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Abstract
Background The creation of relief camps following a disaster, conflict or other form of externality often generates 
additional health problems. The density of people in a highly stressed environment with questionable safe food and 
water access presents the potential for infectious disease outbreaks. These camps are also not static data events but 
rather fluctuate in size, composition, and level and quality of service provision. While contextualized geospatial data 
collection and mapping are vital for understanding the nature of these camps, various challenges, including a lack of 
data at the required spatial or temporal granularity, as well as the issue of sustainability, can act as major impediments. 
Here, we present the first steps toward a deep learning-based solution for dynamic mapping using spatial video (SV).

Methods We trained a convolutional neural network (CNN) model on a SV dataset collected from Goma, Democratic 
Republic of Congo (DRC) to identify relief camps from video imagery. We developed a spatial filtering approach to 
tackle the challenges associated with spatially tagging objects such as the accuracy of global positioning system and 
positioning of camera. The spatial filtering approach generates smooth surfaces of detection, which can further be 
used to capture changes in microenvironments by applying techniques such as raster math.

Results The initial results suggest that our model can detect temporary physical dwellings from SV imagery with 
a high level of precision, recall, and object localization. The spatial filtering approach helps to identify areas with 
higher concentrations of camps and the web-based tool helps to explore these areas. The longitudinal analysis 
based on applying raster math on the detection surfaces revealed locations, which had a considerable change in the 
distribution of tents over space and time.

Conclusions The results lay the groundwork for automated mapping of spatial features from imagery data. We 
anticipate that this work is the building block for a future combination of SV, object identification and automatic 
mapping that could provide sustainable data generation possibilities for challenging environments such as relief 
camps or other informal settlements.
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Introduction
One of the greatest challenges in serving the health 
needs of people displaced into temporary camps after 
a disaster or conflict is how to continuously gauge and 
contextually map changing human needs and the place-
ment of resources. These types of ephemeral locations 
are difficult to map in any environment, and for many 
developing world situations, such as in the Democratic 
Republic of Congo, the setting for this paper, these data 
challenges can be unassailable. In the greater Goma area 
of the DRC, temporary camps were created for a variety 
of reasons: in 2021, to serve the population displaced by 
the Nyiragongo volcanic on 22 May, and in 2022, as a 
result of the conflict with the M23 rebel group, with an 
additional 3,000 families being displaced due to flood-
ing. These camps pose considerable health and safety 
challenges, leading to a variety of reported problems, 
including violence, rape and other sexual violence, as 
well as disease outbreaks [1], and even devastating fires 
in August 2023 [2]. In addition to being initially dis-
placed, other vulnerable cohorts sometimes seek refuge 
in these camps to benefit from the assistance of NGOs. 
This results in a highly dynamic situation with additional 
internal and between-camp mobility.

From a mapping perspective, tasks of importance 
include the characteristics of the camp, which include 
where people are living, their activity spaces, and the 
locations of services, including (safe) food, water and 
sanitation. The authors of this paper have previously 
described and mapped the growth of one of these first 
camps, the Mujoga relief camp, using spatial video (SV), 
which is a hand-carried video camera with simultane-
ously collected Global Positioning System (GPS) coordi-
nates [3–5]. This yearlong process captured the dynamic 
nature or shifting context within the camp. Mapping was 
performed because features were digitized from each 
spatially encoded video frame and then contextualized 
using mixed methods [5]. The camp in question was a 
highly dynamic space with refugees moving both in and 
out of the camp, including the growth of an “informal” 
tent sector within the camp. In addition, the safety of key 
infrastructure, such as water points and toilets, changed 
over the time frame of the mapping, with their visible 
deterioration being linked to the end of NGO funding [5]. 
That paper concluded that the ending of funding had cre-
ated a perfect storm that might increase the likelihood of 
cholera occurrence. Unfortunately, that concern proved 
valid, especially when the conflict with the M23 rebel 
group led to even more displaced people and the growth 
of additional temporary camps in the Goma region. Fig-
ure 1 displays the approximate location for some of these 
camps with the total number of cholera cases recorded 
up to the end of January 2023, although these camps are 
likely to be undercounts. The figure also includes inset 

images of tents extracted from the SV for each camp. As 
further illustration of the dynamism involved, the Bush-
agara and Don Bosco camps opened to take the overflow 
of displaced people, and Munigi, which is the largest 
camp with a cholera treatment center (CTC), would take 
referrals from all other camps.

