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Using slow frame rate imaging to extract fast
receptive fields
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In functional imaging, large numbers of neurons are measured during sensory stimulation or
behavior. This data can be used to map receptive fields that describe neural associations with
stimuli or with behavior. The temporal resolution of these receptive fields has traditionally
been limited by image acquisition rates. However, even when acquisitions scan slowly across
a population of neurons, individual neurons may be measured at precisely known times. Here,
we apply a method that leverages the timing of neural measurements to find receptive fields
with temporal resolutions higher than the image acquisition rate. We use this temporal
super-resolution method to resolve fast voltage and glutamate responses in visual neurons in
Drosophila and to extract calcium receptive fields from cortical neurons in mammals. We
provide code to easily apply this method to existing datasets. This method requires no
specialized hardware and can be used with any optical indicator of neural activity.

1Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA. 2 Interdepartmental Neuroscience Program,
Yale University, New Haven, CT 06511, USA. 3 Department of Physics, Yale University, New Haven, CT 06511, USA. 4 Department of Neuroscience, Yale
University, New Haven, CT 06511, USA. *email: damon.clark@yale.edu

| (2019)10:4979 | https://doi.org/10.1038/s41467-019-12974-0 | www.nature.com/naturecommunications 1


http://orcid.org/0000-0003-2606-8567
http://orcid.org/0000-0003-2606-8567
http://orcid.org/0000-0003-2606-8567
http://orcid.org/0000-0003-2606-8567
http://orcid.org/0000-0003-2606-8567
http://orcid.org/0000-0002-9458-0629
http://orcid.org/0000-0002-9458-0629
http://orcid.org/0000-0002-9458-0629
http://orcid.org/0000-0002-9458-0629
http://orcid.org/0000-0002-9458-0629
http://orcid.org/0000-0001-9140-4649
http://orcid.org/0000-0001-9140-4649
http://orcid.org/0000-0001-9140-4649
http://orcid.org/0000-0001-9140-4649
http://orcid.org/0000-0001-9140-4649
http://orcid.org/0000-0003-2176-4723
http://orcid.org/0000-0003-2176-4723
http://orcid.org/0000-0003-2176-4723
http://orcid.org/0000-0003-2176-4723
http://orcid.org/0000-0003-2176-4723
http://orcid.org/0000-0002-4060-1738
http://orcid.org/0000-0002-4060-1738
http://orcid.org/0000-0002-4060-1738
http://orcid.org/0000-0002-4060-1738
http://orcid.org/0000-0002-4060-1738
http://orcid.org/0000-0001-8487-700X
http://orcid.org/0000-0001-8487-700X
http://orcid.org/0000-0001-8487-700X
http://orcid.org/0000-0001-8487-700X
http://orcid.org/0000-0001-8487-700X
mailto:damon.clark@yale.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

n investigating the function of circuits, experimenters often

want to measure precise relationships between neural activity

and other experimental variables, such as stimuli, behavior, or
the activity of other neurons. One of the most effective ways to do
this is with optical measurements of neural activity, since these
record the dynamics of many neurons at once. These imaging
techniques include scanning two-photon, light sheet, and laser
scanning confocal microscopy. In these techniques, images are
constructed from voxels (three-dimensional pixels) that are
acquired sequentially. Because the individual voxels are acquired
over short time intervals, each neuron is measured over a short
period of time. Yet, because there are so many voxels to acquire,
the period between measurements of a particular neuron can be
much longer, equal to the duration of each full-image acquisition.
Much effort has been invested in developing specialized hardware
to increase the sampling rates of optical imaging! =4, yet imaging
entire volumes (z stacks) frequently remains slow, with volumes
typically acquired at ~10 Hz or slower>-8. Even when acquiring
two-dimensional images, some imaging methodologies based on
laser scanning (e.g. two-photon and confocal), may be too slow to
capture fast dynamics of neural activity. Thus, imaging techni-
ques often result in a set of neural measurements that are located
precisely in time, but sampled infrequently, once per volume.

In contrast, other experimental variables can be sampled or
presented much more frequently. Visual stimuli can be updated
at 60 Hz or faster. Auditory stimuli may be modulated at fre-
quencies of hundreds of Hz. Behaviors can often be measured
from video recordings at 30 Hz or higher. And electrical signals
like membrane potentials, local field potentials, or electro-
myograms are often recorded at 1kHz or higher. These experi-
mental variables are thus measured with high resolution in time.

The problem we address is how to relate neural activity that is
sampled infrequently to other experimental variables that are
sampled with high temporal resolution. In practice, when com-
puting cross-correlations, temporal receptive fields, or peristi-
mulus time histograms, such data has most often been analyzed
by matching the effective sampling rates of the two variables. In
some cases, experiments were explicitly designed to match the
two sampling rates®. In other cases, rates have been matched after
the experiment, either by downsampling the fast variable to
match the infrequent neural measurements>®1%11 or by inter-
polating the infrequent measurements to match the high-
resolution variable!?-17, Both of these approaches suppress
information at frequencies higher than the slower neural acqui-
sition rate. The resulting cross-correlations and receptive field
estimates are limited in their resolution by the Nyquist frequency,
a well-established ceiling on the resolution of a measured
response!®. This is an unnecessary limit on the temporal reso-
lution of these estimates.

Here, we apply methodology that exploits the precise timing of
neural measurements within each infrequently-sampled frame to
compute high temporal resolution relationships with frequently-
sampled experimental variables, such as stimuli or behaviors.
Since this method uses the timing of voxels acquired within each
image, we refer to it as voxel-timing analysis. This method has
been proposed for fMRI analysis!®20. Before that, similar meth-
ods were used to measure nuclear magnetic resonance responses
with high temporal resolution?! and to achieve high temporal
resolution in oscilloscopes?2. It has been underappreciated how
successfully voxel-timing analysis can be applied to cellular
functional imaging studies. Using this analysis, the resolution of
relationships between neural activity and other experimental
variables is independent of the imaging frame rate. It is therefore
not limited by the Nyquist frequency of the neural sampling
interval. When signal properties are measured with resolution
higher than the Nyquist frequency of the signal measurements, it

is referred to as ‘super-resolution’?3-2>. Thus, voxel-timing ana-
lysis offers a way to achieve temporal super-resolution in relating
neural activity to other experimental variables.

