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Acute myeloid leukemia (AML) is a hematological malignancy resulting from

the genetic alterations and epigenetic dysregulations of the hematopoietic

progenitor cells. One-third of children with AML remain at risk of relapse

even though outcomes have improved in recent decades. Epigenetic

dysregulations have been identified to play a significant role during myeloid

leukemogenesis. In contrast to genetic changes, epigenetic modifications

are typically reversible, opening the door to the development of epigenetic

targeted therapy. In this review, we provide an overview of the landscape of

epigenetic alterations and describe the current progress that has been made

in epigenetic targeted therapy, and pay close attention to the potential value

of epigenetic abnormalities in the precision and combinational therapy of

pediatric AML.

KEYWORDS

acute myeloid leukemia, pediatric, epigenetics, DNA methylation, histone
modification, non-coding RNAs, therapy

Introduction

Acute myeloid leukemia (AML) is a blood cancer resulting from the genetic
alterations and epigenetic dysregulations of the hematopoietic stem/progenitor cells (1).
Pediatric AML accounts for about 15% of children’s leukemias. One-third of children
have relapses and approximately half of childhood leukemia-related deaths are caused
by relapsed/refractory AML, even though overall survival (OS) has been improved
significantly over the past decades (2). Therefore, more specific drugs and more precise
therapeutic strategies are urgently needed to improve the outcomes and prolong the
survival time of children with AML.

In recent decades, the rapid advancement of sequencing technologies has led to
great progress in clarifying the molecular pathogenesis of AML. These advancements
lay the ground work and pave the way for precise therapeutic strategy by uncovering
genetic alterations and epigenetic dysregulations in AML. Rather than being the result
of changes in DNA sequence itself, epigenetic modifications refer to the changes in gene
expression inherited through cell division (3). Epigenetic modifications include histone
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modification, DNA methylation, and non-coding RNAs
(ncRNAs), which contribute to initiating and sustaining
epigenetic silencing (4). Recent studies have identified a
significant role of epigenetic dysregulation in the pathogenesis
of AML, and some recurrent somatic genetic alterations in
pediatric AML could interfere with epigenetic regulation
(5). Epigenetic modifications are frequently reversible, thus
offering potential avenues for epigenetic targeted therapy
using specific inhibitors (6). Epigenetic therapy has become
a promising therapeutic strategy with many novel inhibitors
being applied in adult with AML (7). Therefore, it is timely to
consider the important role of epigenetic alterations and the
potential targeted therapy in pediatric AML, to promote the
development of precision therapy and improve the outcomes of
children with AML.

Epigenetic regulation and
dysregulation in adult and
pediatric acute myeloid leukemia

Multiple epigenetic modifications regulate the transition
from hematopoietic stem cells to lineage differentiation
and maturation at the transcription level, including DNA
methylation, histone modifications, and non-coding RNAs.
Epigenetic dysfunction is common in most cancers, and
extensive studies have also focused on the mechanisms of
epigenetic dysregulation in AML, though AML has few
mutations compared to other cancer types (5, 8). The current
advances of epigenetic modifications in AML are briefly
summarized below (Table 1).

DNA methylation

The most well-characterized epigenetic change is DNA
methylation, and abnormal methylation patterns have
been discovered in gene silencing of tumor suppressor
genes and genomic instability (9). The procedure of
DNA methylation is the addition of a methyl group to
the C5 position of cytosine residues in DNA to form
5-methylcytosine (5-mC). Most CpGs are methylated
(70–80%), apart from the CG-dense regions termed
CpG islands (CGIs) (10). Malignancy-related aberrant
DNA methylation was originally studied in CGIs in gene
promoters. Several DNA methyltransferases (DNMTs) and
demethylases regulate the methylation modifications of CpGs.
The former includes DNMT3A and DNMT3B, while the
demethylation procedures are associated with the ten-eleven
translocation (TET) family of demethylases (TET1, TET2, and
TET3) (11).

