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Abstract

Pulping and papermaking generate large amounts of waste in the form of
lignosulfonates which have limited valorized applications so far. Herein, we
report a novel lignosulfonate-based nanofiltration membrane, prepared by using
polyethylenimine (PEI) and sodium lignosulfonate (SL) via a layer-by-layer
(LbL) self-assembly. As a low-cost and renewable natural polyelectrolyte, SL is
selected to replace the synthetic polyelectrolyte commonly used in the conven-
tional LbL fabrication for composite membranes. The prepared LbL (PEI/SL),
membranes were crosslinked by glutaraldehyde (GA) to obtain (PEI/SL);-
GA membranes with compact selective layer. We characterized (PEI/SL); and
(PEI/SL);-GA membranes to study the chemical compositions, morphologies,
and surface hydrophilicity. To improve the nanofiltration performances of the
(PEI/SL),-GA membranes for water desalination, we investigated the effects of
the crosslinking time, GA concentration and the NaCl supporting electrolyte on
membrane structure and performance. The optimized (PEI/SL);-GA membrane
exhibited a permeating flux up to 39.6 L/(m?-h) and a rejection of 91.7% for the
MgSO, aqueous solution 2.0 g/L concentration, showing its promising poten-
tial for water desalination. This study provides a new approach to applying the
underdeveloped lignin-based biomass as green membrane materials for water
treatment.

KEYWORDS
layer-by-layer self-assembly, nanofiltration, polyethylenimine, sodium lignosulfonate, water
desalination
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1 | INTRODUCTION

Nanofiltration (NF) has been considered a green mem-
brane separation technology is owing to its high flux, mild
operation conditions, and energy-saving [1,2]. Taking these
advantages, NF plays a critical role in water treatment and
industrial fields because it selectively rejects multivalent
ions and low molecular weight organic compounds [3-5].
Most commercial NF membrassnes are thin-film compos-
ite (TFC) membranes fabricated with an ultrathin selec-
tive layer coating on a porous substrate, which can be
fabricated through the coating, interfacial polymerization,
photo-grafting, and layer-by-layer (LbL) methods [6-9].
Among these TFC NF membranes fabrication methods,
LbL is widely used owing to its tailorable thicknesses and
surface charges of selective layers by varying polyelec-
trolytes, assembly layers, or other fabrication conditions
[10].

To date, the polyelectrolytes reported for preparing
TFC NF membranes are mostly industrial synthetic poly-
electrolytes, such as polyacrylic acid, polyethylenimine
(PEI), polyvinylamine, poly(allylamine hydrochloride),
poly(diallyldim-ethyl ammonium chloride), polystyrene
sulfonate, and polyvinyl sulfate [11-15]. These synthetic
polyelectrolytes originate from non-renewable raw mate-
rials and are produced by industrial chemical processing,
which consumes a considerable amount of energy and
may generate harmful waste. To reduce the use of syn-
thetic polyelectrolytes in LbL. NF membranes fabrication,
some recent works focused on making LbL NF membranes
from nature-originated polyelectrolytes, such as sodium
alginate, carboxymethyl cellulose, and chitosan [16-20].
However, these materials need purification and modifica-
tion processing from their raw materials, which usually
increases the manufacturing costs.

Lignosulfonates are a group of natural polyelectrolytes
produced as by-products of the sulfite pulping process
in the papermaking industry. Unlike the previously
mentioned natural polymers and their derivatives, which
require extra processing steps. Lignosulfonates are low-
cost by-products can be obtained directly from pulping
factories with millions of tons of production per year [21].
They consist of a long hydrophobic chain and branched
hydrophilic and ionizable side groups such as carboxyl
and sulfonate groups, the basic molecular formulas of
lignin and lignosulfonates are shown in Figure S1. Due to
the negatively charged sulfonate groups, lignosulfonates
are considered natural polyanions [22]. Pulping conditions
determine the different types of ionizable groups in the
lignosulfonates, which mostly consist of sodium, calcium,
and magnesium [23-25]. Most lignosulfonates are just
burned for energy generation in the pulping processes

PRACTICAL APPLICATION

This study reported a new approach for fabri-
cating sustainable lignosulfonate-based nanofil-
tration membranes utilizing pulping waste for
water desalination. The novel thin-film composite
nanofiltration membranes were prepared through
layer-by-layer self-assembly by using sodium lig-
nosulfonate (SL) and polyethylenimine (PEI) as
polyelectrolytes. The influences of fabrication con-
ditions on membrane structure and nanofiltra-
tion performance were investigated for improving
water desalination performance. It shows that the
lignosulfonate-based membrane has a promising
potential for water desalination and the method
also opens a new approach for lignosulfonate
biomass valorization.