The principle behind this method can be illustrated with an
analogy. Suppose we wish to record the trajectory of a ball that is
bouncing after being dropped, but all we have is a camera that
takes a photograph once every second. A single sequential set of
images cannot capture the full trajectory of the ball, especially if
the ball bounces faster than once per second. However, if we drop
the ball repeatedly, then we can take a sequence of photographs
with each drop. On each drop, we can introduce a different delay
between the drop and the sequence of photographs. The result is
several sequences of photographs, each representing the ball at a
different set of points in its trajectory. Then, we may interleave
photographs from many trials and reconstruct the complete
trajectory of the bouncing ball. Thus, this method uses infrequent
measurements (photographs once per second) to reconstruct a
high-resolution trajectory of the bouncing ball. As we will show,
this method can be formulated as a way to compute the precise
cross-correlations (or receptive fields) between frequently and
infrequently sampled variables. It is especially well-suited for
typical neuroscience imaging data.

In this paper, we use simple synthetic examples to show how
this method achieves temporal super-resolution with neural
responses and to examine some trade-offs between the temporal
resolution and noise in receptive fields measured using this
method. We then apply this method to measure the response
properties of neurons expressing three distinct indicators: voltage
imaging in Drosophila, glutamate imaging in Drosophila, and
calcium imaging in mammalian cortex. In all three cases, the
voxel-timing method permits fast receptive fields to be computed,
even when using slow acquisition rates. Interestingly, in some
cases, infrequent measurements of neural activity can yield better
filter estimates than an equivalent number of frequent
measurements.

Results

Finding high-resolution filters from infrequent measurements.
As a demonstration of how temporal super-resolution is achieved
using voxel-timing, we considered a synthetic neural response to
an impulse (Fig. 1a). In our simulation, impulse stimuli evoked a
neural response that oscillated at 20 Hz before decaying back to
baseline. A high-resolution measurement of the response would
capture the full dynamics of its oscillation and decay.

However, imaging methods often do not provide continuous
high-resolution measurements of the neural response. In neural-
imaging methods where voxels are sampled serially, there are two
timescales for each measurement. The first is the integration time
of each individual voxel within a frame, while the second is the
interval between successive measurements of the same voxel (the
inverse of the frame rate) (Fig. 1b, Supplementary Fig. 1).
Typically, the integration time is brief while the interval between
measurements is long. We will leverage the short integration time
to remove the resolution limitations normally imposed by the
long intervals between measurements.

In our simulated experiment, we supposed that the response is
sampled for 1ms every 100ms, due to sequential voxel
acquisition. This corresponds to an integration time of 1ms
and a frame rate of 10 Hz. When the single trial response was
sampled in this way, the oscillation in the response was not visible
(Fig. 1c). Linearly interpolating the sampled response eliminated
information about the oscillation (Fig. lc, dashed line)!s.
However, even though the high-frequency response information
was not available via interpolation, it did still exist within the
sampled response!®.
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Fig. 1 Precise responses from infrequent imaging measurements. a We simulated a neuron that can be stimulated with an impulse (top) and responds with
damped oscillations at 20 Hz. b During the acquisition of many images, voxels are acquired serially, represented by the circles connected by arrows (top).
Our simulated neuron, represented by the white circle, was only measured during a small fraction of the total frame acquisition. The black lines represent
the sampling times of the neuron; gray lines represent all other samples in the image (bottom). The width of the black lines represents the voxel integration
time, while the interval between them represents the frame duration. € Measurement of the response with infrequent sampling. When using an imaging
scheme as in b, measurements of a single impulse (top) sample the response every 100 ms (middle). While the full response contains oscillations (bottom,
blue), the sampled response shows no oscillations (circles), and interpolation cannot recover the true response (dashed line). d Sampled response
measurements can be repeated across many stimulus impulses with random relative timing. e When many stimulus-response pairings are overlaid, the full,
oscillating response may be recovered. Each individual stimulus is a very brief pulse (top). Each instance of the stimulus was aligned randomly with respect
to the sampling intervals. Rasters show the sampling time of responses relative to each of 20 presentations of the stimulus, and the combination of all
samples over all trials (middle). By overlaying each set of responses, without interpolating, the sampled responses (circles, bottom) reconstruct the true
response (gray line). f The high-resolution impulse response may also be recovered when the stimulus is white noise, rather than impulses. Gaussian
stimuli were presented to the same synthetic system as in b (top). The true response had a characteristic oscillation frequency (middle, blue), but
infrequent sampling cannot resolve it finely (black circles). Using the precise timing of the samples, the cross-correlation between stimulus and response
could be extracted with temporal super-resolution (bottom, black line), matching the true filter (gray line)

In the voxel-timing method, we took advantage of (a) the short
voxel integration time; (b) the high resolution of the stimulus
timing; and (c) the fact that the stimulus impulse may be
presented many different times (Fig. 1d). The aim was to sample
the response at every delay with respect to the stimulus by
sampling responses with different offsets from the stimulus. The
measured responses from all of the trials may be combined into a
single trace to reconstruct the true, high-temporal resolution
response (Fig. le).

As this example shows, obtaining high temporal resolution
depends on sampling all relative delays between the high-

resolution stimulus recording and the infrequent response
measurements. Different delays could be intentionally engineered
in an experiment, but when the imaging acquisition is not
explicitly locked to the stimulus, the experiment will often sample
all delays. To ensure this is the case, experimenters can choose a
stimulus update rate and acquisition rate with no common
integer multiples. Moreover, stimuli that are uncorrelated in time
permit sampling of all possible delays regardless of stimuli and
acquisition rates. Importantly, when using the voxel-timing
method, the temporal resolution of the reconstructed response
is independent of how frequently the response is sampled (see
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Supplementary Note 1). With enough data, any sampling rate can
yield a good approximation to the true, high-resolution response.

As a first illustration, our example used widely-spaced impulse
stimuli. In many experiments, stimuli are stochastic and
continuously changing?6, yet the same method can be applied.
The precise timing of response measurements can be used to
extract the high-resolution linear filter that best predicts the
response from the stimulus (Fig. 1f). We discuss the details of this
method in the next section.

