. In particular, the number of encoded

DNA stores increased by 22% at n = 8 and d = 4, by 40% at n = 7 and d = 4, and significantly increased

in other conditions. Overall, the number of DNA stored codes increased by 4.5% under the GNE con-

straints. In addition, because the GNE contains storage editing distance, the complexity of the traditional

calculation method of editing distance is exponential, whereas the DNA storage encoding predicted by

the GCNSA in this article has the advantage of fast speed. It is clear from Table 8 that the time cost plum-

mets. For example, when n = 7 and d = 4, the encoding time decreases by 15 times, andmore DNA storage

encoding is predicted. Thus, the GCNSA’s prediction of effective codes satisfying the constraints promotes

the development of random DNA storage systems and improves the applicability of random DNA storage

systems. In order to better illustrate the performance of GCNSA in constraint coding, we also compare

various other combined constraints (Tables 9 and 10, File S1) with the current optimal scheme.30,50

Storage density analysis

The DNA storage encoding predicted in this article is mainly used for non-data bits in the DNA storage

system; so, this section takes the large-scale random DNA storage system proposed by Lee et al.39 as

an example to compare the storage density. Figure 3 shows the whole process of DNA storage, including

encoding, synthesis, storage, sequencing, and decoding. In the storage system that supports random

access, only the target information is extracted for sequencing, so it is necessary to consider the implemen-

tation of random access module in the design process of the DNA storage system. In the process of encod-

ing, not only data bit encoding should be considered, but also non-data (address) bit design should be car-

ried out. In Figure 3, green represents data bits, blue represents primers, and red represents address bits

Table 4. Different baseline of Abbreviations and meanings of superscripts

Superscript Meaning

o DBWO algorithm30

q QRSS-MPA50

c CLGBO algorithm31

m DMVO algorithm28

a GCNSA

Table 5. Comparison of the number of coding set AGC;NL;NS
4 ðn;d;wÞ of GCNSA and CLGBO methods under GC

content weight (w = 50%), hamming distance, no-runlength and non-adjacent subsequence constraint constraints

n\d 3 4 5 6 7

6 51c 22c 8c

55a 23a 8a

7 113c 42c 15c 6c

122a 47a 15a 6a

8 319c 105c 35c 15c

334a 114a 40 a 16a

9 635c 206c 66c 25c 10c

650a 213a 67a 25a 10a

10 1634c 518c 157c 56c 21c

1659a 533a 166a 56a 21 a
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designed through GCNSA. The x in xbp depends on the number of DNA sequences that need to be ad-

dressed, and GCNSA can construct a larger set of address bits for the same x, that is, more valid informa-

tion can be addressed. In the process of random access, address bit primers need to be designed for ac-

cess information. After a series of separation and purification operations, the target DNA sequence was

extracted by adding address primers into the DNA pool. The fastq files were obtained by Illumina or nano-

pore sequencing, and the target information was obtained by clustering, error correction, and decoding

operations. Unlike their use of tandem coding in data bit coding, fountain codes are used in this section,

but the distribution of different functional locations on each DNA sequence is the same as Lee’s, as shown

in Figure 3. We encoded the 498 kB file as 22,200 Oligo using LT and RS encoding and generated 24,900

Oligo using LT encoding with 1.12 redundancy. Then, the data bits were assembled with the DNA storage

codes (address bits) predicted above through the assembly technique, and the coding densities of DNA

storage systems constructed with different address bit lengths were compared (Figure 4).

The benchmark test indexes of the DNA storage algorithm include storage density, storage capacity, error rate,

and length of DNA sequence. Storage density directly affects the performance of the DNA storage system and

can measure the amount of digital information that can be stored per unit base. In Figure 4, the vertical axis rep-

resents the encoding density and the horizontal axis represents the length of the address bits; 0 represents a

DNA storage system with no address bits and no random access; and 6-10 represent the length of the address

bit, which is also the purpose of the DNA storage codementioned above. Taking address bit coding that meets

theGCcontent constraint, no-runlength constraint, and storage editing distance constraint as an example, when

180 address blocks need to be randomly accessed, if the encoding method is DMVO, the address bits with

length 9 can only be selected because there are not enough address blocks with length 8. If the GCNSA predic-

tive codes proposed in this article are used, 180 address blocks can be randomly accessed when the address bit

length is 8. TheGCNSA canpredict 188differentDNAstorage codes under current combinatorial constraints. As

an example, the storage density of 498 kB files in the preceding paragraph can be increased by 0.7% and 1%

when primers are included and no primers are included, respectively. Although 1% coding density is not very

obvious, 24,900 bases can be synthesized less for 498 kB data. If these bases are used for data bit storage,

4.52 kB more data can be stored, accounting for 0.9% of the total data amount. So, even 1% storage density

makes sense for DNA storage of huge amounts of data.