[23]. The valorized applications of lignosulfonates are
limited now [26,27]. Several recent works have reported
the application of sodium lignosulfonate (SL) as a nat-
ural polyelectrolyte through LbL self-assembly. These
researches mostly built a multilayered structure on a
supporting matrix by alternatively depositing polyelec-
trolytes with opposite charges, in order to improve the
hydrophobic, mechanical, and thermal properties of the
coated materials, such as fibers, papers, and foams [28-32].

In this study, we reported SL-based TFC NF membranes
prepared by using LbL deposition of PEI/SL selective
layers and followed by a chemical crosslinking using
glutaraldehyde (GA) to enhance the performance of
selective layers. To improve the NF performance of the
(PEI/SL);-GA membranes, we evaluated the influence
of crosslinking conditions and/or supporting electrolyte
on the membrane structures, morphologies and NF per-
formances for water desalination. This work merges the
advantages of lignin-based biomass into NFM separation
technology and provides a new approach to valorize the
underdeveloped lignosulfonates resources into scalable,
low-cost fabrication methods of NF membranes for water
treatment.

2 | MATERIALS AND METHODS

2.1 | Materials

Polysulfone (PSF) ultrafiltration membranes substrates
(MWCO: 30 kDa) were obtained from Beijing Pureach
Tech. Ltd. (China). Sodium lignosulfonate (SL, 96% purity)
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FIGURE 1

(A) Schematics of the SL-based NFM fabrication, including the LbL deposition of polyelectrolyte and chemical crosslinking.

(B) Schematics showing the structure of PSF substrate, (PEI/SL), multilayer-coated membrane and crosslinked (PEI/SL),,-GA NFM

and polyethylenimine (PEI, Mw = 70000 Da, 50% in water)
were purchased from Yuanye Biotech Co., Ltd. (Shang-
hai, China). Glutaraldehyde (GA, 50% in water), NaCl, and
MgCl, were purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). NaOH and MgSO, were pur-
chased from Xilong Scientific Co., Ltd. and Tianjin Jinke
Fine Chemical Research Institute, respectively. All the
chemicals and solvents were of or above reagent grade, and
they are used as received without further purification. DI
water was used for all experiments.

2.2 | Membrane fabrication

The PSF membrane was firstly immersed into a PEI poly-
cation aqueous solution (0.20 wt%) and rinsed by DI
water, then the PEI/PSF membrane was immersed into
an SL polyanion aqueous solution (0.30 wt%) and rinsed
by DI water, giving a pair of (PEI/SL) layer. This pro-
cedure was repeated at room temperature until reaching
seven pairs of the polyelectrolyte bilayers. The prepared
(PEI/SL); membrane was immersed into a GA solution
to take place a typical crosslinking reaction, in which the
Schiff’s base reaction took placed between amino groups
of PEI and aldehyde groups of GA molecules on the
TFC membranes (as shown in Figure S2). The LbL self-
assembly procedures is shown in Figure 1. A serial of
(PEI/SL);-GA membranes were prepared by varying the
number of bilayers, the crosslinking time, and the concen-
tration of the NaCl supporting electrolyte in the PEI or SL
solutions.