Procedure. The two examples shown in Fig. le, f are superficially
quite different. In the first, one is computing the average response
to precise events in the stimulus. In the second, one is computing
the average stimulus weighted by the response at discrete points
in time. In fact, both of these cases correspond to computing
cross-correlations between a high temporal resolution variable
(the stimulus) and one sampled infrequently but precisely in time
(the response). Though there exist many sophisticated methods
for inferring the structure of linear filters2’=31, cross-correlations
are simple and yield good intuition for the procedure.

In this section, we show how to employ the voxel-timing
method to compute a temporal super-resolution cross-correla-
tion between the high-resolution stimulus and the infrequently
sampled response (Fig. 2). As in Fig. 1, our simulated stimulus
was recorded with high temporal resolution, and the response is
sampled infrequently in time (Fig. 2a). First, one must construct
a vector representation of the stimulus. Each element in this
vector represents the stimulus at a single point in time at the rate
of the stimulus update (Fig. 2b). One must then construct a
vector representation of the response with the same high
temporal resolution. Note that many elements in the response
vector will be blank, since no measurements were made there. In
the literature, response vectors have often instead been computed
by interpolation, but we will show that interpolation generates a
low-resolution filter estimate by implicitly smoothing the
estimate. To understand the relationship between the high-
resolution stimulus and the infrequently sampled response, we
now pair vectors of the stimulus with specific responses (Fig. 2b,
c). If the responses are measured at a set of times t; then the
pairings will be a set of stimulus vectors s, and a set of responses
r, (Fig. 2¢).

" To compute the cross-correlation between the variables, ¢, with
a delay of 7, one multiplies each stimulus with that delay by the
associated response, sums over all times t;, and then divides by the
number of response measurements, N (Fig. 2d, see Supplemen-

tary Note 2):
1
c, = N tz St,—Trt,-

Here, the correlation is a function of time lag, 7, which has
increments equal to the spacing of the stimulus measurements.
Both the stimulus and response are assumed to be mean
subtracted. If one interpolates the response first, before comput-
ing the cross-correlation, the result is a smooth cross-correlation
function with low resolution (Fig. 2d, see Supplementary Note 1).
Instead, if one uses the voxel-timing approach, one recovers the
true cross-correlation at high resolution (Fig. 2d).

If the stimulus is a set of impulses, such as in the example in
Fig. 1d, then this equation is mathematically equivalent to a
summation over those impulses, averaging the response at each
delay. Thus, the computations in Fig. 1d, e are both cross-
correlations, and they are equivalent.

The voxel-timing method can be used to measure relationships
beyond the mean response to the stimulus, since it records entire
distributions of responses aligned with stimuli. This can be
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Fig. 2 Procedure for computing temporal super-resolution cross-correlations. a
Stimulus and response used in the numerical simulation. Stimulus values at
each time were drawn from a Gaussian distribution. The response was
computed as the convolution of the stimulus with an exponential filter with a
timescale of 10 timesteps. Color and y-position each indicate the value of the
functions. Responses were measured at the black circles; the dashed line
represents a linearly interpolated response between measurements. b A vector
representation of the stimulus may be constructed so that each element
represents the value of the stimulus during that timestep (colors correspond to
the value of the signals, as in a). A vector of the sampled response may also be
constructed, leaving blank those elements where no measurements were made.
The response was sampled every 10 timesteps. An alternate response vector
may be constructed by interpolating the responses to generate response
estimates during the frames when no measurements were made. For the
sampled responses, if responses were measured at the set of times t;, then the
response r, may be paired with a snippet of stimulus from the same region, s .
¢ The set of (stimulus, response) pairings may be extracted. A simple analysis
computes the cross-correlation between stimulus and response, which is an
estimate of the linear filter that generates the response. d One finds the cross-
correlation by multiplying the response with the stimulus and averaging over all
measured responses. The cross-correlation estimate (represented both as a
vector at top and a line plot at bottom) is a reasonable estimate of the true
filter. When the response is interpolated, the high-resolution filter is not
recovered. The time lag is defined as in the text and as in other figures

important if one wishes to study the variability in the response.
One way to analyze variability in the response is to extract
second-order filters, which are the continuous-response equiva-
lent of spike-triggered-covariance233. To demonstrate this
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technique, we modeled a cell that has a temporal receptive field
that is modulated by a randomly changing amplitude (Supple-
mentary Fig. 2a, b). This cell’s responses are widely variable
because the sign of its receptive field changes throughout the
simulation. In fact, the first-order filter is zero, independent of the
sampling rate of the response (Supplementary Fig. 3c). Instead,
one may compute the response-weighted stimulus covariance
from the infrequently sampled data to show the correlations in
the stimulus that result in large responses (Supplementary
Fig. 2d). The first eigenvector of this matrix matches the
underlying receptive field of the cell with resolution higher than
the sampling rate (Supplementary Fig. 2e). Throughout this

NATURE C

Fig. 3 Noise in filter estimates. a Stimulus and response for these numerical
experiments. The stimulus was updated from a Gaussian distribution every
10 ms. Responses were equal to a bilobed filter convolved with the
stimulus. Responses included additive white noise, with a signal to noise
ratio of 1. The response was sampled for 10 ms every 500 ms. b The true
filter (gray) is compared to OLS filters extracted after upsampling the
response using different interpolation methods: Linear interpolation,
nearest neighbor, piecewise cubic, and spline interpolation. ¢ Noise in the
extracted best-fit filter decreased with increasing duration of the simulated
experiment, due to an increasing number of samples. The filters are
computed using the infrequently sampled response and OLS regression.

d Noise in the extracted best-fit filter may also be reduced by smoothing in
time. This trades off noise in the filter estimate for temporal resolution in
the filter estimate. Here, the smoothing filters were Gaussian with the
standard deviations noted. e By smoothing with an appropriate triangle
filter, the temporal super-resolution filter may be transformed into the filter
extracted from interpolated responses, i.e., the imaging-rate resolution
filter. In this case, since the response samples are infrequent, the loss of
resolution in the filter estimate is substantial. f Regularization methods may
be applied to improve signal-to-noise in filter estimates. Here, the filter is fit
in the five lowest-order terms of the discrete Laguerre polynomial basis or
by using automatic smoothness determination (ASD)

manuscript, we report estimated mean receptive fields, but voxel-
timing analysis can be used in a variety of analyses to extract
cellular properties with temporal resolution higher than the
sampling rate.

Noise, smoothing, and regularization. In this section, we review
the noise characteristics of the voxel-timing filter estimate that is
found by ordinary least-squares (OLS) fitting of a linear weighting
vector to predict each response, r, , from each stimulus vector, s, .