Epigenome remodeling is essential for hematopoietic stem
cell differentiation and maturation, and there is a direct

correlation between DNA methylation patterns and specific cell
types during hematopoiesis (12). Epigenetic abnormalities have
been identified in AML, and several studies have implicated
both hypermethylation and hypomethylation in malignant
transformation (13–15). In adult AML, DNMT3A is one of the
most commonly mutated genes (16), which occurs in pediatric
AML at lower frequencies (20–22% vs. 1–2%, respectively)
(17). DNMT3A mutations were reported to be early events in
leukemogenesis and are predominately heterozygous R882H
in AML (18). Some studies demonstrated that the DNMT3A
mutation in hematopoietic stem cells resulted in damaged
differentiation, enhanced self-renewal compared to wild-type
hematopoietic stem cells, and conferred a poor outcome (19,
20). Meanwhile, DNMT3A mutations have been reported to
increase chemotherapy resistance and the risk of relapse (21).
It is still not well identified how DNMT3A mutations result
in leukemic transformation, but targeting DNMT3A mutations
could be a promising therapeutic strategy (22).

TET2 mutations are another pathway to abnormal DNA
methylation. TET2 catalyzes the oxidation procedure of 5-
methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC),
resulting in DNA demethylation and reversing the gene
silencing driven by DNA methylation (23). Mutations in TET2
occur in 8–23% of patients with AML, but these mutations are
observed rarely in children with AML (Table 1) (17). TET2
mutations are associated with reduced levels of 5-hmC, and are
related to a poor prognosis in intermediate-risk AML (24, 25).
Li et al. found that TET2 knockout HSCs were amplified in vivo
and outperformed wild-type HSCs in serial transplantation
assays (26). Besides, Rasmussen et al. demonstrated that TET2
deletion led to DNA hypermethylation of the active enhancers,
which was related to the upregulation of IGFLR, NOTCH3, and
other oncogenes, and the downregulation of tumor suppressor
genes, such as LXN and CTDSP1 (27). Subsequently, Shih et al.
revealed that TET2 defect and FLT3-ITD mutations remodeled
synergistically DNA methylation and gene expression to an
extent not seen in either of the mutation alone, including
at the GATA2 locus. Then they found that re-expression
of GATA2 induced differentiation in AML stem cells and
abated leukemogenesis. Consequently, they concluded that the
mutations of TET2 and FLT3-ITD induced AML synergistically
characterized by site-specific changes in DNA methylation and
gene expression (28).

The conversion of isocitrate to α-ketoglutarate (α-KG)
is catalyzed by isocitrate dehydrogenase 1/2 (IDH1/2).
The conversion of 5-mC to 5-hmC and subsequent DNA
demethylation is also the result of combined effect of IDH1/2
and TET2 (29). Mutations in IDH1/2 are frequently observed
in adult AML (5–33%), less observed in pediatric AML (1–4%)
(17, 30, 31). Mutations in IDH1/2 result in the synthesis
of tumor metabolite 2-hydroxyglutarate (2-HG), leading to
aberrant DNA methylation (32). Mutational epigenetic profiling
revealed that AML cells with IDH1/2 mutations showed
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TABLE 1 Recurrently mutated or translocated genes in epigenetic modification in adult and pediatric AML.