2.3 | Characterization experiments

The surface chemical properties of the substrates and
the composite membranes were examined by Nicolet
6700 ATR-FTIR spectroscopy (Thermo Fisher Scientific,
USA). The spectra were collected by 32 scans in the
range of 400 to 4000 cm™' at a resolution of 4 cm™.
The surface Zeta potential of composite membranes was
measured by a SurPASS electrokinetic analyzer (Anton
Paar, Austria) equipped with a clamping cell at 300 mbar
using 1 mM KCl solution as the electrolyte solution. The
morphologies of the surface and cross-sections of the
substrates and composite membranes were observed by
an S8010 scanning electric microscopy (SEM; Hitachi,
Japan). The cross-sectional samples were prepared by
fracturing the membranes in liquid nitrogen. Before
observation, all samples were gold-coated under vacuum
conditions. The 3D surface morphologies and roughness
of the membranes were obtained by a MultiMode 8 atomic
force microscopy (AFM; BRUKER, USA) with the mea-
suring size of 4x4 um along the X, Y-axis using ScanAsyst
mode. The surface water contact angles of substrates and
composite membranes were measured with an SL200KS
optical contact angle goniometer (Kino industry Co., Ltd.,
China) by sessile drop method.

2.4 | NF performance tests

All NF experiments were conducted by a WTM-0806H
UF/NF performance test system produced by Hangzhou
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(A) Plot of zeta potential values of (PEI/SL), LbL membranes with respect to the number of deposited polyelectrolyte layers.

The layer numbers ending with 0.5 represent a membrane with a PEI top layer. (B) FTIR spectra of PSF, (PEI/SL), (PEI/SL),-GA membranes

Watech Co., Ltd., with an effective membrane area of
69.40 cm?. The schematic of this system is shown in Fig-
ure S3. A flat membrane is placed in the crossflow mem-
brane cell pressurized by a pump. The NF experiments
used 2.0 g/L salt solutions or 0.1 g/L dye solutions as feeds
to examine the separation performance of the (PEI/SL)-GA
membranes. The feed flow was constantly circulated from
the feed tank to the membrane cell with a steady operating
pressure of 1.0 MPa in each test. Before collecting perme-
ate samples, the system was pre-operated at least 1 h until
reaching a steady condition. For each kind of membrane, at
least three membranes were evaluated. The permeate flux
(J) was calculated by Equation (1); the rejection (R) was cal-
culated by Equation (2):

v
=30 W
c,-C

R =-L_"2 w100% @)

Cy

where V, A, and t represent the volume of permeate (L), the
effective membrane area (m?), and the permeation time
(min) respectively; the Cy represents the solute concentra-
tion in the feed (g/L), and the C, represents the solute
concentration in permeate (g/L). The solute concentra-
tions were measured by an electrical conductivity meter
(DDS-307A, INESA Instrument, China) and an ultraviolet-
visible spectrophotometer (N5000, shanghai Yoke Instru-
ment, China) for salts and dyes, respectively.

3 | RESULTS AND DISCUSSION

3.1 | Characterization results of
(PEI/SL), and (PEI/SL),-GA membranes

To study the polyelectrolyte LbL self-assembly process,
we monitored the surface zeta-potential values of the

(PEI/SL); membranes during the alternative polyelec-
trolyte deposition. As shown in Figure 2A, the zeta-
potential value alternatively increased and decreased,
which indicates the self-assembly of PEI and SL took place
in an LbL manner, and the prepared (PEI/SL); membrane
was positively charged. We observed that the negatively
charged PSF substrate had a zeta-potential of -45.6 mV.
After deposition of the first layer of PEI, the PEI mem-
brane became positively charged with the zeta-potential of
47.5 mV. Then the zeta-potential of (PEI/SL); membrane
with the first layer of SL decreased to 5.38 mV, but the
value did not drop to negative due to the relatively weak
electronegativity of SL. The zeta-potential values of mem-
brane surfaces fluctuated up and down with a decreas-
ing absolute value. When the number of (PEI/SL) bilayers
increased beyond 5 up to 7, the zeta-potential values of the
(PEI/SL) membrane all stabilized around 8 mV.