Although this mapping approach provided a use-
ful early warning of what was to come, extending the 
approach to other camps would require considerable 
(and unsustainable) human mapping effort. SV data have 
been collected for approximately one year in all the other 
camps, but the resources are not available for the same 
type of mapping. One possibility is to use machine learn-
ing to automatically map the SV data collected by field 
epidemiological teams. To explore this possibility, we will 
use the longitudinal SV data collected for the Mujoga 
camp and attempt to automatically identify the number 
of tents visible in each image frame of the SV. We then 
utilize the spatial information from the SV, along with 
spatial filtering, to generate a continuous spatial distribu-
tion of visible tents. Furthermore, to quantify the change 
in the spatial distribution of visible tents over time, we 
will utilize a raster calculator to generate difference maps 
for the distribution of tents. While we understand that 
other remotely sensed options are available for the tasks 
presented here [6–8], what is proposed is a more on-
the-ground sustainable solution that can also be used to 
eventually extract more detail and context from overhead 
imagery.

Mapping relief camps
Being able to develop sustainable, granular-scale mapping 
for a temporary relief camp is essential for humanitarian 
organizations to strategize their resources and decision-
making [9]. With circumstances that often mimic other 
informal settlements, such as a lack of immediate fam-
ily resources, overcrowding, stress, problematic sani-
tary services, and poor health care access, these create a 
complex landscape in which different diseases can thrive. 
While for some relief camps these challenges are initially 
reduced through an influx of NGO funding, the situation 
can quickly deteriorate once these resources end. Pro-
ducing effective maps to understand where why and how 
to intervene in these environments is challenging because 
of the paucity of data [10], especially granular geographic 
data of the type useful for response teams. Previous 
attempts to fill this spatial data gap have included using 
cellular-mobile data [11] or satellite imagery [12]. Draw-
backs might include cross-sectional approaches due to 
logistical limitations, which include both data acquisition 
and local expertise [13]. Recent research on detecting 
and mapping informal settlements has utilized remote 
sensing data, especially satellite data [10–16], which can 
be used for image classification, object detection and 
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semantic segmentation [17]. Combining this geographi-
cally referenced satellite imagery with crowd sourc-
ing has also been used to map critical infrastructure, 
such as tents, toilets, medical care, and automated teller 
machines (ATMs) [18]. While the results are encourag-
ing, the logistics involved are still beyond many typical 
camp situations.

Although our own mapping of informal settlements 
has traditionally involved intensive manual digitization, 
recent advances in deep learning, especially convolu-
tional neural networks (CNNs), have provided potentially 
new automated or semiautomated solutions for land 
cover classification, digitization and cartography [19–21]. 
Combining remote sensing and neural network methods 

Fig. 1 Camp locations in Goma along with cholera case details as of January 2023
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such as CNNs is increasingly being used to guide human-
itarian responses during conflicts, human rights viola-
tions and various disasters. For example, Wang et al. [14] 
used a mathematical morphology-based method to gen-
erate camp maps from high-resolution satellite imagery 
to estimate displaced populations. A mask region-based 
CNN model was developed by Gella et al. [21] for map-
ping refugee settlements in Cameroon using very high-
resolution (VHR) satellite imagery data. Similarly, Lu 
et al. [15] developed a fully CNN (FCN) model to iden-
tify refugee tents along the Syria-Jordan border. A more 

advanced model for estimating displaced populations 
after a disaster involving a CNN and a generative adver-
sarial network (GAN) was developed by Fisher et al. [22]. 
In this study, they utilized transfer learning from three 
large existing CNN models, ResNetV2, InceptionV3, and 
MobileNetV2, to create an object detection model and 
further utilized a GAN to enrich the existing dataset.

However, while the effectiveness of these AI approaches 
has improved with developments in image analysis using 
machine learning algorithms such as neural networks 
[23, 24], the problem of capturing multiple time periods 

Fig. 3 Automated mapping workflow. The first task of the workflow is image extraction, followed by the training phase, which involves image labeling 
and model training. The prediction results from the trained model are used as the input to the mapping phase, which is then used to generate the final 
raster map after spatial filtering

 