This is equal to the cross-correlation computed in Fig. 2 divided
by the autocorrelation of the stimulus?’ (see Supplementary
Notes 1 and 2). When there are relatively few measured
responses, this fitting procedure computes more accurate filters
than simple cross-correlation, even for stimuli that are uncorre-
lated in time34. In this simulation, the neuron was measured for
10 ms every 500 ms. The stimulus was updated every 10 ms, so
that the voxel-timing filter could have a resolution of 10ms
(Fig. 3a). Interpolating the response to match the stimulus sam-
pling rate produces filter estimates that do not capture the
dynamics of the true filter (Fig. 3b).

The temporal super-resolution voxel-timing filter has many
parameters to estimate, one at each delay in the high-resolution
vector. Each response measurement contributes a paired stimulus
vector and response measurement to the cross-correlation
computation. Thus, one expects the noise in the cross-
correlation estimate to decrease like N—1/2, where N is the
number of response samples (see Supplementary Note 3). In
simulation, increasing the number of measured responses led to
decreased errors in the filter estimate, as expected (Fig. 3c,
Supplementary Fig. 3).

How else might one reduce the noise in the filter estimate? One
simple method is to smooth the filter estimate in time. This
averages over neighboring time points to decrease the noise in the
estimate, but this decrease comes at the expense of temporal
resolution (Fig. 3d)3°. When one smooths over longer timescales,
sharp features of the true filter are lost.

One can tune this temporal smoothing in order to trade off
temporal resolution against noise. In particular, smoothing the
voxel-timing filter with a triangle filter in time is equivalent to
computing a filter from a linearly interpolated response signal
(see Supplementary Note 1). The voxel-timing filter can be
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smoothed in a graded way to trade off noise for resolution
(Fig. 3d) and can even be smoothed to precisely recover the low-
resolution filter obtained by interpolating the response (Fig. 3e).
This means that, given infrequent neural response measure-
ments, there is little reason not to compute the voxel-timing
filter.

A different way to reduce noise in filter estimates is to employ
regularization techniques. These techniques constrain filter
estimates by making assumptions about the form of the filter.
They are easily applied to data sets of the form of pairs of stimuli
and responses, s, and r,, and can be especially useful when data is

limited. One technique is to fit the function in an alternative basis;
a useful choice is the set of discrete Laguerre polynomials®.
Fitting in this basis substantially reduced the noise in the filter
estimate for the same number of response samples (Fig. 3f). This
worked because the Laguerre basis provides an efficient
representation of the true filter using only a few fit parameters.
Another useful regularization technique is automatic smoothness
determination (ASD), which ensures that the fitted filter is
smooth31:37. ASD was also easily applied to this sort of data and
reduced noise in the filter estimate (Fig. 3f). There are many other
regularization techniques that can be applied in conjunction with
this voxel-timing methodology?-30.

Computer code. With this paper, we include code to generate all
the simulation figures and the first application figure, so that
readers may explore parameters most pertinent to specific
experiments. We have also created a simple function that returns
the voxel-timing cross-correlation, filter, or regularized filter. This
makes it simple to apply this technique to existing and new
datasets. The code is available at http://www.github.com/
ClarkLabCode/FilterResolution.

Applications to neural imaging data. To demonstrate the broad
applicability of this method, we have employed it to measure
properties of neurons in two different organisms expressing three
common indicators of neural activity. First, we show how two-
photon microscopy measurements can be used to extract fast
receptive flelds from Drosophila visual neurons expressing a
voltage indicator. Second, we show how low frame rate two-
photon imaging can be used to measure extracellular glutamate
concentrations—a quantity only accessible by optical methods.
Finally, we show how slow volumetric two-photon microscopy at
2 Hz or below could be used to extract temporal super-resolution
receptive fields from GCaMP6s signals in tree shrew V1 neurons.

High-resolution voltage filters from infrequent imaging. Pre-
cise timing of visual signals is critical to computing visual motion
in vertebrates and invertebrates. In these circuits, motion is
computed by delaying some visual signals relative to others3$3°.
Thus, measurements of filtering properties have been crucial to
understanding motion computations in flies and in mammalian
cortex and retinal?240-30, These filters may be measured precisely
using optical voltage indicators, which report membrane voltage
on fast timescales!>>1. Here, we show that these voltage indica-
tors can be used to extract high-resolution filters even when the
frame rate of the imaging system is slow.

To demonstrate this, we expressed ArcLight’l, a fast reporter
of membrane voltage (timescales ranging from ~10 to 80 ms), in
Drosophila Mil neurons. These neurons respond quickly to light
increments with a graded increase in membrane potential*?. We
presented flies with a ~10 min full-field binary visual stimulus*!,
updated stochastically at 120 Hz (Fig. 4a, b). We acquired two-
photon images at ~13 Hz.

We first used the standard linear interpolation technique to
upsample the responses to 120 Hz and find the OLS filter (Fig. 4c,
top). The resulting filter was smoothed and its resolution limited
by the 13 Hz acquisition rate. It was acausal, since the filter
predicted that the cells would respond before a stimulus was
presented.

We then used voxel-timing and OLS to extract a temporal
super-resolution filter with the 120 Hz resolution of our stimulus
(Fig. 4c, bottom). This filter exhibited dynamics faster than the
imaging frame rate, and agreed with filters measured using fast
linescan measurements (Supplementary Fig. 4) and with previous
measurements of Mil voltage responses!®#0, Using ASD to
regularize the voxel-timing filter reduced noise slightly (Fig. 4c,
bottom).

We further illustrated the independence of imaging frame rate
and filter resolution by extracting filters from a simulated 2.2 Hz
recording, by employing only two sampled measurements from
each second of data. When this 2.2 Hz data was interpolated
before fitting a filter, the filter was present, but substantially
smeared in time (Fig. 4d, top). When instead we computed the
voxel-timing filter, it retained the true high temporal resolution,
but with increased noise due to fewer measured responses in the
simulated dataset (Fig. 4d, bottom). Here, using ASD to regularize
the filter reduced the noise substantially. When acquiring data to
compute these receptive fields, the voxel-timing method elim-
inates the need for linescans or specialized, expensive hardware
for fast acquisition rates.