The total reflectance (ATR)-FTIR spectroscopy of virgin
PSF, (PEI/SL); membranes are shown in Figure 2B. The
IR spectra of the (PEI/SL); membrane (red line) shows
the following features of PEI and SL compared with the
PSF substrate, which confirmed the successful deposition
of (PEI/SL) multilayers on the substrate: it has a stronger
peak at v = 3200-3600 cm ™! than the PSF membrane which
corresponds to the N-H and -OH stretching vibration of the
newly deposited PEI and SL. Also, the slightly strength-
ened peaks at v = 2930 cm™ and v = 1650 cm™! both indi-
cate the vibrations of C-H stretches on —~CH,- groups in
both PEI and SL [33,34]. A new peak at v = 1030 cm™
represents the S=0 symmetric stretching of sulfonate in
SL. Compared with the spectroscopy of virgin PSF sub-
strate, these new arising and strengthened peaks indicate
the successful deposition of (PEI/SL) multilayers on the
substrates. The blue line in Figure 2A shows the IR spectra
of (PEI/SL);-GA membrane, which has similar features to
the spectra of (PEI/SL); membrane (red line), indicating
the GA crosslinking does not significantly vary the poly-
electrolytes multilayer structure. Several peak changes are
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Surface SEM images of (A) PSF, (B) (PEI/SL), and (C) (PEI/SL),-GA membranes (each scale bar represents 0.5 um).

Cross-sectional SEM images of (D) PSF, (E) (PEI/SL), and (F) (PEI/SL),-GA membranes (each scale bar represents 1.0 um). Surface water
contact angle images of (G) PSF, (H) (PEI/SL), and (I) (PEI/SL),-GA membranes

observed as the results of the crosslinking reaction. For
example, the strengthening of the peaks at v = 2840 cm™
and 2930 cm™! corresponds to the symmetrical stretch-
ing vibration of more —~CH,- structures induced by GA
molecules [35,36]. A significant peak strengthening at
v = 1650 cm™! corresponds to the stretching vibration of
an imine (C N) stretching as a result of the formation of
the Schiff’s base structures during the PEI-GA crosslink-
ing reaction.

The surface and cross-sectional SEM images of the
virgin PSF membrane (Figure 3A,D) show uniformly
distributed submicron-sized pores on the surface and
spongy like structures at the cross-section, a morphology
consistent with PSF ultrafiltration membranes substrate.
The surface (PEI/SL); membrane (Figure 3B) shows
an uneven surface with bumps. The polyelectrolytes
multilayer covered on the PSF substrate makes the pores
on the PSF substrate invisible. We infer that the (PEI/SL),
membrane surface bumps are coiled SL polymer chain
and SL nanoparticles. Since SL is a weak polyanion which
trends to coil up in water dispersion, and the strong
amphiphilicity of SL molecule facilitates the coil-to-
globule transition from coiled up chain to nanoparticles
[37,38]. After crosslinking, the surface of (PEI/SL),-GA
(Figure 3C) shows a more compact morphology with
bumps in reduced size. The cross-sectional image of the

(PEI/SL); membrane (Figures 3E) shows a TFC structure
with an ultrathin layer of a nanoscale thickness coated on
the porous and spongy PSF substrate. The (PEI/SL),-GA
membrane (Figure 3F) has a similar TFC structure after
crosslinked by GA. While the thickness of the selective
layer of the crosslinked (PEI/SL);-GA membrane tends
to be denser and slightly thinner than the uncross-linked
(PEI/SL); membrane. A possible explanation for these
morphologies changes is that the crosslinking between the
PEI layer compressed the selective layer, therefore creates
a more compact layer with decreasing thickness [37].

The surface wettability of (PEI/SL); (Figure 3H)
improved compared to the virgin PSF substrate (Fig-
ure 3G) due to the introduction of the hydrophilic groups
in the polyelectrolytes layer. The water contact angle
decreased from 79.3° to 52.3°. The surface wettability of
(PEI/SL);-GA (Figure 3I) decreased to 64.6°, since the
crosslinking reaction consumed part of the hydrophilic
amino groups and induced new hydrophobic methylene
groups. The change of surface roughness might also
contribute to the surface wettability changes.