Fig. 2 Ground-level image of a location in Goma from (a) Google Earth on November 7, 2021, and (b) a spatial video on November 9, 2021
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still largely remains [25]. Spatial video (SV), which can 
include systematically capturing multiple time periods or 
collecting an immediate “snapshot” after a single event, 
has proven useful for responding to on-the-ground 
needs [26–28]. This field methodology combines a global 
positioning system (GPS) and video imagery, with each 
image frame being tagged with a location. Although the 
traditional version of SV still poses logistical challenges 
in terms of mapping, its ease of use for on-the-ground 
response teams and its ability to capture fine-scale spa-
tiotemporal data, as well as its ability to add context 
through mixed methods [5], indicate that it is a method 
worthy of further development. It is a data collection 
strategy that conceptually puts local teams at the heart 
of data collection and processing. For example, the camp 
images shown in Fig. 1 are from SVs collected in various 
relief camps by local collaborative teams. This method is 
also appropriate for a variety of different environments 
and purposes, with examples of SV use in informal-type 
settlements, including cholera in Haiti [29], malaria in 
Ghana [30], environmental factors affecting dengue in 
Colombia [31] and Nicaragua [25], and water access in 
Tanzania [32]. While useful for smaller areas, SV map-
ping soon runs into scalability challenges when the 
geography expands to include numerous objects to be 
mapped, such as typical relief camp tents [5]. As part of 
an attempt to make this a more ubiquitous method that 
could lessen the logistical burden, the authors of this 
paper previously developed a neural network model to 
identify health risk features in SV imagery for Haiti [33]. 
Improving this approach could provide an efficient solu-
tion for mapping risk in informal settlement-type envi-
ronments and could also be used to capture and compare 
geographic change over time, which could again act as a 
signal for potential disease outbreaks. This type of longi-
tudinal mapping is also vital for providing ongoing sup-
port for intervention as service provision changes. As an 
excellent complimentary data source, granular satellite 
imagery may not be readily available, especially for mul-
tiple periods, for all relief camp settings. Similarly, while 
other spatial data collection approaches are available, 
such as using drones, from our experience, the technol-
ogy involved and the skill needed to use this equipment 
limits its likely use in the camps described in this paper 
and for the available field team. Given these experiences, 
at this time, the current body camera style of the SV cam-
era we use is ideal, small, simple to use, unobtrusive and 
unlikely to cause local concern, which is not the case for 
flying drones over a relief camp. It was tasked with new 
camps as they emerged with nothing more than an email 
exchange.

As an example of the difference between these two data 
sources, Fig.  2a shows the Google Earth imagery (from 
Maxar technologies) for a location in Goma, DRC on 

November 7, 2021, while Fig. 2b shows the spatial video 
imagery captured from the same location on November 
9, 2021. The SV data revealed a change in the location 
and number of tents, even after just two days. In addi-
tion, the ground-level imagery provided through SV 
allowed for more visual context to be established, such 
as those that are “informally” constructed and not part of 
the initial relief designed to home displaced families from 
the volcanic eruption [5]. The objective of this paper is 
to develop a more sustainable approach using machine 
learning to automatically turn this type of SV image into 
an automatically generated map.

Methods
SVs were collected from a series of relief camps around 
Goma, DRC, some of which were set up in response to 
the Nyiragongo volcano eruption on 22 May 2021. The 
specifics of field data collection will be described in a 
later section, but the primary reason for the collection 
was to be able to map risks that could be tied to potential 
or actual cholera outbreaks. Typically, SV is followed by 
the manual digitization of features from each coordinate-
enriched video frame. In this paper, we explore the possi-
bility of automatic mapping from SV imagery. Achieving 
this goal requires a two-step process: model develop-
ment followed by a mapping task. Model development 
consists of various subtasks, including frame extraction, 
image labeling and model training, while the mapping 
itself involves GPS synchronization and spatial filtering 
(Fig. 3).

Spatial video (SV)
SV is video imagery that has been merged with a coor-
dinate stream from a global positioning system (GPS) 
receiver [34]. Typically, each video frame has a GPS coor-
dinate connected to it, which in effect means that these 
media can be used as a digitizing source. For the type 
of camera used in this project, the Miufly body camera, 
the GPS coordinates are embedded in the video files 
through exchangeable image file format (EXIF) tags. 
Along with the GPS coordinates, the “media time” (the 
video time elapsed) is also attached to each coordinate. 
ExifTool [35] (an Exif parser, which can extract Exif, tags) 
can be used to convert the embedded GPS coordinates 
to a GPS Exchange Format file (GPX). In other words, 
the entire video path can be spatially located. Image 
frames from the SV are extracted for tasks such as label-
ing using “Frame Selector”1, a bespoke software that was 

1  Frame Selector is a standalone bespoke web-application developed by the 
authors for extracting images from a video. Frame Selector utilizes Open 
Source Computer Vision Library (OpenCV) [36] to extract image frames 
from a video based on selected time. These images are further used for tasks 
such as labeling.
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previously developed by our team for previous health risk 
mapping in Haiti.

