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Abstract

This study investigated the occurrence of Giardia duodenalis and Cryptosporidium spp. in

rodents and marsupials from the Atlantic Forest in southern Bahia, northeastern Brazil.

Two hundred and four fecal samples were collected from different forest areas in the

municipalities of Ilhéus, Una, Belmonte, and Mascote. Identifications were performed

using PCR and nested PCR followed by sequencing of the gdh and tpi genes for G. duo-

denalis, and the gp60 and Hsp-70 genes for Cryptosporidium. The total frequency of posi-

tive PCR samples for both G. duodenalis and Cryptosporidium spp. was 5.4% (11/204).

Giardia duodenalis occurred in 2.94% (4/136) of rodents and 2.94% (2/68) of marsupials.

The prevalence of Cryptosporidium in rodents and marsupials was 1.47% (2/136) and

4.41% (3/68), respectively. In the areas sampled, the frequency of parasitism was 50%

(7/14), while the Mascote region alone had no parasitized animals. The G. duodenalis

subgenotype AI was identified in the rodent species Hylaeamys laticeps, Oecomys cathe-

rinae, Oligoryzomys nigripes and Akodon cursor, and in the marsupials Gracilinanus agi-

lis and Monodelphis americana. In the rodents Rhipidomys mastacalis, H. laticeps and in

the marsupial Marmosa murina the protozoa Cryptosporidium fayeri, Cryptosporidium

parvum and Cryptosporidium ubiquitum with subtypes IIa and IVg by the gp60 gene were

found. In conclusion, this study provides the genetic characterization of Giardia and Cryp-

tosporidium species and genotypes in rodents and marsupials. And, these findings rein-

force that the rodent and marsupial species mentioned above play a role as new hosts for

Giardia and Cryptosporidium.
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Introduction

Small mammals such as rodents (Rodentia, Cricetidae) and marsupials (Mammalia, Didel-

phimorphia) transmit pathogens to humans and domestic animals; however, the conse-

quent risk to public health is poorly understood [1,2]. Environmental disruption due to

human activity influences the occurrence and spread of zoonotic and parasitic diseases

(e.g., giardiasis and cryptosporidiosis) in these animals, affecting the wildlife species bal-

ance [3].

Giardia Kunstler, 1882 and Cryptosporidium Tizzer, 1907 are protozoa known worldwide

for causing severe gastroenteric disease in humans, as well as domestic and wild animals

[2,4,5]. These protozoa cause infections from cysts or oocysts found in environmental and

water contaminations [4,6].

The role of wild animals in human giardiasis and cryptosporidiosis epidemiology is uncer-

tain. However, molecular studies have allowed the identification of several species of Giardia
and Cryptosporidium in wild animals [6,7–9].

Molecular techniques have successfully determined and supported the understanding of

epidemiological processes [9] by using several genes to identify distinct species of Giardia and

Cryptosporidium. Additionally, they reveal genotypes and subgenotypes, of which some are

specific to humans and others to animals [6].

To determine Cryptosporidium spp. genotypes and subgenotypes, coding genes stand out

as small subunit 18S ribosomal rRNA (SSu-rRNA) [10]. Both gp60 and Hsp-70 demonstrate a

high polymorphism in different species [11,12]. In addition, wall-protein coding genes

(COWPs), actin, acetyl-CoA synthetase, and internal space transcribed from rDNA (rDNA ITS
1) are also used [13,14].

To detect the genotype and subgenotype of the Giardia duodenalis species, genes of SSu-
rRNA [15,16], glutamate dehydrogenase (gdh), triose-phosphate isomerase (tpi), and beta-giar-

din (bg) coding genes are used [16–18].