High-resolution glutamate filters from infrequent imaging. In
principle, voltage could be measured in Mil neurons using
electrophysiology®’, rather than optical techniques. However,
other quantities, like neurotransmitter concentrations, may only
be measurable using optical indicators. An optical indicator for
extracellular glutamate, iGluSnFR, is bright and responds on fast
timescales of <20 ms®?, making it a good candidate for high-
resolution measurements of neurotransmitter dynamics at the
surface of neurons.

To show that one may use slow imaging rates to measure fast
glutamate dynamics, we expressed iGluSnFR in the neuron Mil
in Drosophila, and presented the fly with a stochastic binary
stimulus (Fig. 5a, b). A primary presynaptic partner of Mil is the
neuron L1°3, which responds to light decrements'? and is
glutamatergic>®>>. The ON-responsive Mil neurons likely invert
these OFF glutamate signals by expressing the glutamate-gated
chloride channel, gluCI>4, while also receiving other inputs®°.

The glutamate receptive field in Mil dendrites showed OFF
responses, consistent with synaptic release from L1 (Fig. 5c).
When these measurements were made at 13 Hz and interpolated
to compute the 60 Hz receptive field (Fig. 5c¢, top), the glutamate
filters appeared to be too slow to account for the fast voltage
response seen in Fig. 4. However, the true temporal resolution
of the response became visible when the filters were computed
using voxel-timing analysis (Fig. 5c, bottom). Moreover, as
with the voltage signals, we were able to extract glutamate
receptive fields with far slower acquisitions, so that 2 or 0.5 Hz
volumetric imaging could in principle be used with this indicator
(Fig. 5d).

Glutamate signals have timescales of <20 ms, so a traditional
imaging procedure that interpolated measurements to obtain
receptive fields would have to image at 50 Hz or above to take
advantage of its fast kinetics. Our results make clear that such fast
imaging is unnecessary, and high-resolution receptive fields can
be obtained with far slower frame rates. This permits such
receptive fields to be found with standard microscopes and with
volumetric imaging.

6 | (2019)10:4979 | https.//doi.org/10.1038/s41467-019-12974-0 | www.nature.com/naturecommunications


http://www.github.com/ClarkLabCode/FilterResolution
http://www.github.com/ClarkLabCode/FilterResolution
www.nature.com/naturecommunications

ARTICLE

T

a Mi1>ArcLight

Stimulus
value

Recorded
line

LA

0.5 " 01s ° °
w ® a0 % 09, ® % . ® e
T o 82 N, 00" _en®Pl_02¢70 % ________
e O % %6 Ro %0 -0 0¥ ¢% 6
-05 L
c d
; 0.8 ;
1 77 ms (13 Hz) sampling 1 462 ms (2.2 Hz) sampling
[ ——— r
- 1 1
%.I_"’ . OLS with interpolated 0.6 :
Sk 2F response '
g -
£ 2 i 04F
(i) 1 [
5 : :
Ic ! 02t !
q OFmmommmmmmmmmmm oo ’ .
: :
1 1 1 J O 1 1 1 J
0 100 200 300 0 100 200 300
8 r 1 8 [~ 1
1 1
I l
' 6 . = Voxel-timing OLS 6 [ .
=i . / Voxel-timing ASD .
= 1 1
S84 \ ar o \
55,0 1 A
Su : \q : "\ A A
TS ' A A A4 ¥ A
D 0-""| """"" c"" A a0 0"". """""" ¥\~ F vy
S y VY y 1 V v Y \
N . . . LU . ' .
0 100 200 300 0 100 200 300
Time (ms) Time (ms)

Fig. 4 Voxel-timing voltage filters from Drosophila visual neurons. a Image of Mi1 dendritic arbors expressing ArcLight. Five regions of interest (ROIs)
corresponding to different cells are outlined with different colors. b A stochastic binary light intensity stimulus was presented to the fly, and updated at
120 Hz (top). The y-position of the scan oscillates at the frame rate (13 Hz) and ROI fluorescence is captured at intervals shown with colored circles
(middle). Colored dots indicate the fluorescence and capture time for the five ROls (bottom). ¢ A best-fit filter (receptive field) for a sample ROI (thick blue
line in @) was extracted from the 13 Hz data upsampled to 120 Hz through linear interpolation (top). This filter describes the weighting of inputs that best
predicts the interpolated indicator response. This filter is limited by the timescale of the 13 Hz sampling interval (black bar). Best fit filters were also
extracted from the same underlying data using the voxel-timing method in conjunction with OLS and ASD (bottom). Error bars throughout are 1 SEM
confidence intervals computed by bootstrapping response samples. d Best fit filters as in ¢, but using a subsampling of the original data in order to simulate
a 2.2 Hz acquisition. When extracting the filter from an interpolated response (top), all high-frequency information is lost. Using the voxel-timing method
(bottom), we recovered the high-resolution filter, though with more noise, since 6x fewer samples were used to compute this filter

High-resolution filters from volumetric acquisitions in V1. In
cortex, cells in different layers play distinct processing roles®”->8.
Moreover, the spatial arrangement of receptive field properties in
visual cortex has provided insight into the computational orga-
nization of cortical circuits®*-®1. In experiments that measure
response properties of neurons at multiple depths, volumes are
typically acquired plane-by-plane. That is, neurons in one plane
are recorded at a high frame rate for some period of time, then
the focal plane is moved, and then neurons from a different plane
are recorded. In contrast, volumetric acquisitions sample an
entire volume at a lower rate by measuring once from each plane
before moving on to the next plane (Fig. 6a, b). The first method
results in traces of neural activity that are sampled with high
resolution (often at ~30 Hz), while the volume acquisitions result
in traces of neural activity that are sampled infrequently. Below,
we show that receptive fields may be obtained during volumetric
imaging without loss of temporal resolution. Moreover, when the

number of neural measurements is kept constant, receptive fields
obtained through volumetric sampling can be of higher fidelity
than those obtained from plane-by-plane sampling.