Training phase
With recent advancements in CNNs, many object detec-
tion algorithms have emerged [37]. Of particular interest 
are R-CNN [38] and its variants [39–41], and YOLO (You 
Only Look Once) [42] and its variants [43, 44]. While 
R-CNN uses separate processes for classification and 
localization [38], the YOLO method [42] combines them 
as a unified classification and regression problem. For 
this study, for the object detection task (in this case, the 
ability to identify any tent), we used YOLOv5 [45], which 
has better accuracy and efficiency than older versions of 
the YOLO model [45].

YOLOv5 training
The training data for the YOLOv5 model consist of 
images and their corresponding categories, which con-
tain the name and the normalized bounding box for each 
of the objects present. The normalized bounding box for 
an object consists of the center point, width, and height 
of the object normalized with respect to the dimensions 
of the image. To create the normalized bounding box, the 
width and height of the image are set to 1. Then, the cen-
ter point of the object is calculated based on the ratio of 
the image to the object size and the location of the cen-
ter point of the object with respect to the top left cor-
ner of the image. Similarly, the width and height of the 
object, normalized with respect to the image, can also be 
calculated.

To create the training dataset, we utilized Label-studio 
software. After all the images are labeled, the software 
produces two separate folders for the images as well as 
the labels. To gauge the performance of the algorithm 
with respect to the tuning of hyperparameters, a sec-
tion of the data is separated into a validation set. Finally, 
during training, the training and validation folders are 
fed into the YOLOv5 algorithm, and upon completion, 
the YOLOv5 algorithm generates a model with updated 
weights, which is serialized into a hierarchical data for-
mat (HDF) file.

Mapping phase
The mapping phase begins with the model prediction 
task. A frame extraction process is used to separate the 
images from the SV, and each frame is fed to the trained 
model. The outputs of the model prediction task include 
the predicted label, the normalized centroids (x, y), the 
dimensions (width and height), and the confidence prob-
ability (a value between 0 and 1) for each of the detected 
objects. This information can further be used to include 
the bounding box of the detected object in the image. 
Since we are only classifying a single object (tent) here, 

the total object count for each image frame is just a sin-
gle value (the total number of detections for the object). 
Finally, a table is generated with the frame number in 
sequential order and the corresponding detection totals.

GPS Synchronization
The detection objects can only be mapped after merg-
ing with the GPS data from the SV. The GPS data and 
the detection data cannot be directly merged due to 
temporal frequency variations in the GPS stream (gen-
erally 1 location per second) and the video stream (gen-
erally 30 images per second). For merging, the data are 
converted into detections for each second using the 
frame rate information for the video. For example, if the 
frame rate of a video is 30 frames per second (FPS), then 
the total object count for a second can be approximated 
from a chunk of 30 images. While we can use the maxi-
mum, minimum, mean, median, or sum to approximate 
the object count, for this study, we used the maximum, 
as it tends to reduce the chance of duplication2. The final 
output of this conversion process is a table with the total 
detection for each second (Fig.  4). This table is merged 
with the GPS data table (locations for each second) to 
generate a spatial dataset containing time (in seconds), 
location (from GPS data), and the total number of visible 
tent detections.

Spatial filtering
Although there should eventually be flexibility in map-
ping the identified object directly as points, for this stage 
of development, generating a spatial filter smoothed sur-
face is more appropriate because it can incorporate the 
uncertainties associated with positional accuracy and 
fuzziness in the total counts, including the issue of dupli-
cation. In the spatial filtering approach, a uniform spa-
tial grid is overlaid on top of the area of interest (Fig. 5). 
Then, the total count of the seen tents is calculated for 
each grid cell center as the total number of points (in this 
case, the GPS of the tent locations) falling within a circle 
or buffer around it. The overlaid grid can be converted 
to a raster (GeoTIFF) to support further spatial querying 
and analysis.

To maximize the utility of the automated classification 
and to validate the resulting patterns, a web application 
was developed to query the resulting spatial filter map 
(Fig. 6). By drawing a bounding box on top of the result-
ing heatmap, it is possible to identify all the intersection 
SVs. In this way, visible tent concentrations identified 
through automated mapping can easily be validated with 
SV images.

2  We have used maximum as the mean and minimum underestimates the 
total count while sum leads to overestimation of total count due to duplica-
tion.
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Data and experimental setup
After the Nyiragongo volcano eruption on 22 May 2021, 
a ground epidemiological team that had been working in 
Goma to assess the area’s susceptibility to Cholera redi-
rected time considered the impact on the Mujoga Relief 
Camp. Along with collecting water samples for testing 
Vibrio cholerae, the epidemiological team also surveyed 
the camp and its surroundings using SV. Once a month, 
for the period June 2021 to June 2022, a member from 
the epidemiological team walked around the camp, 
recording the environment with a small high-resolution 
Miufly body camera. A portion of these data have previ-
ously been used to manually create maps of tents, bath-
rooms, water points and other key features [5]. These 
data were used to train and test the automated mapping 
methodology.

