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Virtual reality (VR) is a powerful method of redirecting attention away from pain. Yet, little

is known about which factors modulate the size of this distraction effect. The aim of

this study was to investigate the role of cognitive load and inter-individual differences in

the cognitive and affective domain on heat pain thresholds during a VR game. Ninety

healthy participants (mean age ± SD: 23.46 ± 3.28; 50% identified as male and 50% as

female) played a low and high load version of a VR game while heat pain thresholds and

heart rate were recorded. The effects of cognitive load were assessed by computing the

difference in pain thresholds between the high and low load condition for each participant.

In addition, we computed the difference in heart rate variability (HRV) measures between

both conditions to explore whether these would be correlated with the difference in

heat pain thresholds. Prior to the VR session, participants completed questionnaires

about their emotional distress, pain-related cognitions, and different executive functioning

tasks. Contrary to our expectations, not all participants benefitted from a higher load

in terms of distraction from pain. Logistic regression analysis revealed that participants

who reported more emotional distress were more likely to exhibit higher pain thresholds

in the low relative to the high load condition. Accordingly, these participants tended to

show marginally higher HRV in the low compared to the high load condition. Our study

demonstrates that the potential benefits of an increased cognitive load in VR on pain

sensitivity depends on individual differences in affective state.

Keywords: virtual reality, distraction from pain, cognitive load, emotional distress, executive functions

INTRODUCTION

Virtual reality (VR) has proven to be a powerful tool for attentional diversion and is increasingly
used in clinical settings for pain management (1–4). The distractive, hypoalgesic effects of VR
are assumed to result from a competition for limited shared attentional resources between the
immersive, sensory properties of VR and incoming nociceptive signals (5).

Previous research suggests that several factors influence the efficacy of cognitive distraction from
pain in non-VR settings, yet little is known about their role in VR (3). For example, tasks placing
a high demand on central executive resources are particularly effective in diverting attention away
from pain (6, 7). However, studies investigating the effects of increased task difficulty in VR often
rely on the manipulation of game settings, such as the speed or number of hit targets, and are
therefore likely to be confounded by the participant’s gaming experience and motor coordination
skills (8–10).
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Other factors that may influence pain modulation are stress
level (11–13) and negative pain-related cognitions, such as the
tendency to catastrophize about pain (14, 15). Furthermore, a
growing body of studies suggests that better executive functions
(EFs), specifically cognitive inhibition abilities, are associated
with reduced pain sensitivity (16, 17) and may play a role in
cognitive distraction from pain (18). However, while there is a
growing body of research on the effects of virtual reality on pain,
and (pain-related) anxiety and distress (19, 20), it is less well
known how these factors influence the efficacy of virtual reality
in reducing pain.

The aim of the present study was to examine whether
increasing cognitive load through the implementation of a
memory task in VR would enhance the hypoalgesic effect of VR
when compared to a low load condition, as demonstrated in non-
VR settings. Furthermore, we investigated whether emotional
distress, pain-related cognitions and executive functions would
predict the likelihood to benefit from the higher cognitive
load. To account for individual differences in previous gaming
experience, we also assessed gaming skills and simulator
sickness symptoms.

We expected that an additional load in the VR game would
lead to decreased pain sensitivity, i.e., higher heat pain thresholds,
when compared to a low load condition. We also expected that
individuals with better executive functions would be more likely
to benefit from the additional cognitive load, as they might be
able to better ignore the pain and selectively focus attention on
the VR and memory task. We had no clear hypotheses about
the influence of pain-related cognitions or emotional distress
on the effect of an additional cognitive load. Throughout each
condition, we recorded electrocardiograms to obtain heart rate
variability (HRV) measures to explore whether pain modulation
by cognitive load would be associated with changes in HRV. We
had no clear hypothesis about the direction of the association:
while a recent study by Colloca et al. (21) reported that decreased
pain sensitivity in a relaxing VR environment correlated with
higher HRV, pain relief by cognitive distraction has been
associated with decreased HRV (22), which is consistent with
studies that have linked higher mental stress to lower HRV (23,
24). In the present study, we wanted to assess whether changes
in HRV would also reflect changes in pain thresholds in a more
cognitively challenging VR environment.

MATERIALS AND METHODS

Participants
A total of 101 participants were recruited via student forums,
posters, social media, and a radio interview to reach participants
outside of the university environment and tested in the
MExLab at the University of Luxembourg between September
and December 2019. Participants were healthy young adults
between 18 and 35 years old and fluent in either German or
English. Exclusion criteria were acute or chronic pain, intake
of pain medication, a diagnosis of photosensitive epilepsy and
neurodermatitis or other skin-related medical conditions on
the participants’ non-dominant leg (details about dropouts
can be found in Descriptive Statistics). Each participant was

compensated with a 25e gift voucher and optional course credit.
The study was approved by the Ethics Review Panel of the
University of Luxembourg and conducted in accordance with the
Declaration of Helsinki. Measures were taken to ensure that an
equal number of male and female participants were recruited.