Gene Epigenetic function Type of mutation Frequency of AML Prognostic role References

DNMT3A De novo DNA methylation Missense, nonsense, and frameshift, 60%
heterozygote mutation at R882 residue

20–22% of adult AML;
1–2% of pediatric AML

Adverse prognosis 15–19

TET2 Conversion of
5-methylcytosine to
5-hydroxymethylcytosine

Missense, nonsense, and frameshift
mutations

8–23% of adult AML;
1.7% of pediatric AML

Uncertain 16, 22–23

IDH1/IDH2 Conversion isocitrate to
α-ketoglutarate (α-KG)

Heterozygous mutations, primarily
missense mutations affecting arginine
residues

5–33% of adult AML;
1–4% of pediatric AML

Uncertain 16, 27–29

CREBBP Histone lysine
acetyltransferase

Rearrangements (fusion genes) Rare Uncertain 14, 33–34

KAT6A Histone lysine
acetyltransferase

Rearrangements (fusion genes) Rare Uncertain 14, 33–34

EP300 Histone lysine
acetyltransferase

Rearrangements (fusion genes) Rare Uncertain 14

HDAC2/HDAC3 Histone deacetylase Missense mutations Rare Uncertain 14

KDM5A Histone lysine demethylase Rearrangement involving NUP98 10% of pediatric acute
megakaryoblastic

leukemia

Uncertain 51, 52

KDM6A Histone lysine demethylase Missense mutations Rare Uncertain 53

KMT2A H3K4 methyltransferase Gene fusion with>70 fusion partners,
partial tandem duplications

Fusion: 1–10%; Tandem
duplications: 4–7%

Adverse prognosis 39–41

EZH2 H3K27 methyltransferase,
enzymatic component of
PRCa2

Missense, nonsense, and frameshift
loss-of-function mutations

1–5% of adult AML; Rare
in pediatric AML

Uncertain 42, 43

NSD1 H3K36 methyltransferase Rearrangement involving NUP98 2–5% Uncertain 36–38

ASXL1 Recruitment of PRC2 to
target loci

Missense, nonsense, and frameshift
loss-of-function mutations

3–17% of adult AML;
1–9% of pediatric AML

Adverse prognosis, especially
in intermediate- and low-risk
AML

46, 47

ASXL2 Function unknown Mutations 23% of AML with
RUNX1::RUNX1T1

Uncertain 48, 49

SUZ12 Member of PRC2 Missense mutations, insertions and
deletions

Unknown Uncertain 36

JARID2 Recruit PRC2 to target loci Loss in transformation of MDSb/MPNc to
AML

Unknown Uncertain 45

aPRC, polycomb repressor complex; bMDS, myelodysplastic syndrome; cMPN, myeloproliferative neoplasm.

global DNA hypermethylation and a specific hypermethylation
characteristic, particularly at promoter regions in a large AML
patient cohort study (33). Figueroa et al. found that IDH1/2
mutations and TET2 mutations were mutually repellent, and
loss-of-function mutation of TET2 was similar to the epigenetic
alterations of IDH1/2 mutations. Furthermore, either TET2
depletions or IDH1/2 mutations increased progenitor cell
marker expression and damaged hematopoietic differentiation,
cooperatively contributing to leukemogenesis (33). Similar to
AML with TET2 or IDH1/2 mutations, Rampal et al. identified
reduced 5-hmC levels in WT1 mutant AML patients and they
found that the overexpression of WT1 increased global levels
of 5-hmC, whereas 5-hmC levels were reduced when WT1 was
silenced (34). They also demonstrated that WT1 physically
interacts with TET2 and TET3, and loss-of-function WT1
caused a hematopoietic differentiation phenotype similar to that
observed with TET2 defects (34). Subsequently, Wang et al. also

demonstrated that WT1 physically interacts with and recruits
TET2 to its target genes, and AML-derived TET2 mutations
disrupt the interaction (35). Despite the mechanism by which
WT1 silencing or mutations lead to decreased 5-hmC is not
completely clarified, the TET2, IDH1/2, and WT1 mutations
lead to dysregulated DNA hydroxymethylation, which could be
classified as a new subtype of AML.