Model training
To train and test the model, we utilized image fames from 
four videos. From 524 relevant frames containing images 
of tents, 420 frames (80%) were used for training, and 
104 (20%) images were used for testing. The label-studio 
software shown in Fig. 4 was used to create the bound-
ing box around each tent object in the video frame. The 
model and the corresponding code were downloaded 
from https:/ /github .com/ul tral ytics/yolov5, which is a 
PyTorch-based implementation of the YOLOv5 model 
pretrained on Common Objects in Context (COCO). 
The YOLOv5 model was trained for 300 epochs with 
a mini-batch size of 16 and an image size of 224 × 224. 
An early-stopping regularization strategy was used to 
avoid overfitting. To show the spatial distribution of vis-
ible tents for a relatively large area, we utilized a set of 
10 videos collected by the epidemiological team (which 
includes the four videos that were used for training the 

Fig. 5 Generate a detection surface using a spatial filtering approach. The yellow dots are the GPS points with detection counts, and the blue unfilled 
dots are the grid centers. The dotted circle represents the bandwidth of the spatial filtering approach

 

Fig. 4 Detection locations were assigned using GPS and detection data. The visible tent detections for each frame are converted into the number of 
detections for each second using frames per second (FPS) information of the video, which is then joined with the timestamped GPS path to generate 
detections per location

 

https://github.com/ultralytics/yolov5
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model). The model with trained weights was used to 
predict the bounding box for tents in each video frame. 
The prediction outputs were written to a table with the 
total number of tents predicted for each frame. The 
frame number was converted to seconds using the frame 
rate parameter of the video, and the max operation was 
used to aggregate the number of frames for each second 
(Fig.  4). This table was merged with the GPS data from 
the SV using video time. The GPS coordinates with the 
total seen tent information were used to generate ras-
ter maps (continuous surface) using the spatial filter 
operation, and the maps were compared using a raster 
calculator.

Longitudinal analysis of the spatial distribution of visible 
tents
A major reason for exploring the automatic mapping of 
SV is to find a more sustainable approach for capturing 
longitudinal change [46]. It would be helpful for response 
teams if the same area could be regularly resurveyed to 
capture highly dynamic changes such as the growth or 
shrinking of the camp or changes to the location or qual-
ity of key features such as water access or toilets. As 
a first step in that process, SVs for the months of June, 
July, September and November 2021 were selected. Fig-
ure  10 shows the GPS paths for the SVs. A rectangular 
region that intersects all the GPS paths was selected 
(Fig. 7). The SVs for the months of August and October 
were not selected because their data collection paths 
did not overlap with those of the four selected months. 

The same spatial filter method is used to generate ras-
ter surfaces for the four videos, and sample images 
for the region are extracted using the web application 
(Fig. 6). The differences in the raster values show either 
an increase or decrease in the number of visible tents. 
In this way, changes can be mapped over time for any 
area covered by multiple SVs. To do this, it is essential to 
resample the rasters and align them before applying the 
raster calculator so that each raster has the same extent 
and dimensions. Any cell value after the change calcula-
tion is assigned a Nodata (null) value if there is no asso-
ciated visible tent calculation for any period (or there is 
no overlap among all the videos). For example, if raster 
A has its first three cell values of 5, 4, and nodata (null) 
and raster B has the values of nodata (null), 5, and 3, then 
the resultant raster (B-A) will have nodata (null), 1, and 
nodata (null).

Results
Model training results
All SV routes of varying lengths collected between 
November 2020 and June 2022 were used to generate the 
raster map of tents. The tent detection model was run 
across all the videos, and the resulting detection count 
per frame was combined with the associated coordinates 
to generate a detection attribute for each of the GPS track 
points.

To evaluate the performance of the object detection 
model, we used the F score, which is the harmonic mean 
of the precision and recall. The minimum and maximum 

Fig. 6 Web application to query tent surfaces generated using a spatial filter. The selection tool is used to create a bounding box over the tent surface, 
and the application retrieves the corresponding videos with the respective segments as intervals
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values of precision, recall and F score are 0 (worst) and 1 
(best), respectively. The tent detection model has a maxi-
mum F score of 0.82 (Table 1) at a confidence threshold 
of 0.320, while the precision and recall values are 0.84 
and 0.79, respectively, at the same confidence threshold. 
The threshold confidence value is a combination of the 
class confidence threshold (the threshold value at which 
an object is considered to be of a particular class) and the 
object confidence threshold (the threshold value at which 
a bounding box is considered to have an object).