The (PEI/SL);-GA membranes prepared adding sup-
porting electrolytes (NaCl) into PEI and SL solutions were
also be characterized by SEM and water contact angle
measurements. Figure 4 shows the effect of supporting
electrolyte NaCl concentration on membrane surface
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FIGURE 4

(A-E) Surface SEM images of the (PEI/SL),-GA membranes prepared at the NaCl concentration of 0, 0.25, 0.50, 0.75, and

1.0 M, respectively (each scale bar represents 2.0 um); (F) cross-sectional SEM image of the (PEI/SL),-GA membrane prepared at the NaCl

concentration of 0.25 M, the scale bar represents 1.0 um

morphology. The surface of the (PEI/SL),-GA membrane
without adding NaCl supporting electrolytes is relatively
smooth and uniform. When the supporting electrolyte is
added, the surface of the (PEI/SL);-GA membrane begins
to become rougher with larger bumps (Figure 4D-E).
The cross-sectional SEM images of the (PEI/SL);-GA
membranes with NaCl supporting electrolyte (Figure 4F)
exhibit the morphology and thickness similar to the one
without supporting electrolyte (Figure 3F). To conclude,
adding supporting electrolytes in the LbL fabrication
can vary the morphology of the membrane surface but
cannot significantly change the membrane thickness.
Moreover, the water contact angles of (PEI/SL);-GA
membranes affected by NaCl concentrations are listed
in Table SI. It can be found that the membrane surface
contact angles tend to decrease from 64.6° to 55.5°-57.6°,
mainly caused by the rougher surface after adding NacCl
supporting electrolytes. Overall, the membrane morphol-
ogy and hydrophilicity cannot change significantly with
an increasing NaCl concentration.

The membrane morphology change during the polyelec-
trolytes self-assembly process that results from adding sup-
porting electrolytes in the polyelectrolyte solution can be
explained by the charges on polymer chains that can be
balanced “intrinsically” by oppositely charged chains or
be balanced “extrinsically” by salt counter-ions within the
polyelectrolyte solution [39]. In this case, the NaCl in the
PEI and SL solutions improved the “extrinsic” compensa-
tion and weakened “intrinsic” compensation. Therefore,
the PEI and SL polymer chains are coiled up with the

presence of NaCl, resulting in the morphology and struc-
ture change of the polyelectrolyte multilayers. Generally,
adding supporting electrolyte contributes to a rougher and
looser polyelectrolyte multilayer because of the less inter-
penetrated polyelectrolyte chains [40].

3.2 | Effect of crosslinking conditions on
nanofiltration performance of
(PEI/SL),-GA membranes

The crosslinking reaction between the (PEI/SL); multi-
layer and GA creates a compact selective layer. We eval-
uated the NF performance of (PEI/SL);-GA membranes
fabricated under different crosslinking conditions. All the
NF performance tests were carried out under an operating
pressure of 1.0 MPa with a 2.0 g/L MgSO, solution feed.
The crosslinking time determines the progress of the
crosslinking reaction, which results in different degrees
of crosslinking for the (PEI/SL);-GA selective layers,
and influence the NF performance of the NFMs. To
study the effect of crosslinking time on NF performance
of (PEI/SL);-GA membranes, we fabricated a series of
(PEI/SL);-GA membranes using the same PEI and SL solu-
tions as mentioned above, while crosslinked by 1.0 wt% GA
for different times (0-120 min). The results of NF perfor-
mance changing with crosslinking time are shown in Fig-
ure 5A. Overall, the membranes exhibit improving rejec-
tion and reducing flux, with the elongation of crosslinking
time. This trend can be explained by the fact that the longer
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(B) crosslinker (GA) concentrations

crosslinking time results in a more sufficient crosslinking
between PEI and GA, which creates a denser selective layer
with improved rejection and reduced water permeability.
The uncross-linked (PEI/SL); membrane shows the lowest
rejection of 51.4% but the highest 82.1 L/(m?-h) flux due to
its relatively loose selective layer. After 30 min crosslink-
ing, the water flux dropped to 42.6 L/(m?-h), while the
rejection raised to 77.8%. This rejection just reached the
standard for effective inorganic salt separation, which
should have a rejection of around 90%. The (PEI/SL);-GA
membrane crosslinked less than 30 min might have poten-
tial for organic solute separation. When the crosslinking
time reaches 60 min, the NF performance of (PEI/SL);-
GA reaches a critical point with a rejection of 90.3% and
flux of 36.3 L/(m?-h). After this point, the rejection does
not increase remarkably, while the flux keeps going down
slightly. It means that the crosslinking reaction between
the GA and PEI macromolecules reached an equilibrium
state at about 60 min, so the increase in crosslinking time
beyond the critical point will not promote the degree of
crosslinking.