Table 6. Comparison of AGC;NL;NS
4 ðn;d;wÞ encoding results between the CLGBO and GCNSA, where the Number

and time in the second column represent the number and time of coding under the current coding length (n) and

distance constraint threshold (d), respectively

n = 7, d = 3 n = 7, d = 4 n = 8, d = 3 n = 8, d = 4 n = 8, d = 5

CLGBO31 Number 113 42 319 105 35

time (min) 10 9 11 12 11.5

GCNSA Number 122 47 334 114 40

time (min) 1.5 1.0 2.0 1.9 0.9

Table 7. Comparison of the number of coding setAGC;NL
4 ðn;d1;wÞ of GCNSA and DMVOmethods under GC content

weight (w = 50%), Store edit distance, and no-runlength constraint

n\d1 3 4 5 6 7

6 32m 12m 8m

40a 12a 8a

7 71m 19m 5m

82a 25a 7a

8 178m 45m 14m

188a 55a 15 a

9 350m 84m 19m 7m

359a 92a 19a 7a

10 893m 190m 42m 16m 12m

912a 194a 45a 16a 12a
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The DNA codes constructed by GCNSA can also be used in DNA storage systems with lexicographic en-

coding.32 Codebooks composed of short sequences contain codewords that can be freely concatenated

and still satisfy constraints after binding. When the Hamming distance constraint (d = 3), GC content

constraint, and no-runlength constraint were satisfied, GCNSA was compared with other five representa-

tive methods in the DNA storage systems with lexicographic encoding for coding density. It can be clearly

seen from Figure 5 that in most cases, the storage density of GCNSA is higher than that of other baseline

methods, especially when n = 8, and the coding density result of GCNSA can improve the coding density by

2.2% compared with the previous optimal.52 The coding density of the code words generated by GCNSA

for lexicography is still far from the theoretical value of DNA storage. This is because the coding set con-

structed by GCNSA has better quality and meets more constraints. Appropriate constraint coding can

effectively reduce the error rate in DNA storage, which has been proved in the work of Zhang et al.52 In

conclusion, GCNSA generates a higher quality DNA storage coding set and can be used in different types

of DNA storage systems, with certain scalability.

DISCUSSION

In this article, we proposed a DNA storage encoding with the GCN and self-attention, namely the

GCNSA. By screening the existing DNA storage code sets that meet the constraints, the training sets

(Table 11) that meet the GC content,49 no-runlength,52 non-adjacent subsequence,31 end constraint,30

and self-complementary50 constraint were established. We trained the DNA storage encoding prediction

model and compared it with previous representative work and obtained superior results. GCNSA can in-

fluence downstream tasks of DNA storage in two aspects. On the one hand, DNA storage has a high

delay, which is not only reflected in the DNA sequence synthesis and data reading stage but also leads

to the delay in the process of encoding data into DNA sequence. Compared with previous coding algo-

rithms, GCNSA can be one order of magnitude faster under the same coding conditions. The higher en-

coding efficiency of non-data bits in DNA storage can ensure the smooth process of the whole encoding

phase. On the other hand, GCNSA can construct a larger set of non-data bits under the same DNA

sequence length and coding conditions, and can address more DNA sequences with fewer bases,

thus improving the density of DNA storage. To sum up, GCNSA is mainly used for non-data bit encoding

Table 8. Comparison of AGC;NL
4 ðn;d1;wÞ encoding results between the GCNSA and DMVO, where the Number and

time in the second column represent the number and time of coding under the current coding length (n) and

distance constraint threshold (d1), respectively

n = 7, d1 = 3 n = 7, d1 = 4 n = 8, d1 = 3 n = 8, d1 = 4 n = 8, d1 = 5

DMVO28 Number 71 19 150 45 14

time (min) 12 18 22 20 24

GCNSA Number 82 25 188 55 14

time (min) 1.9 1.1 2.5 2.3 1.2

Table 9. Comparison of the number of coding set AGC;NL;ED
4 ðn;d;wÞ of GCNSA and DBWO methods under GC

content weight (w = 50%), hamming distance, no-runLength, and End constraint

n\d 3 4 5 6 7

6 32o 13o 5o

38a 17a 5a

7 106o 40o 16o 6o

72a 33a 12a 6a

8 178o 71o 24o 10o

196a 68a 30a 14a

9 527o 189o 48o 23o 10o

497a 172a 46a 23a 10a

10 1187o 376o 108o 41o 12o

1212a 382a 111a 43a 12a
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in DNA storage. Based on good encoding results, the delay in DNA storage is reduced and the storage

density of DNA storage is improved.