Histone acetylation

Histone acetylation is the transformation of acetyl groups
to lysine residues in histone proteins, which is modulated
by histone lysine acetyltransferases (KATs) and histone
deacetylases (HDACs). Histone acetylation plays an important
role in gene transcription, chromatin structure, and DNA
repair (36). Lysine acetylation leads to open chromatin
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confirmations and gene activation, whereas lysine deacetylation
leads to condensed and closed chromatin, causing gene
inactivation (37). KAT rearrangements (as opposed to
mutations) occur in AML at extremely low frequencies
(15). Although HDACs mutations occur also exceptionally
rarely in children with AML, myeloid oncoproteins and
leukemia-associated fusions can recruit HDACs abnormally,
such as EVI1, RUNX1::RUNX1T1 (previously AML1::ETO), so
as to block differentiation and maintain the leukemic phenotype
of AML (38).

Histone lysine methylation and
demethylation

Histone lysine methylation is regulated by lysine
methyltransferases (KMTs), which have several different degrees
of methylation, including monomethylation, dimethylation, and
trimethylation (39). It has been reported that the methylation
of histone lysine could change the affinity of reader proteins to
the methylated histone (40). The different target residues
and the degree of methylation have distinct effects on
transcription levels, and different methylation states could
produce different functional effects in the same lysine residue
(41). For instance, activation-related marks include methylation
of H3K4, H3K79, and H3H36, while the methylation of
H3K27, H3K9, and H4K20 contributes to silenced gene
transcription (41). In AML, KMTs include components of
the polycomb repressor complexes (PRCs) and mixed-lineage
leukemia (MLL) proteins, which are frequently involved in
translocations or are mutated.

MLL, or called KMT2A belongs to the family of SET
domain-containing KMTs. MLL can make transcription
activation by targeting H3K4. In AML, a histone
methyltransferase DOT1 is recruited by MLL fusion proteins,
so as to cause abnormal methylation of H3K79 at MLL gene
targets and increase the expression of leukemia-related genes
(42). MLL translocations are more common in pediatric than
adult AML (30–50% vs. >10%, respectively), which are the most
frequent alteration in infant AML (43, 44). Therefore, it is a
promising area to develop the inhibitors of this complex and its
enzymatic co-factors for infant and pediatric AML.

Enhancer of zeste 2 polycomb repressive complex 2
subunit (EZH2) is part of the PRC2 polycomb repressor
complex, which is an H3K27 methyltransferase to catalyze
dimethylation and trimethylation of H3K27, resulting in
the suppression of transcription (45, 46). Neff et al. found
that EZH2 was necessary for tumor progression rather than
leukemogenesis in KMT2A::MLLT3 (previously MLL::AF9)
leukemia (47). Another member of the PRC2 complex
Jumonji AT-rich interactive domain 2 (JARID2) similarly
recruits PRC2 to specific target loci. Puda et al. reported
that deletions of PRC2 complex members, especially JARID2,

contribute to the leukemic transformation of chronic myeloid
disorders (48). Additional sex combs like transcriptional
regulator 1/2 (ASXL1/2) mutations occur more frequently in
adult than pediatric AML (3–15% vs. 1–9%, respectively)
(49, 50). The PRC2-associated protein ASXL1 can recruit
PRC2 to its target loci, and mutations of ASXL1 lead to
deletion of methylation regulated by PRC2. It has been
reported that ASXL1 mutations contributed to the poor
prognosis of AML (51). Besides, mutations of ASXL2 are
commonly found in patients with the RUNX1::RUNX1T1
fusion gene, and ASXL1 and ASXL2 mutations are mutually
exclusive (52).

Histone lysine demethylation is regulated by lysine
demethylases (KDMs), which remove the methylation
labels on lysine. KDMs include the amine oxidases and
Jumonji domain containing proteins (JmjC). Lysine-specific
demethylase 1 (LSD1/KDM1A) is the amine oxidase, which
has specificity for H3K4 and H3K9 as a transcriptional
activator or a transcriptional repressor (53). The demethylase
of JmjC lysine, KDM5A (JARID1), is associated with
NUP98 fusion protein in about 10% of pediatric acute
megakaryoblastic leukemia (54, 55), and the mutation of
KDM6A, another member of the JmjC family, occurs rarely
in AML (56).