The crosslinker concentration also influences the pro-
cess of the crosslinking reaction, which subsequentially
changes the (PEI/SL);-GA selective layer structure and
determines the NF performance of the membranes. To
study the effect of crosslinker concentration on NF perfor-
mance of (PEI/SL);-GA membranes, the GA concentration
was varied from 0 wt% to 1.5 wt% for 60 min. The results
of NF performance varying with different crosslinker con-
centrations are shown in Figure 5B. Overall, the rejection
increases with the increase of GA concentration, while
the permeant flux decrease. The control (PEI/SL); mem-
brane treated with DI water without any GA shows the
lowest rejection of 51.4% but the highest 82.1 L/(m?-h) flux
due to uncross-linked loose selective layer. The increase
of rejection and decrease of flux reached a plateau at
1.0 wt% GA concentration. The (PEI/SL);-GA treated by
1.0 wt% GA exhibited a rejection of 90.3% and flux of

The effect of crosslinking conditions on NF performance of (PEI/SL),-GA membranes: (A) time of crosslinking treatment,

36.3 L/(m?-h). After this point, the rejection remains at
around 90.3%, while the flux keeps going down slightly.
Generally, the higher concentration of cross-linker results
in more crosslinking reactions and then forms a denser
selective layer, which rejects more solutes and reduces
water molecule permeability. The crosslinking reaction
between the GA and PEI reached an equilibrium when
the crosslinker concentration go up to 1.0 wt%, where the
crosslinking reaction will not significantly move forward
with the increasing GA concentration. Thus, the optimal
crosslinking conditions are the crosslinking time of 1h and
the GA concentration of 1.0 wt%.

3.3 | Effect of supporting electrolyte on
nanofiltration performance of
(PEI/SL),-GA membranes

To further improve the NF performance of the (PEI/SL),-
GA membranes, we added NaCl as a supporting elec-
trolyte to the polyelectrolyte solutions. It has been reported
that adding inorganic salts in the polyelectrolytes solutions
as a supporting electrolyte can significantly change the
polyelectrolyte multilayer structure and separation per-
formance by influencing the intermolecular electrostatic
interactions [10,40]. A series of the (PEI/SL),-GA were pre-
pared by adding NaCl solution with concentrations rang-
ing from O to 1.0 M as the supporting electrolyte into both
PEI and SL solutions. Other fabrication conditions were
the same as previous tests, using 0.20 wt% of PEI, 0.30 wt%
of SL, and 1.0 wt% GA crosslinked for 60 min.

The NF performance of (PEI/SL)7-GA membranes pre-
pared with different concentrations of NaCl as supporting
electrolyte is shown in Figure 6. For the (PEI/SL);-GA
membrane modified by adding 0.25 M NacCl as supporting
electrolytes, the flux increases from 36.3 to 39.6 L/(m?-h),
and the rejection slightly increases from 90.3 to 91.7%.
When we keep increasing the NaCl concentration from
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0.25 to 1.0 M, the flux increases to 73.6 L/(m?-h), but the
rejection gradually drops to lower than 60%. This result
is consistent with previously reported literature, which
modified the polyelectrolyte LbL. membrane performance
by adding supporting electrolyte [40]. Generally, the
polyelectrolyte chains coiled together with the presence
of supporting electrolyte, which results in a thicker
but looser polyelectrolyte coating with higher flux and
lower rejection. We observed consistent characterization
results in Figure 4 and Table S1, they indicate that the
(PEI/SL);-GA membranes show increasing roughness and
wettability with rising NaCl concentration. The rougher
and bumpier membrane surface corresponds to the thicker
and looser membrane structures caused by increasing
salinity. The increase in both flux and rejection at 0.25 M
NaCl can be explained by when the concentration of NaCl
supporting electrolyte concentration is relatively low.
The polyelectrolyte chains coiled slightly; as a result, the
slightly loose (PEI/SL),-GA layer makes water transport
easier without comprising on rejection. In contrast, once
the NaCl concentration is too high, the polyelectrolyte
chains significantly coiled up, resulting in a highly loose
membrane with higher water and salt permeability. A good
NFM should have relatively high flux and rejection at least
higher than 90%; therefore, the optimized supporting elec-
trolyte NaCl concentration for (PEI/SL),-GA membrane is
0.25 M.