In order to further verify the applicability of the GCNSA prediction model, we predicted DNA storage

codes with more constraints in practical problems. We predicted and evaluated DNA storage code

sets with four different combinations of constraints and predicted more DNA storage codes within the

effective time in most cases. Not only is the number of codes 5%-40% higher but the simple training

of the GCNSA also saves time compared to traditional methods. In particular, the GCNSA not only pre-

dicted more encodings satisfying the constraints but also ran an order of magnitude faster in the com-

bined constraint with the storage edit distance constraint case. This indicates that the GCNSA reduced

the computation overhead of editing distance and completed the DNA storage and coding work desir-

ably. Finally, in terms of practicability, it was verified that the DNA random access storage system

encoded by the GCNSA can increase the storage density by 0.7%-1.0%, or store 0.9% more data. In addi-

tion, lexicographic encoding using the coding set generated by GCNSA can also improve the coding

density by 2.2% under the same constraints. The rapid prediction of more effective DNA storage codes

that meet the constraints promotes the development of DNA storage systems and improves the appli-

cability of DNA storage systems.

Limitations of the study

Although the graphmodel’s natural topology can capturemore information, as the length of the DNA code

increases, the number of nodes in the graph increases exponentially, which poses a huge challenge to

computation and memory. Therefore, more consideration should be given to the graph reduction process

in future work. How to obtain equivalent smaller maps more efficiently according to the characteristics of

DNA in the DNA storage encoding model is another future research direction that will entail using a graph

model to predict DNA codes.

Table 10. Comparison of the number of coding set AGC;NL;SC
4 ðn;d;wÞ of GCNSA and QRSS-MPA methods under GC

content weight (w = 50%), hamming distance, no-runlength, and self-complementary constraint

n\d 3 4 5 6 7

6 43q 21q 7q

46a 25a 8a

7 95q 37q 14q 6q

101a 37a 15a 6a

8 225q 81q 30q 12q

299a 94a 35 a 16a

9 520q 174q 60q 22q 10q

550a 190a 69a 23a 10a

10 1155q 321q 111q 50q 15q

1173a 327a 118a 53a 15 a

Table 11. Details of five different datasets

Name Negative Positive Constraints

GNH_db 4820 97,603 GC content, no-runlength, Hamming distance

GNHN_db 3068 99,355 GC content, no-runlength, non-adjacent

subsequence, Hamming distance

GNHE_db 2450 99,973 GC content, no-runlength,

Hamming distance, end constraint

GNHS_db 3034 99,389 GC content, no-runlength,

Hamming distance, Self-complementary

GNE_db 3012 99,411 GC content, no-runlength,

storage edit distance
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Figure 3. Standard DNA random access storage system encoding and decoding process

Among them, the red part of the coding graph on the left is the application position of generating short codes in this article, that is, address bits. Under a

fixed length, more address bits can index more effective information and improve the capacity of the DNA random access storage system.
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Figure 4. Comparison of coding densities of conventional DNA random storage systems with different address
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The horizontal coordinate represents the length of the address bit. When the length of the address bit is 0, random

storage is generally not supported. When the length of the address bit is longer, the addressable DNA sequence will

increase, that is, the capacity of the DNA random storage system will be larger.
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Materials availability
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Data and code availability

The source data and code is available at: https://github.com/caobencs/DEGCA-DNAstroagecoding. Sup-

plementary data to this article can be found at iScience online, any additional information required to re-

analyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Collection and processing of datasets

A DNA storage code set can be defined as follows. For
P

= fA;C;G;Tg, if v˛Pn, the corresponding i

position in the sequence v is vi , and v = v1v2v3:::vn ˛
Pn. Similarly, another sequence, s =

s1s2s3:::sn ˛
Pn, can be generated this way. DNA stored coding datasets usually satisfy basic con-

straints,30,31,40,50 such as Hamming distance constraints.49 If v and s satisfy the Hamming distance

constraint, define dHðv;sÞ, which satisfies the following formula:

dHð4;sÞ = jf1 % i % n;4s sgj; (Equation 1)

In addition to the distance constraint, 4; s˛
Pn may also need to satisfy the constraints of GC content,49

no-runlength,52 non-adjacent subsequence,31 end constraint,30 and self-complementary50 constraint.