We analyzed two-photon GCaMP6s recordings of tree shrew
V1 layer 2/3 neurons®. In the original dataset, frames were
recorded at 30 Hz at a single plane. Sparse spatiotemporal noise
stimuli were presented to the animal for ~20 min, with time
courses qualitatively similar to sparse Poisson impulses (Fig. 1d).
Using this data, we simulated a ~20min 2Hz volumetric
acquisition with 15 planes per volume. In this simulation, each
cell’s response was assumed to be measured in only one of 15
planes, while planes were acquired at 30 Hz (Fig. 6a—c). Since this
simulated experiment would acquire data from 15 planes in each
volume, it could characterize the response properties of up to
~15x more cells (with widely spaced planes) but would sample
each cell 1x less frequently. We extracted receptive fields from
OFF cells by correlating calcium activity to the onset of a dark
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Fig. 5 Voxel-timing glutamate filters from Drosophila visual neurons. a Image of Mil dendritic arbors expressing iGluSnFR. Five regions of interest (ROIs)
corresponding to different cells are outlined with different colors. b A stochastic light intensity stimulus was presented to the fly, and updated at 60 Hz
(top). The y-position of the scan oscillates at the frame rate (-13 Hz) and ROI fluorescence is captured at intervals shown with colored circles (middle).
Colored dots indicate the fluorescence and capture time for the five ROls (bottom). ¢ A best-fit filter (receptive field) for a sample ROI (thick blue line in a)
was extracted from the 13 Hz data upsampled to 60 Hz through linear interpolation (top). This filter is limited by the timescale of the 13 Hz sampling
interval (black bar). Best fit filters were also extracted from the same underlying data using the voxel-timing method in conjunction with OLS and ASD
(bottom). Error bars throughout are +1 SEM confidence intervals computed by bootstrapping response samples. d Best fit filters as in ¢, but using a
subsampling of the original data in order to simulate a 2.2 Hz acquisition. Filters were extracted from an interpolated response (top) or using the voxel-

timing method (bottom)

pixel on the screen. When analyzed using linear interpolation
between 2 Hz measurements, the OLS filter is smooth in time,
lasting for ~2s, and has acausal portions (Fig. 6d, top). In
contrast, when the voxel-timing filter is computed, either with
plain OLS or with ASD regularization, then the result is a filter
that is very similar to the one obtained from 30 Hz sequential
sampling (Fig. 6d, bottom). Thus, using the voxel-timing method,
we recovered the same response dynamics from the infrequent
volume acquisition as from the full, frequently sampled dataset.

We also simulated an even slower volume acquisition, in which
the cell is measured once every 2s. In this case, the OLS filter
computed from a linearly interpolated response was very broad
and smooth (Fig. 6e, top), but the voxel-timing ASD filter closely
matched filter obtained from 30 Hz sequential sampling (Fig. 6e,
bottom), despite being derived from 1/60th of the data, captured
at 1/60th the frame rate. In this case, the cell was sampled too
sparsely to generate a reliable OLS filter.

We finished by comparing volumetric sampling, in which each
neuron was measured intermittently for the entire duration of the
experiment, to plane-by-plane sampling, in which each neuron is

measured frequently, but only for a short time. In this plane-by-
plane simulation, the total number of samples from each neuron
was the same as in the volumetric simulation. As expected, the
noise magnitude in the volumetric acquisition filter was
comparable to the noise in filters extracted in the simulated
plane-by-plane experiment (Supplementary Fig. 5).
Interestingly, however, the method of infrequent volumetric
sampling can be combined with other techniques to yield higher
fidelity filters than traditional plane-by-plane sampling (Fig. 6f, g,
see Supplementary Note 3). While the magnitude of errors in OLS
filters derived from volumetric sampling is about equal to the
magnitude of errors in plane-by-plane sampling, smoothing
volumetric filters in time reduced these errors while smoothing
plane-by-plane-derived filters had little effect (Fig. 6f). When
ASD was applied to the both datasets, the volumetric filters
consistently had higher fidelity. This is because errors in
neighboring 30 Hz samples of the plane-by-plane simulation
were more correlated with each other than those in neighboring
2Hz samples in the volumetric simulation (Fig. 6g). Thus,
residuals in filter estimates from the infrequent sampling were
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Fig. 6 Precise temporal receptive fields from tree shrew V1 volumetric calcium imaging. a The original dataset recorded from neurons at 30 Hz at a single
depth. A mean image of this recording shows the ROI used for filter extraction. b Simulated volumetric acquisition of 15 planes, one of which corresponds
to the original recording. This plane is represented by the mean image from the original dataset, while other simulated planes are represented by colored
rectangles. ¢ Stochastic, sparse spatiotemporal noise was presented to the animal. Trace shows the onset times for dark stimuli at a single pixel (top). The
set of planes in the volumetric dataset are represented in gray, while the static original plane is in orange (middle). We included response samples only
where the simulated volumetric dataset measured from the true location of the neuron (green circles). Original calcium trace with circled simulated trace
(bottom). d Impulse response of a single neuron in the simulated volumetric dataset using the interpolation method (top) and voxel-timing method (with
and without ASD regularization) (bottom). Shaded patches are 1 SEM calculated through bootstrapping. e Impulse responses calculated as in d, but from
a simulated acquisition obtaining one volume every 2 s. f Distribution of errors in 47 cells from a simulated volume acquisition (2 Hz) and a simulated
plane-by-plane (pbp) acquisition (30 Hz) with the same number of samples. Filters computed by OLS, by OLS followed by smoothing with a 7.5 Hz low
pass filter, and by using ASD. Error is calculated as root mean squared deviation from the full dataset filter divided by the maximum value of that filter.
Horizontal and vertical bars indicate sample mean and standard deviation, respectively. Effect size of using volumetric sampling versus plane-by-plane
sampling is shown at bottom (Cohen'’s d). Errors are reduced in volumetric vs. plane-by-plane in the smoothed and ASD cases (p < 1e-6), but not
significantly different in the raw OLS case (p > 0.2), using a Wilcoxon signed-rank test. g Autocorrelation of residuals in the volumetric and plane-by-plane
sampling cases
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more independent. Temporal smoothing and ASD can take
advantage of the independence of these errors to improve filter
estimates. Thus, slower frame-rate, volumetric sampling of
neurons does not limit the resolution of extracted temporal
filters. Moreover, in some cases, it significantly improves filter
estimates compared to equivalent frequent sampling.