Molecular studies to detect Giardia and Cryptosporidium in wildlife reported the presence

of these protozoa in different species of small mammals. However, in northeastern Brazil, no

studies have employed molecular genotyping to identify G. duodenalis and Cryptosporidium
spp. Thus, the objective of this study was to identify, through a molecular technique at the level

of genotypes and subgenotypes, G. duodenalis and Cryptosporidium spp. in fecal samples of

rodents and marsupials captured in agroforestry areas (Cabruca) and the Atlantic Forest in

southern Bahia, northeastern Brazil.

Material and methods

Collection area

Within the study area, 14 forest areas, distributed in four municipalities in the southern

region of the State of Bahia, were sampled. These included three cocoa agroforestry areas

located in the rural area of Ilhéus (areas 1–3), and 11 forest areas located in the municipali-

ties of Una, Mascote and Belmonte (areas 4–14) (Fig 1). The study region is characterized

by a hot and humid tropical climate, with an average relative humidity of 89–90% and an

average temperature of 24–25˚C, predominantly covered by tropical forest vegetation and

an agroforestry system, which preserves native forest [19]. In the region, it rains 150 days a

year on average, with precipitation reaching 2,000 mm/year. The dry seasons are not well

defined; occasionally, one to three months receive less than 100 mm of rain [20]. Elevation

of the sampled areas ranged from 42–100 m above sea level and were georeferenced with a

Global Positioning System (GPS).
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Capturing animals and obtaining biological material

The capture period ranged from June 2015 to December 2016. The animals were captured

using Sherman (23 × 8 × 9 cm), Tomahawk (50 × 17 × 17 cm), and pitfall traps. Each area was

divided into three plots, with for a total of 24 traps per plot and 72 traps per area. The study

was approved by the Biodiversity Authorization and Information System (SISBIO) under

number 17131–4 from the Brazilian Institute for the Environment and Renewable Natural

Resources (IBAMA) and by the Council for the Ethical Use of Animals of the State University

of Santa Cruz (CEUA-UESC; Case No. 003/2013).

After identification of the species, fecal samples were collected with subsequent release

of the animals at the places of origin (Table 1). Fecal samples were stored in 1.5 mL micro-

tubes, kept refrigerated and delivered to Laboratory of Veterinary Parasitology of the State

University of Santa Cruz (LAPVET-UESC), weighed, and standardized between 180 and

200 mg.

Fig 1. Map depicting the capture and collection areas, of fecal samples from rodents and marsupials in southern Bahia, northeastern Brazil. Geographic coordinates

of the collection points. 01: 14°38’15.8”S39°12’02.3”W; 02: 14°42’11.2”S 39°15’34.8”W; 03: 14°45’04.0”S 39°11’51.2”W; 04: 15°09’57.8”S 39°13’10.1”W; 05: 15°12’35.9”S 39°
08’37.4”W; 06: 15°14’53.1”S 39°09’34.3”W; 07: 15°16’54.5”S 39°10’54.2”W; 08: 15°14’59.0”S 39°04’41.0”W; 09: 15°20’53.0”S 39°02’43.5”W; 10: 15°42’53.6”S 39°21’52.6”W;
11: 15°43’40.9”S 39°22’56.7”W; 12: 15°48’01.9”S 39°30’23.8”W; 13: 15°53’40.4”S 39°14’19.2”W; 14: 15°54’03.0”S 39°13’40.4”W.

https://doi.org/10.1371/journal.pone.0256199.g001
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DNA extraction and molecular characterization

The fecal samples were washed with sterile PBS (pH 7.2) and subjected to genomic DNA

extraction using the QIAamp DNA Stool Mini kit1 (Qiagen), according to manufacturer’s

instructions. After adding the lysis buffer, the samples were subjected to five cycles of heating

(96˚C) and freezing (-196˚C), with 3 minutes of heating and 5 minutes of freezing, then

homogenized in a vortex for 5 minutes with 0.2 g of glass beads (0.5 mm), following the kit’s

guidelines thereafter. The amount of extracted genomic DNA was established using a Nano-

Drop 2000 (Thermo Scientific, USA), stored in boxes, and placed in a freezer at -20˚C.