The detailed description and mathematical model expression of these constraints are as follows.

Hamming distance constraint

For any two sequences (u and v) of length n. The Hamming distance (H (v, u)) is expressed as the number of

different elements at the same position between two sequences v and u. The Hamming distance constraint

is expressed as H(v, u)Rd, where d is an autonomously defined threshold, and the formula for calculating

the Hamming distance of two sequences is as follows:

Hðv;uÞ =
Xn
i = 1

hðvi; uiÞ; hðvi;uiÞ =
(
0; vi = ui

1 visui

; (Equation 2)

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python Python https://www.python.org/downloads/release/

python-362/ Version:3.6.2

MATLAB Mathworks https://ww2.mathworks.cn/products/matlab.

html/ Version:9.9.1524771(R2020b)

Numpy Github https://github.com/numpy/numpy/

releases/tag/v1.18.5

Tensorflow Github https://github.com/tensorflow/

docs/tree/r1.13/site/en/api_docs

Simulation codes This paper https://github.com/caobencs/

DEGCA-DNAstroagecoding
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Storage edit distance constraint

In DNA storage, storage edit distance28 is used to reduce the error rate in DNA synthesis and nano

sequencing. The storage edit distance is defined as follows. For the DNA code words a and b of length n,

d_E(a, b) is defined as the storage edit distance between a and b. SE(ai) defines the minimum d_E(ai, bj) in

all DNA coding sets, which should not be greater than the element d. The specific expression is Equation (2):

SEðaiÞ = min
1% j% n;jsi

�
d E

�
ai;bj

��
Rd; (Equation 3)

GC content constraint

Among them, GC content refers to the proportion of the sum of bases G and C in the total number of bases

in the oligonucleotide sequence. Sequences with large deviation in GC content are difficult to synthesize,

and it is difficult to obtain high-quality sequencing data during sequencing. Generally, GC-content

constraint28 of about 50% in a DNA sequence is defined as stable. As shown in the formula, the GC-content

of a DNA sequence of length l is defined as GC(l) in Equation (3), and | G + C | represents the sum number of

G and C. In this study, | G + C | was assigned the value Pl =2R:

GCðlÞ = jG + Cj=jlj; (Equation 4)

No-runlength constraint refers to the prohibition of continuous repeated bases in oligonucleotide. This is

because in the process of DNA synthesis and sequencing, continuous bases may be misinterpreted as a

single signal, which eventually leads to incorrect data reading. Therefore, the no-runlength constraint28

is proposed, and its mathematical modeling is as follows:

SisSi + 1 ; i˛ ½1;n � 1� ; (Equation 5)

Non-adjacent subsequence constraint

Similarly, DNA sequences containing consecutive repeated subsequences are more likely to bemisaligned

during sequencing, resulting in errors in the read data. In addition, in the DNA synthesis stage, the

sequence containing repeated subsequences will lead to polymerase slip, which increases the error rate

at this stage. The non-adjacent subsequence constraint,31 refers to any sequence S (S = s1, s2 . sn)

meet the following requirements:

when K = 2
sisi + 1ssi + 2si + 3;0< i%n � ð2k � 1Þ

when K = 3
sisI+ 1sI+ 2ssi + 3sI+ 4si + 5;0< i%n � ð2k � 1Þ

; (Equation 6)

End constraint

When the sequence is stored as a double strand, it is difficult to solve the mismatch of GC at the 3 ’end. The

occurrence of multiple GC bases in the last five bases has a great influence on the thermodynamic and

physical properties of the whole sequence. Therefore, the GC content of the last five bases of the 30 end
is limited by terminal constraint. The terminal constraint refers to the sequence S(s1,s2,s3, .,sn), the last

five bases cannot have three or more GC. The end constraint30 formula is expressed as follows:��GSLast5

��+ ��CSLast5

�� < 3; (Equation 7)

Where
��GSLast5

�� and ��CSLast5

�� represent the number of G and C in the last five bases of sequence S,

respectively.