Procedure
Participants first provided written informed consent and
received standard information about the set up without
being informed about the actual aim of the study (i.e., to
investigate VR-induced distraction from pain). Participants
then completed questionnaires (either in English or German)
assessing their demographic and health status (including
simulator sickness symptoms to establish a baseline), video
gaming skills, emotional distress (i.e., stress, anxiety, and
depression symptoms), and negative pain-related cognitions, in
addition to three computerized executive function tasks.

Following this, participants underwent the VR paradigm.
Thermal pain thresholds were recorded during a baseline
phase to familiarize them with the protocol, as well as during
two interactive VR gaming conditions with different levels of
cognitive load. The order of the latter two conditions was
counterbalanced (see Pain Thresholds and VR Paradigm). After
each of the two interactive conditions, participants completed
questionnaires assessing spatial presence, simulator sickness
symptoms, and perceived task difficulty. Breaks between all VR
sessions lasted at least 5min. The experimenter continuously
monitored participants and, if necessary, interrupted the session
if participants were showing or reporting symptoms of simulator
sickness (e.g., paleness, sweating, and vertigo). We also measured
participants’ heart rate and electrodermal activity throughout
the VR session, but only analyzed heart rate variability in
the present study. The complete experimental procedure lasted
approximately 100min. For a schematic illustration of the
experimental setup, see Figure 1.

Questionnaires
Gaming and Virtual Reality
Gaming skill was assessed using a seven-item version of the
Game Playing Skill Scale [GaPS; (25)]. Participants also indicated
their average gaming time (gaming hours/day), rated their
computer and VR experience (no experience, basic experience,
advanced experience, expert experience) and self-evaluated their
gaming expertise (no gamer, casual gamer, regular gamer, expert
gamer). To assess the level of presence, i.e., the feeling of “being
there” (26) in the VR, participants completed two subscales of
the Spatial Presence Experience Scale (SPES) (27) after each
interactive VR condition. They, furthermore, completed the
Simulator Sickness Questionnaire (SSQ) (28) before the baseline
condition and after each interactive VR condition. To assess the
degree of perceived task difficulty, participants also rated the
perceived cognitive load after each interactive condition (29).

Pain-Related Cognitions
The Fear of Pain Questionnaire-III [FPQ; (30)] was used to assess
the participants’ general fear of pain. The FPQ-III is a 30-item
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FIGURE 1 | Experimental Set-Up. (A) Laptop operating the thermal stimulator;

(B) PATHWAY 30 x 30mm ATS thermal stimulator (Medoc, Ltd.); (C) foot

switch; (D) htc Vive; (E) ECG electrodes; (F) Xbox controller; (G) thermal

stimulator attached to the non-dominant leg (calf); (H) EDA electrodes; (I)

gaming computer streaming Subnautica to the head mounted display; (J)

BIOPAC modules; (K) computer running AcqKnowledge to record the

psychophysiological data.

self-report inventory with items being rated on a 5-point scale
(1= not at all, to 5= extreme).

The participants’ level of pain catastrophizing was measured
with the Pain Catastrophizing Scale [PCS; (31)]. The PCS consists
of 13 items that are rated on a 5-point scale (0= not at all, to 4=
all the time).

Attention to pain was assessed with the Pain Vigilance and
Awareness Questionnaire [PVAQ; (32)], which consists of 16
items that are rated on a 6-point scale (0= never, to 5= always).

Emotional Distress
Participants were asked to rate their symptoms of emotional
distress in the week prior to study participation using the
Depression Anxiety Stress Scale-21 (DASS-21) (33). This scale
comprises three subscales (with seven items each), providing
a dimensional assessment of three components of emotional
distress, including anxiety, depression, and stress. Responses
were given on a 4-point scale (from 0 = not at all/never, to 3 =

most of the time/almost always).

Executive Functioning Tasks
Participants completed three executive functioning tasks that
were implemented in the Psychology Experiment Building
Language (PEBL) (34).

Corsi Block Tapping Task
The Corsi block tapping task was used to assess visuo-spatial
working memory (WM) (35). In the computerized version
used in the present study, participants were presented with an
array of nine blocks (squares) and in each trial a sequence of
squares was highlighted, one after the other. Participants were
required to memorize and reproduce the sequence in the same

(forward condition) or reversed order (backward condition),
by clicking on the squares. The initial sequence included only
two squares and was increased by one square every third trial
up to a maximum of nine squares. The task ended once two
trials of the same sequence length were recalled incorrectly.
The main outcome variable for both conditions was the block
span, i.e., the longest length at which at least one sequence was
correctly recalled.