To detect the presence of G. duodenalis and Cryptosporidium spp., each isolated DNA sam-

ple was subjected to nested PCR. For the amplification of Giardia fragments, gdh [16] and tpi
coding genes [17] were used. Cryptosporidium fragments were amplified using gp60 [12] and

Hsp-70 [11] genes (Table 1).

The tests were carried out in a Proflex PCR system thermocycler (Applied Biosystems)

using the Platinum Taq DNA polymerase kit (Invitrogen) for the mix. Positive fecal samples

from Giardia cysts and isolates from the Veterinary Parasitology Laboratory at UESC were

used as positive controls. Cryptosporidium (isolates 13F and 13C) from the Laboratory of Clin-

ical Analysis (LAC) of the State University of Feira de Santana, Bahia [21] and ultrapure water

were used as negative controls. The PCR products were subjected to 1% agarose gel electro-

phoresis, developed with SYBR1 Safe, purified using the PureLink PCR Purification kit (Invi-

trogen), and sent for sequencing.

Table 1. Species of marsupials and wild rodents captured in the Atlantic Forest and Cabruca areas in southern Bahia, northeastern Brazil, and positivity of infected

animals.

Area N�/Positives Molecular diagnosis (Nested/PCR)

ORDER DIDELPHIMORPHIA

Family Didelphidae Cryptosporidium Giardia
Marmosa murina (Linnaeus, 1758)

3;4;6;7;8;9;10;11;12;13;14 26/3 3 0

Marmosa incanus (Lund, 1840) 11; 13 7/0 0 0

Marmosa demerarai (Thomas, 1905) 4;7;8 9/0 0 0

Monodelphis americana (Müller, 1776) 3;4;14 8/1 0 1

Gracilinanus agilis (Burmeister, 1854) 12;14 10/1 0 1

Didelphis aurita (Wied-Neuwied, 1826) 7;8 8/0 0 0

TOTAL 68/5 3 2

ORDER RODENTIA

Family Cricetidae

Hylaeamys laticeps (Lund, 1840)

1;2;3;4;5;8 81/2 1 1

Akodon cursor (Winge, 1887) 1;2;3;11;14 13/1 0 1

Rhipidomys mastacalis (Lund, 1840) 1;2;3;5;8;12;13 11/1 1 0

Thaptomys nigrita (Lichtenstein, 1829) 1;5;8;13;14 9/0 0 0

Oecomys catherinae (Thomas, 1909) 5;7;8;13 5/1 0 1

Calomys expulsus (Lund, 1841) 12 2/0 0 0

Cerradomys subflavus (Percequillo et al., 2008) 1;2;11 4/0 0 0

Oligoryzomys nigripes (Olfers, 1818) 1;2;5;7;8;12 7/1 0 1

Euryoryzomys russatus (Wagner, 1848) 1;3;13 4/0 0 0

TOTAL 136/6 2 4

GRAND TOTAL 204/11 5 6

https://doi.org/10.1371/journal.pone.0256199.t001
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Sequencing was performed using capillary electrophoresis (modified Sanger sequencing)

on the ABI 3500XL Genetic Analyzer platform (Applied Biosystems) in both directions. Chro-

matogram analysis was performed using the FinchTV 1.4.0 software. Amplicons were Sanger-

sequenced in both directions. DNA sequences were deposited in GenBank under accession

numbers MW202351, MW202352, MW202353, MW202354, MW202355, MW202356,

MW202357, MW202358, MW202359, MW202360, MW202361, MW202362, MW202363,

MW202364, MW202365, MW202366 and MW202367.

Statistical analysis

To verify the association between the positivity of the samples with the catch area (agroforestry

and forest areas), statistical analysis was performed using Fisher’s exact test with 95% confi-

dence intervals using the Epi Info ™ 7.2.0.1 software.