Epigenetic readers

As epigenetic readers, the bromodomain and extra-
terminal (BET) protein family members, including BRD2,
BRD3, and BRD4, bind to acetylated lysine residues on
histone tails (57). The process can initiate chromatin-
mediated signal transduction, so as to achieve normal or
tumor-dependent functions (58, 59). Some studies have
reported that BRD4 could promote the abnormal expression
of pivotal oncogenes, including c-Myc and Bcl-2 in AML
(60, 61). BET inhibitors can alter the expression of particular
genes, despite BRD4 and other BET proteins ubiquitously
express at gene promoters and enhancers (62). Zuber
et al. indicated that inhibition of BET proteins can block
abnormal transcription of some oncogenes associated with
leukemia, thus blocking the upregulation of leukemic stem
cell (LSC) self-renewal programs and inducing differentiation
(63). Furthermore, Dawson et al. demonstrated that BET
inhibition could exhibit profound anti-leukemic effects
against human and murine MLL-fusion leukemic cell
lines, and they also identified the effects in mouse models
of murine KMT2A::MLLT3 and human KMT2A::AFF1
(previously MLL::AF4) leukemia (64). Inhibition of tumor cell
dependence on high oncogene expression by BET inhibitors is
a promising therapeutic strategy, and malignant cells may be
eliminated in the therapeutic window that preserves normal
hematopoietic cells.
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Non-coding RNAs

With the rapid advancement of RNA sequencing
technology, more and more ncRNA have been discovered
that are closely associated with AML leukemogenesis. There is
accumulating evidence that ncRNAs play an important role in
the pathogenesis of hematological malignancies, especially AML
(65). Over the last few decades, the understanding of ncRNAs
promote the improvement of the diagnosis, treatment, and
prognosis of AML. NcRNA can be classified as housekeeping
RNA and regulatory RNA according to their different functions.
The regulatory RNA molecules are widely associated with
gene transcription and translation, which include microRNAs
(miRNAs, 19–24 bp), long non-coding RNAs (lncRNAs, >200
bp), and circular RNAs (circRNAs) (66).

MiRNAs have about 22 nucleotides that bind to the
3’-untranslated regions (3’-UTR) of the target gene and
posttranscriptionally suppress the expression level of the target
gene (67). Numerous studies have implicated miRNAs in
regulating hematopoiesis. Oshima et al. demonstrated that
EZH2 cooperated with miRNA let-7 to inhibit HSC function
(68). Bolouri et al. performed miRNA sequencing of 152 samples
from pediatric AML patients and found a relationship between
gene abnormalities and miRNA expression. They found the
high expression of miRNA-10a in AML with the mutations of
NPM1 and high miRNA-21 expression in Core Binding Factor
(CBF)-AMLs (69). Some studies have shown that miRNA-155
was associated with poor prognosis of adult and pediatric AML
(70). Zhu et al. analyzed the connection of the miRNA data and
clinical data of 229 patients and verified that the high expression
of has-miR-542 and has-miR-509 were independent adverse
prognostic factors, while has-miR-146a and has-miR-3667 were
favorable factors (71).

CircRNAs are ubiquitous, stable, and conserved ncRNAs,
which are single-stranded RNA molecules (72). Nicolet et al.
demonstrated that the expression of circRNA is cell-type
specific and increases during hematopoietic differentiation
after analyzing circRNA expression in human hematopoietic
progenitors and differentiated lymphoid and myeloid cells
(73). Liu et al. utilized a circRNA microarray to analyze
the expression pattern of circRNAs in children with AML.
Then they verified that circRNF220 was specifically enriched
and accumulated in peripheral blood and bone marrow of
children with AML (74). Subsequently, they showed that
circRNF220 has highly specificity and efficiency in the diagnosis
of AML. Meanwhile, they demonstrated that the expression
of circRNF220 independently predicted prognosis and high
expression of circRNF220 was an adverse prognostic marker for
relapse of children with AML. Recently, Wang et al. showed
that circ_0040823 sponged miR-516b to inhibit proliferation
and induced apoptosis of AML cells (75).