Flanker Task
A modified version of the Eriksen flanker task by Stins et al.
(36) was used to assess interference control and selective
attention, i.e., the ability to filter out competing information by
concentrating on one stimulus and ignoring the surrounding
stimuli (37). In the present task, five horizontally aligned
arrows appeared in the middle of a screen. Participants were
asked to identify the direction of the target (centre) arrow,
which either pointed in the same direction as the flanking
arrows (congruent condition) or in the opposite direction
(incongruent condition). In total, participants completed 80
trials (40 congruent, 40 incongruent), following a practice
run of eight trials. To calculate the flanker effect, the mean
reaction time (RT) of congruent trials was subtracted from
the mean RT of incongruent trials. Higher scores in the
flanker task indicate less efficient interference control and worse
selective attention.

Go/NoGo Task
The go/nogo task (38) assesses prepotent response inhibition
abilities, i.e., the ability to suppress inappropriate or irrelevant
actions (39). The present task was designed after Bezdjian et al.
(40) and required participants to respond to the letter “P” with
a button press and to withhold their response to the letter “R.”
Participants completed two blocks (in the second block the go and
nogo stimuli were reversed) containing 160 trials each, following
a practice run of 10 trials. Response inhibition was quantified by
computing the percentage of commission errors, i.e., presses in
response to nogo stimuli. A lower percentage indicates a better
response inhibition capacity.

Pain Thresholds
Pain thresholds were measured using a PATHWAY 30 x 30mm
ATS thermal stimulator “thermode” (Medoc Ltd.), which was
attached to the lower calf of the participant’s non-dominant
leg. The baseline temperature of the thermode was set to
32◦C and increased at a slope of 0.5◦C/s to a maximum of
50◦C. As soon as the participants perceived the temperature
as painful, they were instructed to press a foot switch (placed
under the dominant leg), which triggered a rapid return to
baseline temperature at a slope of 10◦C/s. The temperature at
the time of the participant’s response was recorded as the pain
threshold. The inter-stimulus interval varied between 45 and 50
seconds. In total, pain thresholds were measured 35 times (five
times during a baseline phase), 15 times in the low cognitive
load condition (LLC), and 15 times in the high cognitive load
condition (HLC).
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Electrocardiography Data
Heart rate was assessed continuously using a three-lead
electrocardiogram (ECG; electrodes were attached to the chest
following Einthoven’s triangle), recorded at a 1 kHz sampling
rate using the MP150 system and AcqKnowledge software 4.4.1
(Biopac Systems Inc.).

VR Paradigm
Participants were equipped with a head-mounted display
(HMD; htc VIVE), headphones and an Xbox controller. In
the interactive VR conditions, participants played the video
game Subnautica (Unknown Worlds Entertainment, Inc.),
an underwater exploration game played from a first-person
perspective of a scuba diver (note that participants could only see
the scuba diving gloves of their avatar). For the present study,
several gaming settings were changed enabling unlimited oxygen
supply, invincibility, and reduced swimming speed.

Pain thresholds were assessed during the baseline and two
interactive conditions with either a low cognitive load (LLC) or
a high cognitive load (HLC). During the baseline, participants
sat stationary and passively in the virtual environment on
an inflatable island surrounded by the sea and sky. This
condition served as an opportunity for participants to familiarize
themselves with the VR and the pain threshold procedure. The
LLC consisted of a simple navigation task: participants had to
follow a pipeline leading through the underwater environment.
In the HLC, participants had to follow the same underwater
route, but in addition, they were asked to memorize a sequence
of eight single digit numbers that were displayed at fixed intervals
along the pipeline. Note that the HLC differed from the LLC
only in terms of working memory demands (and beacons used
to present the digits), allowing a direct comparison of the effects
of additional cognitive load on VR-related hypoalgesia. Recall
of the digit sequence was assessed directly after completing the
session and quantified using the Damerau-Levensthein distance
(41) that indicates how many operations are needed to transform
one sequence into another (e.g., the reported digit sequence into
the correct one). Higher values indicate more operations, i.e., a
greater distance, and thus lower memory performance.

Data Preparation
Pain Thresholds
We excluded pain thresholds of 37◦C and lower [most likely
representing an accidental foot press (42)] and of 50◦C (i.e., trials
without a registered response). This resulted in removing a total
of 23 thresholds from 13 participants. We also excluded one
participant from all analyses who had an average pain threshold
ofM = 49.71◦C in the baseline condition, and ofM = 49.99◦C in
the LLC and HLC, exceeding 3 SD.

Heart Rate Variability
ECG data were processed and analyzed with the PhysioData
Toolbox [Version 0.5.0; (43)]. Two participants had to be
excluded completely from the analyses due to anomalies (e.g.,
premature heart beats). Technical complications (e.g., detached
electrodes) led to the rejection of two measurements for the
LLC and one for the HLC. We extracted four metrics to assess

heart rate variability in the time and frequency domain for the
duration of each condition (LLCduration: M ± SD = 677.79 ±

12.49 s, HLCduration:M ± SD= 696.61± 48.20 s). We computed
the standard deviation of the inter beat intervals of normal sinus
beats (detrended SDNN) and the root mean square of successive
differences between normal heartbeats (detrended RMSSD) in
milliseconds as time domain indices of vagally mediated changes
in HRV (44). Low frequency (LF; Hz range: 0.04–0.15Hz) and
high frequency (HF; Hz range: 0.15–0.4Hz) power (in ms2) were
used as frequency domain measures. The Lomb-Scargle method
was used to estimate the Power Spectral Density of the interbeat
interval time series to compute LF and HF power (43).