Results

Out of 204 fecal samples collected, 5.4% (11/204) tested positive (Table 1). The occurrence of

G. duodenalis was 2.94% (6/204) for rodents 2.94% (4/136), and marsupials 2.94% (2/68)

(Table 2). For Cryptosporidium, the combined positivity was 2.45% (5/204), with 1.47% (2/

136) and 4.41% (3/68) for rodents and marsupials, respectively (Table 3). In the collection

areas, the frequency of parasitism was 50% (7/14) and there were no parasitized animals in the

municipality of Mascote (Fig 1). The agroforestry areas had the highest frequency of infected

animals, although the differences between the positivity in capture areas were not statistically

significant (p> 0.05).

The analysis of the tpi and gdh gene sequences demonstrated 100% genetic similarity with

the G. duodenalis species of the subgenotype AI (Table 2). The genetic analysis of Cryptosporid-
ium identified C. parvum, C. ubiquitum, and C. fayeri, and subtypes that belong to the IIa and

IVg allelic families. No subtype found for C. ubiquitum (Table 3).

Discussion

The present study investigated, for the first time, the presence of the protozoa Giardia and

Cryptosporidium in rodents and marsupials captured in the northeast region of Brazil. The

southern region of Bahia includes an extensive area of the Atlantic Forest with a richness of

fauna and flora species, being an important area for the conservation of global biodiversity

[20]. In addition to having areas of cocoa agroforestry, providing shade for planting and pre-

serving native forests [22].

Table 2. Species of Giardia per parasitized host caught in forest and Cabruca areas in southern Bahia, northeastern Brazil.

Hosts PCR marker Subgenotypes

Species Order TPI GDH
Gracilinanus agilis Didelmorphia Gd Gd AI�

Monodelphis americana Didelmorphia Gd Gd AI

Oecomys catherinae Rodentia Gd Gd AI

Oligoryzomys nigripes Rodentia Gd Gd AI

Hylaeamys laticeps Rodentia Gd Gd AI

Akodon cursor Rodentia Gd Gd AI

Abbreviations: Gd: Giardia duodenalis.
�Subgenotype.

https://doi.org/10.1371/journal.pone.0256199.t002
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Giardia duodenalis infection has been described in wild animals, such as rodents and mar-

supials, with a prevalence ranging from 2% to 12% [3,23–27]. This defines a low prevalence in

forest areas, compared to that in urban areas with rodents having a higher prevalence ranging

from 24.4% to 64.3% [2,23,28]. In the present study, the frequency of positive animals was

5.4%, and such low positivity may be related to the sampling site, which has rich and abundant

flora, low anthropization, and the presence of some arboreal animal species, such as G. agilis
and O. catherinae, which have herbivorous and insectivorous diet, respectively [26,29,30]

reducing contact with the pathogen.

The subgenotype AI found in this study is commonly found in humans [31], which charac-

terizes these animals as participants in the epidemiology of human Giardia infection [25]. Ver-

meulen et al. [25], Caccio and Ryan [32], Karim et al. [33], and Garcia et al. [34] identified the

same subgenotype in the gdh and tpi genes in animals. Marsupials and rodents, especially

those which are terrestrial, such as the marsupials M. murina and M. americana, and the

rodents O. nigripes, H. laticeps, A. cursor, and R. mastacalis, become infected through contami-

nated water, food, and fomites, thus playing an important role in the evolution of this proto-

zoan [29]. Additionally, this brings the parasite into contact with humans, presenting a risk to

public health [31,35].

The gdh and tpi genes demonstrated good sensitivity, allowing the generated sequences to

identify the G. duodenalis species and the subgenotype AI in the six isolates. Because it has

conserved regions, characterization of these genes can identify all genotypes and subgenotypes

of G. duodenalis [36–38].

The Cryptosporidium frequency was 1.47% and 4.41% in rodents and marsupials, respec-

tively, similar to that described by Santos [24]. The literature describes this protozoan infecting

a variety of small mammal species [3,24,39–44]. Studies in urban areas also show a greater

degree of parasitism of this protozoan in synanthropic rodents [2,28,41,42]. The presence of

this protozoan may be associated with anthropic action and the presence of domestic animals

provides an interaction between humans and wild fauna, favoring its dissemination [45].