Discussion

Voxel-timing methods allow experimenters to use slow frame rate
imaging data to extract filters whose temporal resolution does not
depend on the rate of sampling of the neural response. This might
surprise readers acquainted with the Shannon-Nyquist sampling
theorem!8. According to this theorem, when reconstructing a
continuous signal from a series of samples, the sampling rate
limits the frequencies contained in the reconstruction. Impor-
tantly, the theorem does not say that the higher frequencies do
not exist in the sampled signal—they do. Rather, it says that those
higher frequencies cannot be recovered through interpolation.
The voxel-timing analysis applied here leverages this high-
frequency information in infrequently-sampled neural responses
to compute temporal super-resolution cross-correlations or fil-
ters. This method should be viewed as the correct way to compute
cross-correlations with signals of this type, since it contains no
implicit temporal smoothing of the true cross-correlation.

The approach presented here was proposed in fMRI studies!?,
and a similar approach was applied to remove heartbeat motion
artifacts in fMRI data?’. Voxel-timing analysis is also similar to
spatial super-resolution methods in digital image processing. In
those methods, several images of the same scene are acquired,
offset from one another by less than a pixel-width. The different
images are combined to generate a single image with resolution
finer than that of the original images23-2°, This approach has also
been applied to image sequences, in which movies from multiple
cameras with offset exposure times are combined to generate
temporal super-resolution image sequences®2-4, In all these
cases, multiple sampled measurements are made of a single
underlying signal, and it is the combination of measurements that
increases the resolution. Here, we showed how applying this logic
to neural imaging data permits filter resolution to be independent
of imaging frame rate.

The method presented here is also similar to one previously
used to precisely correlate calcium signals with behavioral out-
puts®®. That study assumed instantaneous neural measurements
and included data from many trials, which in principle allowed it
to achieve high temporal resolution. Since it did not take into
account the timing of measurements within each frame, sys-
tematic errors in the cross-correlation could arise. For example, in
Fig. 4 of this manuscript, if a neuron was sampled at the end of
each frame, but its responses were assigned to the beginning of
each frame, the resulting filter would precede the true response by
a full frame duration. Thus, if the latency between stimulus and
response is important, it is critical not just to take into account
short acquisition times, but also their exact timing within frames.

In this work, we were concerned with linear models like cross-
correlation and filters, which represent the simplest models for
relating neural responses to other variables. More generally,
however, one may model responses as some function ¢ of the
stimulus and some parameter set 0: r, = ¢(s,,0). As with linear
models, one may fit such nonlinear models by ignoring all
unmeasured responses. Thus, voxel-timing can fit nonlinear or
stochastic models with temporal super-resolution®®%7, including
computing response-weighted stimulus covariance, analogous to
spike-triggered-covariance3233:68 (Supplementary Fig. 2).

Voxel-timing analysis finds the relationship between the activity
of an optical indicator and a high-resolution variable. However,

optical indicators exhibit complex and often nonlinear relation-
ships with underlying cellular quantities of interest, such as spike
times, membrane potential, or calcium concentration®!%%. Many
methods relate calcium traces to spike times by modeling the
nonlinear transformations present in different indicators’%-74,
Spike-time estimation methods are distinct from the method
described here, but are complementary to it. For instance, work in
songbird has combined many trials of calcium indicator mea-
surements aligned to the bird’s song to generate a high-resolution
calcium response, and then inferred spike times relative to the
song with a resolution of a few milliseconds®. Other work used
two-photon calcium imaging in cortical neurons to find precise
spike timing relative to repeated current injections’”. Thus, after
finding a high temporal resolution indicator filter, spike inference
methods can determine the spiking patterns that produced that
average indicator response.

Voxel-timing analysis yields the greatest gain in resolution
when activity indicators and neural responses are much faster
than the interval between neural samples. Fast optical indicators
are increasingly common: voltage indicators can have timescales
of <50ms!3~1 down to 1ms’% genetically encoded calcium
indicators have timescales of <200 ms®®77; and synthetic calcium
indicators can have timescales of <10 ms®. Glutamate reporters
have timescales of <20 ms°2, With voxel-timing analysis, these
fast indicators could be used with volumetric two-photon, con-
focal, or light-sheet imaging, which often acquire volumes at rates
of ~10Hz or less. Standard galvanometric two-photon micro-
scopy with slow frame rates may also be used to acquire high-
resolution responses from fast indicators.

Voxel-timing analysis could be applied to many high-
resolution experimental variables. We focused on visual stimuli,
which are frequently presented at frame rates of 60 Hz and
higher. However, many behaviors are recorded at video rates of
30 Hz or higher, and these are frequently correlated with neural
activity!405. Experiments may also make electrical measurements
during imaging experiments, for instance recording intracellularly
from a single neuron, recording field potentials, or recording
electromyograms, all with resolutions of 1 kHz or higher. These
could all be related with high resolution to infrequently sampled
neural imaging data.

When should one apply a temporal super-resolution technique
to compute filters or cross-correlation kernels? If one already has
infrequently sampled measurements of neural activity, then there
is no downside to computing temporal super-resolution cross-
correlations. They will be noisier than those computed using
interpolation, but one may smooth them in time to trade off this
noise against temporal resolution (Fig. 3). One may also choose to
recover the imaging-rate filter resolution by explicitly performing
the smoothing that is implicit when responses are upsampled by
interpolation. This manuscript provides code to easily apply
voxel-timing methods to existing data.

In designing new experiments, there are many trade-offs to
consider’8, This method shows that the resolution of the receptive
field or cross-correlation with a high-resolution variable is not
limited by the response measurement intervals, and should not be
considered a trade-off when low frame rates are used (Figs. 4-6).
For instance, a one-hour experiment could obtain 10 min
recordings from each of six planes at 12 Hz. Or it could measure
volumetrically, acquiring all six planes sequentially at 2 Hz for the
full hour. In both cases, the number of samples of each neuron is
the same, and the extracted filters could have identical temporal
resolution. However, under some conditions, filters may be better
estimated when neurons are sampled infrequently rather than
frequently in time (Fig. 6f, g). In designing volumetric experi-
ments, the limits on the temporal resolution of the filter are the
resolution of the stimulus and the duration of each neural
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measurement within the volume (see Supplementary Note 1).
Thus, it is advantageous to match the integration time of each
neural measurement with the timescale of the indicator or
response kinetics, and one need not necessarily focus on max-
imizing sampling rates.

One drawback of slow imaging is that correlations between
pairs of neural signals have a temporal resolution limited by the
frame rate, since the relative lag between measurements of dif-
ferent neurons is fixed by their relative positions in the image or
volume. This means neuronal cross-correlations are limited by
the frame rate even though correlations with stimuli and beha-
viors are not. A second drawback of slow frame rate imaging is
that individual responses to stimuli may be missed entirely,
making it more difficult to examine trial by trial variation, which
is often present in cortex’?.