Statistical Analyses
Statistical analyses were performed using SPSS 26 (IBM SPSS
Statistics). The difference in pain thresholds between the HLC
and LLC (i.e., PainLoad) were assessed with a repeated measures
ANOVA, and the predictive power of emotional distress, pain-
related cognitions and cognitive skills with a regression analysis
on (the difference in) pain thresholds. The association between
changes in HRV and pain thresholds were assessed using two-
tailed Spearman correlations with bias-corrected and accelerated
bootstrapping (1,000 samples) as a Spearman correlation does
not require that the data is normally distributed and is relatively
robust against outliers (45).

Power analysis with G∗Power 3.1 (46, 47) for a repeated
measures ANOVA with two measurements and an assumed
medium effect size of f = 0.15, and an α = 0.05, showed that
a total sample size of 90 participants is sufficient to obtain a
power of 0.80. For a multiple linear regression with five tested
predictors, and an assumed effect size of f2 = 0.15, α = 0.05 and
a power of 0.80, a sample size of 92 participants is necessary. A
sample size of 67 or 84 participants is sufficient to obtain a power
of 0.80 for a one-tailed or two-tailed correlation, respectively,
assuming a correlation effect size of ρ = 0.30 for H1 and ρ =

0.0 for H0.

RESULTS

Descriptive Statistics
A total of 101 participants were recruited and tested for the study.
The data of 11 participants were excluded from the analyses due
to discontinuation of the study due to simulator sickness (n =

4), an average pain threshold close to the limit of 50◦C (n =

1; see Data Preparation), technical problems with the thermal
stimulator (n = 1), and self-reported acute or chronic pain (n
= 5). Thus, the final sample consisted of 90 participants (50%
identified as male; 74.4% German speaking; 84.4% students) with
a mean age of 23.46 years (SD= 3.28).

More than half of the participants reported to be advanced
users of computer equipment (65.56 %), but only 8.89 % stated
to have advanced experience using VR and 56.67 % had no
prior VR experience at all. Average daily time spent on video
games was <1 h (M = 0.96 hours, SD = 1.47), and 43.33 %
stated to be current non-players. About half of all participants
(46.7%) completed the HLC first, the other half started with
the LLC. Descriptive statistics of the psychological and cognitive
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(performance) measures are given in Table 1. Task-related and
HRV measures for the LLC and HLC are reported in Table 2.
Tests of normality for all variables of interest can be found in the
Supplementary Materials (see Supplementary Table S1).

Effect of Cognitive Load on Pain
Thresholds
We first explored whether age and gaming skills (GaPS scores)
were correlated with the difference in temperature (pain
thresholds) between the HLC and LLC (i.e., PainLoad) using
two-tailed Spearman correlations with bootstrapping and tested
whether PainLoad was significantly different for gender and
task order using independent samples t-tests. All correlations

TABLE 1 | Psychometric characteristics of the sample.

Variables Mean Standard

deviation

Sample scale

range

Executive functions

Corsi forward (block span) 6.48 1.36 2–9

Corsi backward (block span) 6.69 1.50 1–9

Flanker effect (ms) 41.63 20.22 8.35–127.95

Go/NoGo (percentage)a 31.36 15.44 6.25–75.00

Pain-related cognitions

FPQ-III 82.33 17.63 42–127

PCS 17.96 9.43 0–37

PVAQ 35.77 12.75 11–68

DASS-21 11.17 8.96 0–46

Depression 3.79 3.84 0–16

Anxiety 2.51 2.99 0–14

Stress 4.87 3.78 0–19

Memory task performance (HLC)b 1.93 2.12 0–8

FPQ-III, Fear of Pain Questionnaire-III; PCS, Pain Catastrophizing Scale; PVAQ, Pain

Vigilance and Awareness Questionnaire; DASS-21, Depression Anxiety Stress Scale;

HLC, high load condition. aPercentage of commission errors; based on 89 as the data for

one participant could not be retrieved. bBased on 86 as four participants did not complete

the memory task before the end of the pain threshold procedure.

were non-significant (p > 0.324). We also found no significant
differences for gender (p = 0.392) but a marginally significant
effect for task order (p= 0.068).

A repeated measures ANOVA with the within-subject factor
cognitive load (LLC vs. HLC), showed no main effect of cognitive
load, F (1, 89) = 1.23, p =0.271, n2p =0.014. (Note that the
main effect of cognitive load became significant, F (1, 88) =

4.44, p =0.038, n2p =0.048, when adding task order as covariate.
However, the overall difference in ◦C between the HLC and LLC
was small, with a mean difference of M = 0.12, SE = 0.10◦C).
Closer inspection revealed that only 51.1% of the participants
experienced a positive effect of cognitive load, i.e., higher pain
thresholds in the HLC compared to the LLC (mean difference:M
= 0.66, SD = 1.07◦C) whereas the remaining 48.9% participants
showed the opposite effect of higher pain thresholds in the LLC
than in the HLC (mean difference:M =−0.45, SD= 0.39◦C).