To determine how well the model localizes the object, 
the mean average precision (mAP) metric was utilized. 
mAP helps to determine the detection accuracy of the 
model (the real position of the object in the image) by 
considering the intersection over union (IoU) criterion, 
which is the overlap between the bounding boxes of 
the real and detected object. The IoU threshold was set 
at 0.5 and above for the validation runs. For our model, 
the mAP at the 0.5 threshold was 84% (Table 1). To fur-
ther evaluate the model for object localization, we also 

calculated the mAP at various steps of the IoU from 0.5 
to 0.95 (in steps of 0.05), and the average mAP was 45%.

Generating raster maps for tents
To illustrate SV as a source for automatic mapping, spa-
tial filtering (Fig. 5) was used to generate a raster map of 
visible tent intensity. For this study, a raster cell size of 
5 m and a filter radius of 10 m were chosen.

Spatial distribution of visible tents
Figure  8 shows a section of the surface visualized as a 
heatmap along with associated SV imagery from a few 
sample locations. The pixels with a higher intensity rep-
resent more detections. There were also a few instances 
of false positive classifications, as shown in Fig. 9.

To assess how similar the visualized heatmap is to the 
more standardized cartographic approach of digitizing 
features from the imagery, Fig.  10 displays the output 
raster maps for the first two time periods (June and July 
2021) with manually digitized tent locations overlaid on 
top.

Longitudinal analysis
The months of June, July, September and November 
2021 were chosen for change analysis. The same spatial 
filter method was used to generate raster surfaces for 
the four videos, which were further visualized using the 
web application (Fig. 6). While this is useful as an initial 
comparative explorative analysis to visually gauge the 
change in the distribution of visible tents, our conceptual 

Table 1 Model training results at a confidence threshold of 
0.320
Metric Value
F1-Score 0.82
Precision 0.84
Recall 0.79
mAP@0.5 0.84
mAP@0.5:0.95 0.45

Fig. 7 GPS paths for June, July, September, and November 2021. The rectangular box represents the region selected for change analysis
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goal is to create an automatic means of mapping tempo-
ral change, which, in this case, using these data, is best 
exemplified using a raster calculator.

The spatial distribution of the visible tents along the 
GPS path and the selected region is shown in Fig.  11. 

Along with the maps, sample images from the locations 
are also provided as visual examples of change. The map 
classification breaks are kept the same across all the maps 
for comparability. A greater intensity in color indicates an 
increase in the number of visible tents. From September 

Fig. 9 False positives for tent detection. When the lean-too covered with fabric is falsely detected as a tent, it is easy to see why the mistake was made, 
as it has several tent-like properties

 

Fig. 8 High-intensity sample locations from the tent surface generated using a spatial filter
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Fig. 10 Comparison of model outputs for June and July 2021 against manually digitized shelter locations. In general, the locations and intensities are 
similar between the maps, especially in map area A, although there is lower intensity in the output for sections of map area B, which is explained by the 
difference between mapping actual tent locations and creating a smoothed density of visible tents. In the lower map, the high intensity of map area 
C is captured in both outputs, although there is again some variation in the area immediately to the south. Map area D shows one of the few locations 
where the manual mapping covers areas not predicted by the model, with one explanation being that there can be more visible extrapolation from the 
manual mappers if tents are seen to extend beyond what might be recognizable as a tent shape. This area also contains other wooden shelters, and some 
of these differences are expected
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2021 (Fig. 11C) onward (and November 2021 (Fig. 11D)), 
there was a considerable increase in the number of vis-
ible tents compared to that in June (Fig.  11A) and July 
(Fig. 11B) 2021.

The difference raster maps (Fig.  12) for September 
(Fig. 11C) and June 2021 (Fig. 11A) display an apparent 
increase in the number of visible tents for the selected 
region. The negative and positive values indicate a 

Fig. 12 Changes in visible tents for the period between June and September 2021. A divergent color scheme from red to green is used, where red 
indicates a decrease and green indicates an increase in the number of tents. This map clearly shows that the camp had grown in these areas between 
the two time periods

 

Fig. 11 Longitudinal analysis of videos from June 2021 to November 2021 for a selected area of the camp falling inside the black rectangle. The maps 
show the spatial distribution of visible tents for a) June b) July c) September and d) November 2021. The images adjacent to the map are sample frames 
from the spatial video for the same location
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decrease and increase in the number of visible tents, 
respectively.