Voxel-timing analysis for filter extraction is compatible with
many imaging modalities, neuron types, and optical indicators. It
can be used to find correlations with many experimental variables
measured on fast timescales: stimuli, electrical measurements, or
behavioral outputs. This analysis employs straightforward
mathematics, making it particularly easy to apply. Because it is an
analysis method, it requires no new hardware and can be applied
retrospectively to already-acquired data. This method can there-
fore be broadly applied to investigate fast correlates of neural
activity.

Methods
Simulation details. Figures 1-3 show simulations of stimuli and responses. In all
cases, the response was the stimulus convolved with a linear filter, plus added noise.
Below, we provide the linear filters used and the level of noise for each figure. Code
is provided for each figure, as noted under “Code availability” below.

In Fig. 1, the true linear filter is

o=t )]

where 7, =100 ms and 7, = 50 ms, and Z normalizes the filter so that its mean
squared value equals 1. The stimulus is Gaussian white noise updated every
millisecond, while the response is sampled for 1 ms every 100 ms. Uncorrelated
Gaussian distributed noise was added to the response so that the signal-to-noise
was ~60, as measured by the peak response divided by the standard deviation of
the noise.

In Fig. 2, the true linear filter is

exp (— f)
)= ——~
1 =—
where 7; = 10 timesteps. The stimulus is uncorrelated Gaussian white noise
updated every timestep, and the response is sampled every 10 timesteps. No noise
was added to this response.
In Fig. 3, the true linear filter is

o (ol ) n(-2) el

where 7; =20 ms, 7, = 100 ms, and 73 = 200 ms. Noise was added to the response
measurements so that the signal-to-noise ratio of the response was 1, as measured
by the standard deviation of the filtered stimulus divided by the standard deviation
of the noise. The response was sampled for 10 ms every 500 ms. The stimulus was
updated at 100 Hz. Best fit linear filters were obtained by OLS fitting, except in the
case of the ASD regularization technique.

In all cases, the filters were causal, so that f{(t <0) =0.

Drosophila voltage imaging and glutamate imaging. Flies were grown on
cornmeal food at 29 °C. Mil neurons expressing ArcLight were imaged in vivo in
response to visual stimuli!:30 presented on a panoramic screen around the fly8l.
The genotype of the experimental flies was +/w~; +/4; UAS-ArcLight/R19F01-
Gal4°182 for voltage measurements and +/w™; +/+; UAS-iGluSnFR/R19F01-Gal4
for glutamate measurements®2. Visual stimuli were binary, full-field stimuli
updated stochastically at 120 Hz, so that the screen flickered between light and dark
gray, with contrasts of £0.9. For glutamate imaging, the update rate was 60 Hz, and
the contrasts were either £0.2 or +0.9. This stimulus was presented for 10 min to
extract all shown kernels. Images were acquired with ScanImage®? on a 2-photon
microscope (Scientifica, UK).

Line scans of neural activity (Supplementary Fig. 4a, b) were acquired at 416
lines per second. Mean fluorescent intensity of ROIs was first downsampled to

120 Hz, and mild bleed-through from the visual stimulus was subtracted.
(Downsampling makes the kernel estimation easier, since all frequencies in the
downsampled response have non-zero amplitudes in the stimulus. Without
downsampling, one must regularize the equations to obtain the filter.) Mean pixel
intensity in regions of interest were converted to AF/F by computing a baseline
fluorescent trace, F(t), equal to a single exponential fitted to the entire trace. This
baseline fluorescence was subtracted from the ROI fluorescence time trace in the
numerator, and then used as the denominator. Filters were obtained using OLS to
find the linear weights of the stimulus that best predicted the response at each
120 Hz sample (Supplementary Fig. 4c).

Full frames of neurons were acquired at 0.6 ms per line, and ~13 frames
per second. With the magnification used, each neuron was sampled over ~10-15 ms
during the frame. After ROIs were defined by hand around Mil dendrites, the
response of the neuron in each scanned line was computed, finding AF/F as in the
linescan case. These were aligned with the stimulus (see Suplementary Notes 4 and 5)
and used to find filters for each line of each ROI; these filters were averaged together
to find the filter for the entire region of interest. We simulated ~2.2 Hz volumetric
acquisition by using every 6th measurement of the response to compute the filters.

Here and later, error bars were determined by bootstrapping, because OLS error
estimates appeared to underestimate the true error in linear kernels. Bootstrapped
1 SEM errors were computed using Matlab’s built-in bias-corrected bootstrapping
function, drawing random sets of neuron measurements.

Tree shrew V1 calcium imaging. Time traces of individual cell fluorescence values
and the stimulus were a kind gift from D. Fitzpatrick, from previously published
experiments®®. The stimulus presented in this experiment was a sparse noise sti-
mulus with a 5 Hz update rate, and two-photon frames were recorded at 30 Hz for
~30 min. In order to extract high-resolution filters from this low-resolution sti-
mulus, we created a 30 Hz stimulus trace corresponding to the onset of dark pixels
(i.e. the stimulus trace was equal to 1 if a dark pixel turned on during the 30 Hz
two-photon acquisition and 0 otherwise). We extracted filters by reverse correla-
tion to each pixel individually.

To evaluate the error due to subsampling, we found the root-mean-squared
deviation of each subsample-extracted filter from the fully sampled extracted filter.
We then normalized these by the maximum value of the fully sampled extracted
filter to obtain a scaled error. Reported scaled errors are medians across all
subsample phases for each of the 47 cells. Because the fully sampled filter is treated
as the ground-truth filter, we chose cells with significant fully sampled filters. Cell
selection was performed by calculating the correlation between the neural signal
and the stimulus for every pixel and every offset, and summing across offsets,
yielding an index of correlation for each pixel for every cell. We analyzed cells
whose maximum pixel index was above 1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Data and Matlab code are available to generate all ﬁgure panels in Figs. 1, 2, 3 and 4.
Code is also included to compute linear filters and cross-correlations from responses

measured at arbitrary times relative to a stimulus with high temporal resolution. This
code is available at: http://www.github.com/ClarkLabCode/FilterResolution
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