A chi-square goodness of fit test revealed no significant
difference in gender distribution between the participants who
benefited more from the LLC (47.83% identified as male) or HLC
(52.27% identified as male), p = 0.673. In line with the results
reported above, we found a marginally significant effect of task
order, X2 (1, 90) = 3.67, p = 0.055, indicating that participants
who had completed the LLC first, tended to benefit more often
from the LLC than the HLC (63.64%) and participants who had
completed the HLC first, tended to benefit more often from the
HLC than the LLC (56.52%). We found no significant differences
in age (p = 0.901) or GaPS scores (p = 0.590) between groups, as
tested with independent samples t-tests.

To assess whether cognitive load significantly modulated pain
thresholds in these two subgroups, we ran another repeated
measures ANOVA with cognitive load as within-subject factor,
and subgroup (HLC>LLC or LLC>HLC) as between-subject
factors. This ANOVA revealed no significant main effect of
cognitive load [F (1, 88)= 1.42, p= 0.236, n2p = 0.016]. However,
we observed a significant interaction between cognitive load and
subgroup [F (1, 88) = 41.85, p < 0.001, n2p =0.322]. (Note that
adding task order as a covariate to the ANOVA did not change
the significance of this interaction, F (1, 87) = 37.76, p < 0.001,
n2p = 0.303). Bonferroni-corrected post hoc tests showed that

TABLE 2 | Task-related and HRV measures.

Variable Mean ± standard deviation

LLC

Mean ± standard deviation

HLC

Sample scale range t-statistic p

Task-related measures

Perceived task difficulty 1.78 ± 0.99 4.64 ± 1.57 1–8 −15.60 <0.001

Spatial presence 3.56 ±0.79 3.35 ±0.84 1–5 2.94 0.004

Simulator sickness 1057.54 ± 277.77 1059.85 ± 274.68 812.63–2254.85 −0.11 0.909

HRV measuresa

RMSSD (detrended) 38.19 ± 20.72 34.95 ± 17.22 - 3.29 0.001

SDNN (detrended) 41.78 ± 15.84 38.97 ± 13.12 3.78 <0.001

LF power 1108.60 ± 812.50 974.31 ± 664.40 - 2.89 0.005

HF power 718.62 ± 901.48 544.30 ± 545.32 - 3.19 0.002

aBased on 85 participants as five participants were excluded from the analysis of the HRV metrics due to technical problems and premature heart beats. RMSSD, root mean square of

the successive differences; SDNN, standard deviation of normal-to-normal R-R intervals; LF, low frequency; HF, high frequency.
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FIGURE 2 | Pain thresholds. Pain thresholds were assessed during a baseline

condition (in a static VR environment) and two interactive conditions with a low

cognitive load (LLC) and a high cognitive load (HLC) while participants (male =

45, female = 45) were immersed in VR. M ± SD: Baseline: 44.73 ± 1.81◦C,

LLC: 45.47 ± 1.53◦C, HLC: 45.58 ± 1.20◦C. Note that the “x” in the middle of

the boxplot denotes the mean whereas the horizontal line denotes the median.

The whiskers denote the minimum and maximum values. Outliers (i.e., data

points that are 1.5 times larger or smaller than the interquartile range) are

represented by dots.

FIGURE 3 | Effect of cognitive load on pain thresholds. Participants could be

subdivided into two subgroups, showing distinct responses to the high load

task (HLC). About half of all participants (51.1%) showed an increased pain

threshold in the HLC relative to the LLC, whereas the remaining 48.9%

exhibited a higher pain threshold in the LLC relative to the HLC. Bar charts

illustrate the average pain thresholds for both conditions for each subgroup.

Error bars represent the standard error of the mean (SEM). **p <0.01, ***p

<0.001.

participants in the HLC>LLC group showed a slightly larger
increase in pain thresholds from the LLC to the HLC [F (1, 88)
= 30.02, p < 0.001, n2p = 0.254] than the other subgroup from

the HLC to the LLC [F (1, 88) = 13.62, p < 0.001, n2p = 0.134].
Boxplots for each condition can be found in Figure 2, and bar
charts of the average pain thresholds in each condition and for
each subgroup in Figure 3.

Predictors of the Effect of Cognitive Load
To estimate the likelihood of participants to benefit more
from the HLC than the LLC (or vice versa) based on self-
reported emotional distress symptoms, pain-related cognitions,

and executive functions, we conducted a hierarchical binary
logistic regression (computing bias-corrected and accelerated
95% confidence intervals using bootstrapping (1,000 samples),
with subgroup (HLC> LLC or LLC>HLC) as dependent variable.
(Note that we decided to conduct a logistic regression instead of
a multiple linear regression as this facilitates the interpretation
of our finding that participants responded differently to the
increased cognitive load. A post hoc analysis of the achieved
power for the logistic regression is reported below).