LncRNAs are more than 200 nucleotides in length and
lack a meaningful open reading frame (76). Relatively fewer

studies have investigated lncRNAs in pediatric AML. It has been
reported that urothelial carcinoma-associated 1(UCA1) could
maintain the proliferation of AML cells (77, 78). Recently, Liang
et al. found that the expression of UCA1 was increased and
the expression of miR-204 was inhibited in pediatric patients
with AML. Besides, the downregulation of UCA1 suppressed
cell proliferation and facilitated apoptosis by upregulating miR-
204 in pediatric AML (79). Ma et al. identified that lncRNA
LINC00909 promoted cell proliferation and metastasis by miR-
625-mediated modulation of the Wnt/β-catenin signal pathway
in pediatric AML (80).

The role of miRNAs in the pathogenesis and prognosis of
AML is the most studied. However, the mechanism of miRNAs
in AML is still complicated and poorly understood. Recently,
lncRNAs and circRNAs have been found to participate in
the miRNA network and act as competing endogenous RNAs
(ceRNAs) and miRNA sponges to regulate the expression of
miRNAs in AML (65). It is a promising area to find the crossover
of the three ncRNAs to help understand the connection between
these three ncRNAs.

Epigenetic targeted therapy in
pediatric acute myeloid leukemia

The pivotal role of epigenetic modifications in AML
has stimulated efforts to study epigenetically targeted drugs.
Furthermore, epigenetic targeted therapies provide more
chances for patients with AML thanks to the inherent
reversibility of epigenetic marks. Numerous clinical trials
are ongoing to study the epigenetic targeted therapies in
adults with AML, either alone or combinational therapy.
Despite mutations of epigenetic modifications are observed less
commonly in pediatric AML compared to adult AML, more
and more clinical trials are focusing on the important role
of epigenetic modifications and targeted therapy in pediatric
AML, and a series of small molecules that inhibit epigenetic
regulators activity are currently studied in various clinical trial
stages (Table 2).

DNA methyltransferase inhibitors

DNA methyltransferase inhibitors (DNMTi) or called
hypomethylating agents (HMAs) include 5-azacytidine
(azacitidine) and 5-aza-2’-deoxycytidine (decitabine). HMAs
can alter DNA methylation patterns, promote the expression
of tumor suppressors, and increase apoptosis (81). HMAs
are the best-established epigenetic therapies in adult AML,
which have shown efficacy and safety in older patients with
AML. HMAs covalently bond with DNMTs irreversibly, which
leads to proteasomal degradation of DNMTs, resulting in
hypomethylation and transcriptional repression, and direct
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TABLE 2 Clinical trials of epigenetic targeted therapies in pediatric AML.