Self-complementary constraint

For each designed sequence, if there are consecutive and complementary paired bases, the sequences will

involuntarily undergo non-specific hybridization to form a secondary hairpin structure. If this problem oc-

curs when the constructed sequence is used as a primer library, it will lead to serious consequences such as

sequencing failure and data loss. To address this issue, self-complementary constraint50 strictly prohibits

Watson-Crick pairings from using three or more consecutive bases in each sequence.

In the past, due to the lack of fair datasets, DNA storage coding algorithms could not be compared on

benchmark datasets as in other fields, so this paper conducted extensive collection and summary of

DNA storage coding data.28–31,49,51,52 The generation of a DNA storage code dataset is mainly divided

ll
OPEN ACCESS

iScience 26, 106231, March 17, 2023 15

iScience
Article



into three steps. First, the DNA storage code results under different constraints were obtained from pre-

vious works,28–31,51,52 and the code datasets under five different combination constraints were counted,

with 16,384 negative samples and 49,731 positive samples. Second, the data were classified and screened,

and DNA codes with lengths less than 5 were screened out. As the sequences with lengths less than 5 have

only 44 = 256 permutations under the condition of quaternion code (ATGC), the candidate solution set is

too small, and the conventional algorithm can encode quickly. The coded datasets of the five different

combination constraints were named GNH_db, GNHN_db, GNHE_db, GNHS_db, and GNE_db. Finally,

the dataset was preprocessed to convert the relationship between the DNA storage codes and encoding

information into the form of graphs. The detailed information is shown in Table 11. The dataset was divided

according to the ratio of 8:1:1.

The encoding of data sequence data into graph data is a key step in graph neural network, so this process is

described in Figure 6. As mentioned above, by collecting the set of DNA codes satisfying the constraints in

existing research results,28,30,40,50,52 codes in the set of codes satisfying the constraints are taken as positive

sample nodes of the graph, and all nodes satisfying the constraints (DNA codes) should have edges be-

tween them. Then, on this basis, equal amount and equal length of DNA codes that do not satisfying

the coding constraints are added as negative sample nodes. However, it is worth noting that some nodes

in the negative sample nodes and individual nodes of the positive samplemay also meet the constraints, so

there are also edges between them. In particular, the construction process of the above graph only takes

place within the set of codes of the same length. Codes of different lengths will not appear in the same

graph even if they meet the same constraints.

Construction of networks

In the early stages of development, neighbor information was transmitted in an iterative manner by circu-

lating the neural structure in order to learn the representation of target nodes. Computation in the

learning process is very expensive; so, a model based on a graph convolutional network and self-atten-

tion is used in this paper to the learn adjacent features of DNA codes. The representation of node vi is

generated by a learning function f, and its own features and neighbor features Xj are gathered by self-

attention, where j˛N (vi). Because the spectral method provides a well-defined localization operator on

the graph, we defined the convolution filter through the spectral method and overcame O (n^2) expen-

sive multiplication with a Fourier basis through the special choice of filter parameterization.53 According

to the convolution theorem, convolution in the spatial domain is equal to direct multiplication in the fre-

quency domain:

f �Gg = F� 1ðFðf Þ $ FðgÞÞ; (Equation 8)

where F�1 and F are Fourier transforms and inverse Fourier transforms, respectively. A basis for Fourier

transform is required. The graph is transferred from spatial expression to the frequency domain space of

this basis,54 and a basis for the Fourier transform is found by constructing the Laplacian matrix. So, we

construct the degree matrix D and adjacency matrix A:

Dði; jÞ =

�
di if i = j
0 otherwise

; (Equation 9)

Aði; jÞ =

�
1 if i˛Nd½j�
0 otherwise

; (Equation 10)

The Laplace matrix L can be written as:

L = D � A; (Equation 11)

As the graph in this paper is an undirected graph, L is a symmetric matrix. So, L can be decomposed ac-

cording to the following formula:42

L = ULUT ; (Equation 12)

U = ½u1; u2;.; un�; (Equation 13)
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L =

������
l1 . 0
. . .
0 . ln

������; (Equation 14)

U is the basis for the Fourier transform, and the eigenvalue A is the weight of the eigenvector.42 we can

convert the input xi from the spatial domain to the frequency domain:

FðxiÞ = UTxi; (Equation 15)

Therefore, the convolution formula54 of the graph can be expressed as

xi�GFi;j = U
�
UTxi $U

TFi;j

�
= U

�
UTFi;j $U

Txi
�
; (Equation 16)