The NF performance of optimized (PEI/SL),-GA mem-
branes for MgSO, with different feed concentrations were
further evaluated. The results are shown in Figure 6B, the
(PEI/SL);-GA membrane showed a gradually increased
rejection rate for MgSO, with the increasing feed concen-
tration from 1.0 to 4.0 g/L, the fluxes remain constant at
around 40 L/(m?-h). The highest rejection reached 95.3%
when separating the 4.0 g/L MgSO, solution. This high
rejection in high feed concentration is rarely observed in
NF membranes, the salt rejection normally decreases with
the raising of feed solution concentration. We suggest a
reason for this phenomenon is because many salt parti-
cles accumulate on the surface under high concentration
conditions, adsorbed in the pores of the membrane lead
to the pores’ size descended then increased the rejection.
This result indicates our (PEI/SL);-GA membrane has the
prospective application in high concentration salt solu-
tions separation.

3.4 | Performance of the optimized
(PEI/SL),-GA membrane

The NF performance of the optimized (PEI/SL);-GA NF
membrane was measured by using different feeds sep-
arately, to investigate the rejection of four inorganic
salts and four organic dyes. Figure 6C shows the salt
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TABLE 1 Desalination performance of polyelectrolyte LbL self-assembly NF membranes for Mg?* or Ca®* salts
Divalent Salt concentration Rejection Permeance

Membrane salt (g/L) (%) [L/(m?ehebar)] References
(PVA/PVS)4 MgSO, 1.0 mM 100 0.112 [13]
[PSS/PAH], MgSO, 5.0 mM 98 6.2 [43]
(PSS/PAH); on porous alumina MgSO, 1.0 96 9.55 [44]
(PEI/SL);-GA MgSO, 4.0 95.3 3.96 This work
[PSS/PAH], MgSO, 1.0 93.6 4 [15]
((PEI-modified GO)/PAA)s/PVA-GA MgSO, / 92.6 0.81 [45]
PEI/TMA MgCl, 0.1 >90 235 [46]
(PEI/SCF), 5 CaCl, 0.5 90.6 4.49 [47]
(PEI/PAA)/PVA-GA MgSO, / 83. 0.78 [45]
[PAH/PSS], PAH/PSSMA MgSO, 1.0 86.4 7.24 [48]
(PDDA/GO), MgSO, / 69.2 6.95 [49]
PEI/CMCNa MgSO, 0.5 19.2 14.00 [33]

rejections for MgSO,, MgCl,, Na,SO,, and NaCl solu-
tions under the same operating conditions (the feed
concentration of 2.0 g/L and the operating pressure of
1.0 MPa). The salt rejection values are in the order of
95.6% > 91.7% > 68.8% > 37.9% from MgSO,, MgCl,,
Na, SOy, to NaCl, respectively. Based on the Donnan exclu-
sion mechanism, the rejection of a charged membrane
increases with increasing co-ion charges or decreasing
counterion charges of salt solutions [41,42]. In this case,
the positively charged (PEI/SL),;-GA membrane exhibits
stronger repulsive interactions to Mg?* ions than Na* ions,
and stronger attractive interactions to SO,2~ ions than CI-
ions. So the Na* or SO,* ions tend to move toward and
pass through the membrane. Once some ions pass through
the membrane, some counterions must pass through the
membrane together to keep the electroneutrality of feed
and permeate. Therefore, the (PEI/SL);-GA membrane
rejects MgCl, ions higher than Na,SO,. The salt rejection
is also affected by the steric hindrance mechanism, as the
Na' and CI™ ions with the smaller sizes may pass through
the dense (PEI/SL);-GA membrane easier than the Mg?*
ions and SO42‘ ions. Thus, the membrane have the high-
est rejection for MgSO, and the lowest rejection for NaCl.
Therefore, the mechanism of ion rejection includs both
of the Donnan exclusion and size exclusion mechanism.
The movement of ions near a charged membrane surface
is dependent on the interaction between ions and charges
on the membrane surface, and multivalent ions possess
stronger attractive or repulsive electrostatic interactions
than monovalent ions.