Target Drug Phase Study start Clinical trial Status

DNA methyltransferases Azacitidine 1 2013 NCT01861002 Completed

Azacitidine 2 2017 NCT03164057 Recruiting

Azacitidine 2 2018 NCT03383575 Active, not recruiting

Azacitidine 2 2015 NCT02450877 Completed

Azacitidine 2 2013 NCT01700673 Completed

Azacitidine 2 2014 NCT02275663 Unknown

Decitabine 2 2017 NCT03164057 Recruiting

Decitabine 1 2017 NCT03132454 Recruiting

Decitabine 2 2006 NCT00416598 Completed

Decitabine 1/2 2018 NCT03453255 Unknown

Decitabine 2 2018 NCT03417427 Recruiting

Decitabine 2 2006 NCT00414310 Completed

Decitabine 1 2017 NCT03263936 Active, not recruiting

Decitabine 1/2 2013 NCT01853228 Terminated

Decitabine 2 2011 NCT01177540 Completed

IDH1 Ivosidenib 2017 NCT03245424 Approved for marketing

IDH2 Enasidenib 2 2018 NCT03383575 Active, not recruiting

Histone deacetylases Vorinostat 1 2005 NCT00217412 Completed

Vorinostat 1 2017 NCT03263936 Active, not recruiting

Vorinostat 1/2 2012 NCT01422499 Completed

Panobinostat 1 2016 NCT02676323 Terminated

Panobinostat 1 2011 NCT01321346 Completed

Valproic acid 2 2012 NCT02124174 Recruiting

DOT1L Pinometostat 1 2014 NCT02141828 Completed

Pinometostat 1/2 2019 NCT03724084 Active, not recruiting

cytotoxic effects through DNA damage (Figure 1) (82). Several
studies have demonstrated that the action of azacitidine is
not limited to DNA demethylation (83). Schaefer et al. found
that azacitidine inhibited the RNA methyltransferase DNMT2,
which is variably expressed in human cancer cell lines (84).
Subsequently, some studies have identified the novel targets of
azacitidine in RNA methylation, which provides a new insight
into its more widespread clinical use either or in combination
in AML (85, 86). HMAs have been demonstrated to prolong
overall survival (OS) compared to standard treatment in adult
patients (87), and Stahl et al. identified the important role of
HMAs in relapsed/refractory AML in a large patient cohort
study (88). Despite the low frequency of mutations in DNMTs
in pediatric AML, some studies have shown that DNMTi might
be efficient in pediatric AML. Gore et al. demonstrated that
decitabine is feasible and well- tolerated in children with newly
diagnosed AML before standard combination chemotherapy
(89). Subsequently, Sun et al. identified that azacitidine was
safe when utilized in sequence with intensive chemotherapy
in pediatric relapsed/refractory AML (90). Some studies
have indicated that HMAs only have limited efficacy and
difficulty leading to sustained remission when used as a single
agent in adult AML (91), thus further preclinical and clinical

studies should focus on the combination therapy with other
chemotherapy agents, targeted drugs, and immunotherapy.

Isocitrate dehydrogenase inhibitors

IDH mutations have been identified to block cell
differentiation by competitively inhibiting α-KG-dependent
dioxygenases involved in histone and DNA demethylation
(92, 93). Current IDH inhibitors selectively inhibit mutant
IDH protein and promote the terminal differentiation of
abnormal myeloid cells in vitro and in vivo models (94).
Stein et al. firstly reported the IDH inhibitor, enasidenib,
could be used in relapsed/refractory IDH2-mutant AML in a
phase 1/2 clinical trial (NCT01915498) (95). Then DiNardo
et al. reported that ivosidenib, a small-molecule inhibitor of
IDH1, promoted durable remission and molecular remission
in patients with CR in a phase 1 clinical trial of patients
with advanced IDH1-mutant relapsed/refractory AML (96).
However, few clinical trials accept children with AML at present.
The only clinical trial currently that accepts pediatric AML
patients is investigating the synergistic effect of azacytidine and
enasidenib in myelodysplastic syndrome (MDS) with IDH2
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FIGURE 1

Epigenetic inhibitors and mechanisms in pediatric AML. Epigenetic inhibitors are highlighted in red. C, cytosine; Ac, acetylation.

mutation (NCT03383575), whereas there is no ongoing trial in
pediatric AML yet.