UTFi;j is regarded as a convolution kernel that can be learned, denoted as Fq
i;j , and the final convolution for-

mula42 can be expressed as

xi�GFi;j = UFq
i;jU

Txi; (Equation 17)

After adding the channel and the excitation function, the convolution of the K-th layer can be written as

ok;j = h

 Xfk� 1

i = 1

UFq
k;i;jU

Txk;i

!
= h

 
U
Xfk� 1

i = 1

Fq
k;i;jU

Txk;i

!
; (Equation 18)

Self-attention is a kind of attention mechanism.55 It is also an important part of the transformer. Self-atten-

tion focuses on some details according to the target instead of analyzing the whole situation. Therefore,

the core of self-attention is to determine the parts that need attention based on the target. By calculating

its own weight and considering the connections between different vectors, it can reduce the dependence

on external information. Besides, self-attention is better at capturing the internal correlation of data, espe-

cially the long-distance dependence in similar graph structures. The input vector L = [l1, l2, l3 . ln] contains

n inputs; li represents the eigenvector of the ith input; and the output vector L* is obtained by considering

all the input vectors. For the single-head attention module, the L* is the weighted sum of all the input

feature vectors,43 which can be calculated by Equation 12:

hi =
XN
j = 1

softmax

 
qik

T
jffiffiffiffiffi

dk

p
!
vj; (Equation 19)

where square root of dk represents the scaling factor to control themagnitude of the dot product; and qi, ki,

and vi represent the query, key, and value of the i-th vector, respectively.

DNA storage encoding model

Based on the excellent performance of graph convolutional networks56 and self-attention mechanisms,57

this paper proposes a GCNSA for DNA storage encoding. The DNA storage codes that meet the con-

straints can be predicted not only by post-calculation screening but also by extracting and summarizing

the features of the existing DNA storage code sets. Unlike natural language processing or the time series

approach, every code word in a DNA storage code set is directly related to every other code word. If LSTM

or GRU and other recurrent neural networks are used for prediction, the network memory capacity is

limited. Therefore, this paper processes the code data into the form of a graph and transforms the encod-

ing problem into the node classification problem of graph theory.58 Moreover, a graph convolutional

network has the natural feature extraction ability for non-Euclidean data along with the characteristics of

local parameter sharing, which are suitable for feature extraction and prediction of graph data. However,

insufficient attention is paid to local features in the GCN.53 Therefore, in the feature extraction layer, this

paper dynamically focuses on key points in the graph54 through the self-attention mechanism, adjusts

the weights, and captures the features of a single point to avoid the problem of unequal importance of

adjacent nodes in the graph network. In addition, self-attention has a strong ability to extract internal fea-

tures, and it is widely used to capture long-range dependencies between tokens in sequential data. The

potential relationships between the points and edges in the graph are used to obtain more accurate

information.

The DNA encoding problem can be mapped to a graph G and transformed into the node classification

problem of graph theory. By extracting and summarizing the features of existing DNA storage code

sets, more complex DNA storage codes can be predicted. Consider G = ðV ;4;RÞ, where V = fvigMi = 1 is
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the set ofM vertices;G;4 is the set of E edges; and R ˛ f0; 1gMxM is the corresponding symmetric adjacency

matrix. The vertices in the graph correspond to DNA code words, and a binary label needs to be generated

for each vertex, with label 1 indicating that the current point is in the DNA storage code set and label 0 indi-

cating that it is not in the set. The relationships between the code words in DNA storage encoding corre-

spond to the edges in the graph, and this can be used to complete the construction of the coding model in

the graph. The goal of the GCNSA model is to build more high-quality DNA storage codes within an effec-

tive time. The input of GCNSA is a set of encoded DNA stores preprocessed for the graph, and then enters

the graph reduction module. The main principle of graph reduction module is pruning the nodes and

edges that can quickly judge the attributes in the encoded graph. For example, in the DNA storage

code construction map satisfying continuity, GC content and Hamming distance, the continuity within

the code is easier to calculate than the Hamming distance between the codes. Therefore, the number of

nodes and edges in the graph can be reduced by reducing the number of points (DNA coding) that do

not satisfy the no-runlength. Self-attention strengthens the feature extraction of GCN, better captures

the interdependence between codewords, completes the prediction of vertex scores, and outputs the

DNA storage encoding sets that satisfying the constraints. The overall architecture of the model and the

detailed construction of the network are shown in Figure 1.
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