To control for potential effects of task order, we entered
this variable at stage one of the model. At stage two, we
entered the total DASS-21 score and PCS score as measures
of emotional distress and pain-related cognitions, and the
performance measures of the executive functioning tasks (block
span in the Corsi forward condition, flanker effect, percentage of
commission errors in the go/nogo task). We did not control for
gaming skills here, as adding GaPS scores as a covariate to the
ANOVA showed no influence of gaming skills on pain thresholds.

We chose to enter PCS as a pain-related cognition to limit the
number of predictors and to reduce multicollinearity. The total
PCS score in the present study was highly correlated with the total
FPQ-III score (rs = 0.627) and PVAQ score (rs = 0.621) and has
been shown in several previous studies to affect the magnitude
of distraction from pain (18, 48, 49). All three measures of the
executive functioning tasks were uncorrelated with one another
(all ps > 0.055).

Screening the five tested predictors for multivariate outliers by
computing Mahalanobis distance revealed that one participant
was a multivariate outlier, and hence removed from the
regression model. We removed one additional participant from
the regression model with a Cook’s distance of 0.714 (compared
to an average distance of 0.084 ± 0.088 SD), who represented an
unduly influential data point. As the percentage of commission
errors in the go/nogo task could not be retrieved for one
participant, the overall regression model was thus based on
87 participants.

Results revealed that emotional distress and the block span
in the forward condition of the Corsi block tapping task were
significant predictors of the likelihood to benefit more, or less,
from the HLC relative to the LLC with an overall classification
accuracy of 67.80%, after controlling for the effects of task order.
For a one unit increase in the DASS-21 score, the odds of
benefiting more from the HLC than the LLC decreased (OR:
0.916). A one unit increase in the forward condition of the Corsi
block tapping task, on the other hand, was associated with an
increased odds ratio to benefit more from the HLC than the LLC
(OR: 1.566); however, bias-corrected and accelerated bootstrap
intervals (BCa 95%CI) suggest that performance in the Corsi task
is not a robust predictor. See Table 3 for a comparison of both
models and Table 4 for the classification accuracy of the model.

Post hoc power analysis for the logistic regression in G∗Power
3.1 indicated an achieved power of 0.84 for the effect of the
DASS-21 score (OR for standardized DASS-21: 0.463; assumed
PrH0(Y=1|X=1)= 0.5; R2 = 0.14; α = 0.05), and a power of 0.72
for the effect of block span in the Corsi forward condition (OR
for standardized block span: 1.843; assumed PrH0(Y=1|X=1) =
0.5; R2 = 0.04; α = 0.05).
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TABLE 3 | Hierarchical binary logistic regression model.

Variable Model 1 Model 2

B Odds ratio p BCa 95% CI B Odds ratio p BCa 95% CI

Constant −0.351 0.704 0.246 [−1.003 0.245] −4.685 0.009 0.001 [−8.403 –2.576]

Task ordera 0.798 2.220 0.073 [−0.095 1.726] 1.496 4.465 0.004 [0.063 3.983]

DASS-21 −0.087 0.916 0.008 [−0.165 −0.040]

PCS 0.022 1.022 0.514 [−0.053 0.127]

Corsi forward (block span) 0.449 1.566 0.011 [−0.027 1.073]

Flanker effect 0.023 1.023 0.126 [−0.018 0.067]

Go/NoGo (commission errors) 0.023 1.023 0.206 [−0.022 0.106]

Nagelkerke pseudo r2 5.1% 27.5%

χ
2 3.379, df = 1, p = 0.066 20.094, df = 6, p < 0.003

The regression model is based on 87 participants (HLC>LLC: 44; LLC > HLC: 43). Internal coding: LLC (low load condition) > HLC (high load condition) is group: 0, HLC > LLC is

group: 1. aTask order: 1 = HLC, then LLC; 2 = LLC, then HLC. DASS-21, Depression Anxiety Stress Scale; PCS, Pain Catastrophizing Scale.

TABLE 4 | Classification table.

Predicted Correct %

LLC > HLC HLC > LLC

Observed LLC > HLC 28 15 65.1

HLC > LLC 13 31 70.5

LLC, low load condition; HLC, high load condition.

Given that the block span in the Corsi forward condition
was only weakly correlated with the block span in the backward
condition (rs = 0.275), we conducted another exploratory logistic
regression replacing the block span in the forward condition
with the block span in the backward condition. However, the
regression model showed that the block span in the Corsi
backward condition (i.e., visuo-spatial working memory) was not
predictive of the group affiliation [B = 0.088, SE = 0.063, p =

0.176, 95%CI(−0.024 0.236)].