Histone deacetylases inhibitors

HDAC inhibitors (HDACi) can activate tumor suppressor
genes and promote tumor cell killing, which have been
evaluated in clinical trials for adult AML patients with
limited efficacy, either alone or in combination with
chemotherapy (97). Leukemia-associated fusion proteins
have been reported to block gene expression by recruitment
of HDACs, which could be alleviated by inhibiting HDACs,
causing differentiation of leukemic blasts. Meanwhile, these
fusion proteins are more frequent in pediatric AML, raising
the possibility that children with AML may benefit more
from HDAC inhibitors than adult patients. Karol et al.
reported that panobinostat could be safely administrated
with chemotherapy and increased histone acetylation in
a phase 1 clinical trial (98). Recently, Pommert et al.
demonstrated that the combination therapy of decitabine

and vorinostat with fludarabine, cytarabine, and G-CSF
(FLAG) was well-tolerated and effective in pediatric patients
with relapsed/refractory AML in phase 1 clinical trial
(NCT02412475) (99). The results of these clinical trials
will promote the development of HDAC inhibitors in pediatric
patients with AML.

DOT1L inhibitors

Owing to more frequent MLL translocations of pediatric
AML than adult AML (30–50% vs. >10%, respectively), highly
promising therapeutic approaches can be applied in MLL-
associated leukemias. Inhibition of DOT1L blocks MLL target
gene expression by regulating the aberrant methylation of
H3K79. Pinometostat (EPZ-5676) is a DOT1L inhibitor that
has been applied in relapsed/refractory AML patients with MLL
rearrangements in a phase 1 clinical trial (100). However, the
study reported only temporary reductions in leukemic blasts
(NCT02141828). Despite the lack of clinical benefit of EPZ-5676
as a single agent, preclinical and clinical studies are warranted
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to evaluate the combinational efficacy of DOT1L inhibitors and
conventional regimens in relapsed/refractory AML.

Bromodomain and extra-terminal
inhibitors

BET inhibitors have an important role in inhibiting histone
acetylation. Dawson et al. showed that I-BET151, a small-
molecule inhibitor of the BET family, was effective against
murine and human leukemic cell lines with MLL-fusion by
inducing early cell cycle arrest and apoptosis (64). Then
they indicated that IBET151 significantly promoted survival
in two distinct mouse models of murine KMT2A:MLLT3 and
human KMT2A::AFF1leukemia (64). These results provide a
promising epigenetic therapy target for pediatric AML. Other
BET inhibitors, including MK-8628 (OTX015) and CPI-0610,
also are now being evaluated in phase 1 and 2 trials in adult AML
(NCT02698189, NCT02158858) (101).

Discussion

Although the prognosis for children with AML has
improved in recent decades, it remains poor due to the high
risk of relapse and few therapeutic choices available when
initial treatment fails. There remains an urgent need for better
and more precise therapeutic approaches for patients with
AML, especially for pediatric AML. Rapid advancements of
next-generation sequencing technologies have contributed to
understanding genetic alterations and epigenetic abnormalities
of AML, and promoting the development of precise therapeutic
strategies. Based on the clinical efficacy of epigenetic therapies
in adult AML, the preclinical and clinical study of epigenetic
targeted therapy needs more attention, despite the low
frequency of epigenetic alterations in children with AML. Some
inhibitors of epigenetic targeted therapies have benefited many
children with the appropriate patient stratification. Meanwhile,
it is critical that more personalized medicine will need more
precise and appropriate patient stratification with different
genetic and epigenetic alterations. One drug is unlikely to be
curative in AML, either epigenetic targeted drugs or other
inhibitors, which give opportunities for drug resistance and

increase the risk of relapse due to the clonal heterogeneity.
Several clinical trials have demonstrated that the Bcl-2 inhibitor,
venetoclax plus HMAs dramatically improved CR rates in
elderly AML patients (102). And venetoclax plus azacitidine
was approved by FDA in newly diagnosed AML ineligible for
induction chemotherapy in 2018. Recently, IDH1 inhibitor,
ivosidenib in combination with azacitidine was also approved
for newly diagnosed AML (103). Further preclinical and
clinical studies should focus on the combination therapeutic
strategies of epigenetic targeted drugs with other inhibitors
and immunotherapy to promote cell killing and improve the
prognosis for children with AML.
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