Cryptosporidium parvum is responsible for the majority of human enteric infections world-

wide [44]. The subgenotype IIa obtained in this study is frequently found in humans and ani-

mals [43,44,46–48]. Cryptosporidium fayeri is common in marsupial species [40,44,49,50]

despite has also been identified in humans [44,51,52]. Its pathogenicity is unknown, but it

often causes asymptomatic infections in marsupials [40]. The subgenotype IVg has been iden-

tified in marsupials (Macropus giganteus) [44].

Cryptosporidium ubiquitum was found in Hylaeamys laticeps, the first finding in wild

rodents captured in Brazil. This species has low specificity and is commonly reported in ani-

mals, including rodents, marsupials, and other host species [35,41,43,53,54]. Cases in humans

Table 3. Species of Cryptosporidium per parasitized host caught in forest and Cabruca area in southern Bahia, northeastern Brazil.

Hosts PCR marker Gp60 subgenotype family

Species Order HSP-70 Gp60
Marmosa murina Didelmorphia Cp Cp IIa�

M. murina Didelmorphia Cr Cf IVg�

M. murina Didelmorphia Cr Cp IIa

Rhipidomis mastacalis Rodentia Cp Cp IIa

Hylaeamys laticeps Rodentia Cu

Abbreviations: Cp: Cryptosporidium parvum; Cf: Cryptosporidium fayeri; Cr: Cryptosporidium sp.; Cu: Cryptosporidium ubiquitum.

� Subgenotype.

https://doi.org/10.1371/journal.pone.0256199.t003
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have shown that [55,56] the most common route of C. ubiquitum transmission is through

water [56].

The two genes assessed, gp60 and Hsp-70, have satisfactory sensitivity and can be used in

studies to identify Cryptosporidium and verify its genetic diversity [45,53,57,58]. Using more

than one gene provides a more detailed understanding of the protozoan’s genetic variability

and abiotic factors in the study population [59].

In this study, the occurrence of protozoa in small mammals was similar in the Atlantic For-

est (Una and Belmonte) and agroforestry (Ilhéus) environments. The difference in the number

of positive animals between capture areas was not statistically significant, demonstrating that

agroforestry areas maintain low contamination due to the continued diversity of fauna and

flora, despite greater anthropic action and transit of domestic animals that threaten the diver-

sity of wild animals [60].

The close human relationship with wildlife as a result of disorderly urban occupation, illegal

trade in wild animals, or the maintenance of these animals as pets, are some of the factors that

enhance the transmission of zoonotic diseases between species, thus threatening both conser-

vation of biodiversity, and public health [61,62]. Thus, surveillance and monitoring of wildlife

pathogens is necessary for the detection, mitigation and prevention of diseases with zoonotic

potential.

Conclusion

Results herein obtained pioneer Giardia and Cryptosporidium identification in rodents and

marsupials from southern Bahia, northeastern Brazil, showing the present technique as sensi-

tive enough to identify the subgenotypes of Giardia and Cryptosporidium through the gdh

and tpi, and Hsp-70 and gp60 genes, respectively.
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20. Sambuichi RHR. Estrutura e dinâmica do componente arbóreo em área de cabruca na região cacaueira

do sul da Bahia, Brasil. Acta Bot Bras. 20 (4) (2006), pp. 943–954. https://doi.org/10.1590/S0102-

33062006000400018.

21. Fehlberg HF, Maciel BM, Albuquerque GR. Identification and discrimination of Toxoplasma gondii, Sar-

cocystis spp., Neospora spp., and Cryptosporidium spp. by righ-resolution melting analysis. Plos one,

12 (3) (2017), pp. e0174168. https://doi.org/10.1371/journal.pone.0174168 PMID: 28346485
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