Heart Rate Variability and Cognitive Load
In a first step, we computed the differences in HRV measures
(RMSSD, SDNN, LF, and HF power) between the HLC and
LLC (HLC-LLC) and established that the difference scores
were not significantly different for gender or task order using
independent sample t-tests (all ps > 0.061). Subsequently, we
ran two-tailed Spearman rank correlations with bootstrapping
(1,000 samples), computing bias-corrected and accelerated 95%
confidence intervals (BCa 95% CI) between the difference in
HRVmeasures and PainLoad to assess whether a relatively higher
HRV in the HLC relative to the LLC would reflect higher pain
thresholds in the HLC compared to the LLC. Results revealed
only marginally significant (p < 0.100) positive correlations
between the differences in RMSSD, SDNN and PainLoad, i.e.,
higher pain thresholds in the HLC compared to the LLC were
associated with a higher RMSSD [rs = 0.189, p = 0.083,
95%CI(−0.025 0.377)] and SDNN [rs = 0.187, p = 0.086,
95%CI(−0.018 0.393)] in the HLC relative to the LLC.

Heart Rate Variability and Emotional
Distress
Given that HRV signals relaxation and
sympathetic/parasympathetic balance (21), we explored whether
participants who reported to be more distressed, showed a
greater degree of relaxation in the LLC than in the HLC, possibly
explaining why they benefited more from the LLC than from
the HLC. For this purpose, we conducted one-tailed Spearman
correlations (using bootstrapping with 1,000 samples, BCa 95%
CI). This revealed a significant negative association between the
total DASS-21 score and the difference in RMSSD between the
HLC and LLC (note however that the 95%CI indicates no robust
association). Correlations with the DASS subscales showed
that self-reported anxiety symptoms were particularly strongly
related to the difference in HRV measures, i.e., participants
reporting more anxiety (and stress) tended to show lower
RMSSD, SDNN and LF power in the HLC compared to the LLC
(see Table 5).

DISCUSSION

In the present study, we investigated the effect of an additional
cognitive load in a virtual reality game on modulating pain
thresholds and the role of individual differences. Prima facie,
we found no effect of cognitive load on pain thresholds when
assessing the whole sample, even though significant differences in
task difficulty ratings, spatial presence andHRVmeasures suggest
that the two conditions were sufficiently distinct to result in
differences on the cognitive and psychophysiological level. Closer
examination revealed that the lack of a modulatory effect resulted
from two different response types to the additional cognitive load
in our sample. While about half of all participants showed higher
pain thresholds in the more challenging high load condition
(sensory immersion plus cognitive memory challenge), the other
half benefitted more from the low load condition (sensory
immersion only). These two subgroups emerged independently
of participant gender or gaming skills but differed significantly in
self-reported emotional distress (depression, anxiety, and stress
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TABLE 5 | One-tailed spearman correlations between distress symptoms and differences in HRV between the HLC and LLC.

Variable Difference in RMSSD (detrended) Difference in SDNN (detrended) Difference in LF power Difference in HF power

rs 95% BCa CI rs 95% BCa CI rs 95% BCa CI rs 95% BCa CI

DASS-21 (total) −0.211* [−0.415 0.002] −0.176 [−0.347 0.001] −0.145 [−0.335 0.054] −0.090 [−0.294 0.123]

Depression −0.071 [−0.304 0.138] −0.077 [−0.269 0.125] −0.064 [−0.285 0.152] 0.003 [−0.22 0.232]

Anxiety −0.238* [−0.430– 0.027] −0.213* [−0.408 −0.011] −0.215* [−0.428 −0.002] −0.133 [−0.347 0.090]

Stress −0.193* [−0.381 0.001] −0.163 [−0.353 0.030] −0.125 [−0.313 0.072] −0.050 [−0.256 0.153]

Based on 85 participants as five participants were excluded from the analysis of the HRV metrics due to technical problems and premature heart beats. LLC, low load condition; HLC,

high load condition; DASS-21, Depression Anxiety Stress Scale; RMSSD, root mean square of the successive differences; SDNN, standard deviation of normal-to-normal R-R intervals;

LF, low frequency; HF, high frequency. *p <0.05.

symptoms) and visuospatial short-term memory (block span in
the forward condition of the Corsi block tapping task).

Participants reporting more distress had significantly lower
odds to benefit from the additional cognitive challenge (HLC),
possibly because the memory task in the HLC exceeded the
cognitive resources that more distressed participants were willing
to invest in completing the memory task (50). More distressed
participants may have also perceived the low load condition as
more entertaining than the high load condition, a factor that has
been shown to modulate the efficacy of VR-related distraction
from pain in previous studies (51, 52), but that we did not
assess in the present study. This explanation is also in line with
research showing that it is the individual’s absorption in the
distracting task rather than the type of task that is determining
the efficacy of distraction (53). Another potential moderator for
the differential influence of increased cognitive load on VR-
related hypoalgesia could be individual differences in situational
anxiety. It seems, e.g., plausible that exploring the underwater
environment during the LLC may have led to stress and anxiety
relieving effects (54, 55). These effects may have been more
pronounced for participants who had higher levels of distress
whereas participants low in emotional distress may have not
been able to further down-regulate their distress levels. This
explanation is partly supported by previous research showing that
VR-induced increases in heat pain tolerance are likely driven by
the degree of relaxation (21). In agreement with this, exploratory
analyses showed that participants who reported more emotional
distress, in particular higher levels of anxiety, tended to show
higher RMSSD in the LLC than in the HLC in the present study.
However, the overall strength of the associations was weak and
future studies should directly assess the degree of relaxation and
situational anxiety by self-report measures administered before
and after the intervention.