To determin the molecular weight cutoff (MWCO) of
the optimized (PEI/SL);-GA NF membrane, four cationic
organic dyes with different molecular weight were used as
solutes to investigate the dye rejections separately under
the same operating conditions (the feed concentration of

0.1 g/L and the operating pressure of 1.0 MPa). As shown
in Figure 6D, the dyes are neutral red (NR, 288.78 g/mol),
Methylene Blue (MB, 319.85 g/mol), crystal violet (CV,
407.90 g/mol), Rhodamine B (RB, 479.01), and the rejection
values are all higher than 90% except for NR. The MWCO
value of the membrane is probably around 300 g/mol.
The rejection results are presented in ascending order of
89.4% < 92.6 < 96.8% < 98.2%, which is in the same order
of the molecular weight from low to high. It indicates that
the separation mechanism for rejecting organic dye solutes
with the molecular weight higher than 288 g/mol is primar-
ily dominant by the steric hindrance mechanism. There-
fore, the membrane may exhibit higher rejections for larger
molecules.

The desalination performance of the optimized
(PEI/SL);-GA membrane for divalent salts is compared
with other polyelectrolytes LbL membranes reported
in previous literature [13,15,33,43-49]. Table 1 lists the
membrane materials, the type of Mg?* or Ca?* salt, the
salt concentration, the rejection, and the fluxes. Generally,
the LbL membranes with more bilayer may have better
rejection but lower fluxes, and most membranes listed in
Table 1 have the rejection larger than 90% or the fluxes
higher than 4.0 kg/(m?shebar). Although some literature
reports higher rejections and higher fluxes than this
work, it is worth to note that only two membranes were
prepared from natural polyelectrolyte materials, SL in
the (PEI/SL);-GA membrane and sodium carboxymethyl
cellulose in the PEI/CMCNa membrane. Moreover, the
(PEI/SL);-GA membrane exhibits the rejection of 95.3%
and flux of 3.96 kg /(m?ehebar) for separating MgSO,
solution with the concentration of 4.0 g/L, while the
desalination performance of other membranes mostly
for divalent salts solutions with the concentration not
higher than 1.0 g/L. Therefore, the NF performance of the
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(PEI/SL);-GA is comparable with other LbL NF mem-
branes prepared from traditional synthetic polyelectrolyte
materials. It demonstrates that SL can be used as a natural
polyelectrolyte as an alternative to the synthetic ones
for fabricating novel LbL membranes with a promising
prospect in water desalination. We anticipate the SL-based
LbL membrane can be further optimized in order to
achieve high NF performance, for example, controlling
the content of sulfonate groups in SL, chemically mod-
ifying SL, incorporating porous materials, using other
polyelectrolytes or crosslinking agents, and so on.

4 | CONCLUDING REMARKS

Novel (PEI/SL);-GA NF membranes were prepared by PEI
and SL via LbL self-assembly and crosslinked by GA. The
characterization results indicate that the (PEI/SL), bilay-
ers can be successfully deposited on the support mem-
branes and the (PEI/SL);-GA membranes having dense
and hydrophilic selective layers. The NF performance for
removing MgSO, from water shows that the increase in
GA concentration and crosslinking time can increase the
membrane selectivity but decrease the membrane perme-
ance. Adding NaCl supporting electrolytes to fabricate the
(PEI/SL);-GA membranes tend to decrease the membrane
selectivity but increases the membrane permeance. The
optimized (PEI/SL);-GA membrane exhibit higher rejec-
tions for Mg?* salts than Na* salts, and has the MWCO
properties around 300 g/mol evaluated by organic dye
solutes. The (PEI/SL);-GA membrane shows a promising
potential for water desalination, especially for separating
high concentration salt solution. It provides a new way
to valorize the underutilized, renewable, and low-cost SL
waste.
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