Discussion
Relief camps are designed to house a displaced popula-
tion after a traumatic event. The size, location, quality, 
longevity, safety, security and health challenges of these 
camps can vary tremendously. Indeed, we have previ-
ously found that in the DRC, the organizational structure 
and internal longitudinal changes in services vary from 
camp to camp. Providing sustainable fine-scale mapping 
of the type useful for response teams is vital. While over-
head remotely sensed data are certainly beneficial, there 
are some deficiencies with that mode that ground-level 
surveying can be used to address, including addressing 
local context. Spatial video provides a potentially sustain-
able option for local collaborators. Building on previous 
work in Haiti [33], in this paper, we have advanced a key 
aspect of ground-level imagery sustainability by auto-
matically mapping key camp features through a com-
bination of machine learning and spatial analysis. This 
type of detection and mapping pipeline demonstrates the 
potential of deep learning and mobile data collection to 
efficiently capture an ever-evolving environment in near 
real time.

While the detection model yielded encouraging results 
in terms of classification (F1-score of 82%) and object 
localization (mAP of 84%) (Table  1), it should also be 
remembered that these data were collected as part of a 
field team’s primary function to monitor cholera. In this 
regard, it mirrors the method’s utility for other settings, 
as it is likely that local resources have to be repositioned 
to collect spatial data. The relatively high localization 
score is probably because tents are relatively easy to local-
ize in images [33]. To explore the potential of machine 
learning as part of an ongoing surveillance tool, it is vital 
to consider how to improve data collection approaches 
and whether this method produces better data. For 
example, while comparison with manual digitization is 
possible using the same SV data source, a fair comparison 
between automated mapping using satellite and SV imag-
ery is only possible when the images are available for the 
same location across a similar timeframe.

The data collected for this paper were not the result of 
a scientific effort designed to investigate the stated map-
ping purpose, which means that there are some inherent 
challenges and limitations. One limitation is the inabil-
ity to accurately map out individual features. Mapping 
out specific features based on footprints is challenging 
because SV cameras do not capture overhead imagery, 
unlike other sources such as satellites or drones. The spa-
tial filter approach applied in this paper should be consid-
ered as a first step to extract meaning from ground-level 
imagery in terms of visible change. However, with 

additional data collection parameters applied, a more 
useful application would be to capture the change in the 
context of those features. For example, different types 
of tents (official or informal) or changing-quality tents 
(organized to disorganized) may exist.

A further challenge is that SV cameras generate only 
a single GPS location for a single interval compared to 
satellites, which can generate locations for the bound-
ing box of the viewport. As there is inherent uncer-
tainty regarding the distance from the GPS location 
to the detected object, which is heavily dependent on 
the focal length of the camera and the vantage point, 
the exact position of the detected features can be dif-
ficult to determine. Simply put, even if two cameras are 
at the exact same location (with the same latitude and 
longitude), the camera-viewing angle and vantage point 
determine the number of objects detected at the loca-
tion. To explore this further, we plan to incorporate 
detailed metadata from the camera, such as pitch, yaw 
and roll information, to reduce positional uncertainty. 
While we have used the grid cell size and filter radius 
as 5 and 10  m respectively, it will also be interesting to 
identify the ideal filter size based on details such as scope 
of the camera and GPS accuracy. Ideally, these technical 
improvements could occur simultaneously while serving 
the immediate humanitarian need. Even now, data collec-
tion suggestions such as imposing a reasonable system-
atic, replicable frame by re-walking the exact same routes 
and angling cameras toward certain features at key points 
on the path are frequently realized to field teams. Fur-
ther work is also needed on how to determine the exact 
count of tents (features) as identical frames for the same 
location, which makes deduplication of features more dif-
ficult. We have tried to bypass this issue using the maxi-
mum count approach for a fixed bandwidth, but again, 
this approach might not be accurate due to the challenges 
associated with the viewing range of the camera. Again, 
from a technical perspective, variability in camera zoom 
and viewing angle can also play a major role in count-
ing/undercounting tents. For example, even though the 
location of the camera is similar in both Fig. 11C and D, 
the increased magnification of the camera in Fig.  11D 
might lead to an undercounting of tents. The occlusion 
of objects will also reduce the accuracy of the object 
detection algorithm; currently, we annotate objects that 
are only partially visible. Another issue that has not been 
addressed here is the correlation of image frames within 
a video, which could be problematic while generating 
test/train splits and could inflate the accuracy. While we 
used image frames from separate videos for test/train 
splitting, the frames could be similar based only on the 
similarity of the location. It would be interesting to look 
at how such nuances affect the overall performance of 
the model. While we have used the YOLOv5 model here, 
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there are other detection models such as the RCNN and 
its variants, which are known for its accuracy while sacri-
ficing detection speed. Our experiments with two other 
models, YOLOv8, and Faster R-CNN indicated no drastic 
improvement in detection accuracy when compared to 
the YOLOv5 model. However, it will be interesting to see 
the variations in model accuracy when the object detec-
tion model is applied to video data captured from other 
environments.