This finding could have important implications for clinical
settings; patients who seekmedical attention for (pain) symptoms
or who undergo medical treatment, such as surgeries, are
likely to experience high levels of distress (56, 57) and
thus, it seems plausible that effect sizes may be even more
pronounced in patients. Importantly, a comparison of our data
to intensity and unpleasantness ratings of heat stimuli within
the same temperature range from other studies in our lab (see
Supplementary Table S2) suggests that an increase of 0.5◦C in
intensity was associated with a 5–13% increase in subjective pain

ratings. This indicates that the changes in heat pain thresholds
observed in the present study are likely to have clinical relevance.

We also found that participants with a better visuospatial
short-term memory were more likely to benefit from the
additional cognitive load (although 95%BCa confidence intervals
indicate that this association is not very robust, probably partly
due to little heterogeneity in cognitive performance in our sample
of healthy young adults). Given that the HLC comprised a
visual (digit-based) memory task, the observed association is
not surprising and emphasizes the need to assess the cognitive
components of VR environments/tasks when using VR as a pain
intervention tool and to carefully match them to the participant’s
cognitive abilities, especially in clinical settings where executive
functions may be (temporarily) hampered, e.g., due to side effects
from medications (58).

Importantly, we quantified the effect of an additional cognitive
load not by relying on a single retrospective self-report (59–61),
but by assessing heat pain thresholds in regular intervals while
participants were immersed in VR. Thismakes the data less prone
to be biased by social desirability or the elapsed time between
the nociceptive stimulation and its evaluation (62, 63). We also
chose tasks that are unlikely to be confounded by previous
gaming experience or motor coordination skills (as all tasks were
self-paced and required minimal and easy use of the controller).

Taken together, our results clearly suggest that the analgesic
effects of VR cannot be fully explained by distraction, i.e.,
competition for limited shared attentional resources (5), as
such an explanation should have entailed a near-systematic
reduction in pain thresholds in the high load, relative to the
low load, condition. Rather, our study adds to a complex
picture, suggesting that VR-related analgesia may involve various
underlying mechanisms, such as affect modulation in addition
to attentional diversion (4). Moreover, our findings also indicate
that individual differences in cognitive and affective state shape
how individuals respond to these mechanisms.

Despite these strengths, our study has a few limitations.
First, our participants were healthy pain-free young adults
(mostly students) with good executive functions, limiting the
generalizability of the results to other populations. Although
visual comparisons show that pain thresholds in the interactive
VR conditions were significantly increased when compared to the
passive baseline condition (see Figure 2), our study design does
not allow to draw any concrete conclusions about the efficacy
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of VR in distracting from pain in general. A more complex
design as suggested by Colloca et al. (21) would allow to further
disentangle the effects of cognitive load on pain thresholds, albeit
this would have likely gone beyond the scope of the present
study. Nevertheless, we encourage future studies to replicate our
findings including a non-VR baseline condition.

In addition, the specific characteristics of our study design
may have hampered our ability to assess the role of cognitive
inhibition and selective attention abilities in distraction from
pain. In particular, the high load condition required participants
to shift their attention from one task (e.g., navigation) to
the other (e.g., memorizing the digit span) and thus, did not
allow to selectively attend to one task. Switching between tasks
has also decreased perceived spatial presence (as evidenced
by significantly lower self-reported spatial presence in the
HLC relative to the LLC). Future studies that investigate the
effects of cognitive load in VR should consider using more
gamified approaches of implementing the cognitive challenge
in the VR environment to avoid potential breaks in presence.
However, researchers should at the same time ensure comparable
conditions with regard to the required coordination and motor
skills. In addition, it may be helpful to explicitly assess the
participants’ level of fun and perceivedmental workload in future
studies [e.g., with the NASA Task Load Index; (64)] to explain
individual differences in the efficacy of VR to distract from pain.

Overall, our findings suggest that a VR game with an
additional cognitive load does not automatically result in reduced
pain sensitivity. Rather than using a “one size fits all” approach,
our study emphasizes the need to consider individual differences,
especially affective factors, when choosing VR as an intervention
tool for pain treatment to maximize its therapeutic effects.
Assessing the role of individual differencesmay also prove helpful
in accounting for differences in study findings that cannot be
explained by VR configuration factors alone.
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