It is also likely that the technology will change quickly. 
Future video devices might provide hand-carried 
360-degree coverage at an affordable price. Video imag-
ery from GPS-enabled drones could be used for gener-
ating automated maps; however, from our experience in 
the DRC, the logistics of getting a drone to the camp and 
having the skill to fly one were too difficult.

It is vital to stress that SVs are not designed to replace 
satellite imagery. There are obvious situations where the 
combination of imagery and a skillset would make remote 
sensing the best means to capture relief camp morphol-
ogy. However, while these data and skillsets may be avail-
able for large, well-documented situations, as we have 
seen in the DRC, multiple relief camps have arisen for 
different reasons. In our experience, there is no readily 
available local skillset to capture change. Even if available, 
SV imagery still provides a local context that overhead 
imagery will miss. Therefore, SV should complement 
traditional remote sensing approaches, which still pro-
vide excellent coverage for land-cover change, vegetation, 
elevation, slope, etc., and in some cases constitute a local 
only option for data collection. Future research explor-
ing this combination of data sources might consider how 
elevation data could be combined with SVG [47–49] data 
to better understand how to combine elevation, runoff, 
tent quality and associated disease risk. Another appli-
cation might be to combine the model output with flood 
zone maps to identify where new tents are more vulner-
able to floods. In these instances, SV can be employed by 
local teams to help fill in gaps whenever needed, provid-
ing vital temporal granularity along with on-the-ground 
images for subsequent contextual investigations.

While the driving factor for the work presented in this 
paper was identifying the conditions that might lead to 
cholera outbreaks in the camps, other risks can also be 
addressed through the collection of these data, with one 
example being the fire that claimed several lives in the 
Goma, DRC region, during August 2023 [2]. Although 
this fire-impacted camp was not included as one of our 
surveyed areas, if it had been, or if a similar fire had 
occurred in one of our studied areas, it would have been 
possible to map the immediate and subsequent impact 
on the morphology of the camp [7]. Questions could be 
asked such as, how were existing services now being uti-
lized, and had the fire led to an additional surge in more 

“informal” tents? Overlaying health data, such as chol-
era case locations, or guiding preemptive water sam-
pling, just as the team has been doing in both Haiti and 
the DRC, would then benefit from understanding these 
types of changes [29, 50]. As previously mentioned, our 
manual mapping of one camp predicted the likelihood 
of increased cholera susceptibility. Eventually, we hope 
to extend that same predictive capacity to all camps in 
the region, but to do so requires the type of automation 
described here.

The ethical dimensions of this form of data collection 
must also be mentioned. At the most basic level, no IRB 
should be needed, as these environmental surveys do 
not include interviews. Precautions regarding captur-
ing and sharing images of faces can be made for publica-
tions and presentations. As data tend to be collected by 
local response teams, there is less concern regarding the 
Western trampling of local attitudes and customs, espe-
cially as data collection occurs in tandem with a (usually) 
perceived task of importance such as cholera preven-
tion. The small size of the camera results in relatively 
unobtrusive data collection, which again limits on-the-
ground concern and is a further reason why more sophis-
ticated methods such as the use of 360-degree cameras 
and drones may not always be suitable. There could also 
be an argument made regarding not “negatively glamor-
izing” or perpetuating myths of the conditions found in 
these types of camps. However, the primary task of the 
data collector is to stop disease outbreaks and a loss of 
life. From experience, when questions are raised about 
why these data are being collected, local attitudes tend to 
be supportive rather than combative.

Conclusions
Tracking and mapping of temporary camps or shelters 
as a proxy for internally displaced population is impera-
tive for monitoring, mitigating and guiding humanitarian 
responses to conflict, human rights violations and man-
made or natural disasters. While video based surveying 
strategies such as SVs offer an exciting option for map-
ping such highly dynamic environments, spatially tagging 
and mapping numerous camps and shelters is manually 
infeasible. In this paper, we have addressed this challenge 
by developing a machine-learning model to automatically 
detect camps and generate raster surfaces of the detec-
tion for mapping. We have also shown how the generated 
surfaces can be used to capture changes in the distri-
bution of tents across time, which is quintessential for 
tracking internally displaced population.
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