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The liver metabolizes a variety of substances that sometimes interact and

regulate each other. The modeling of a single cell or a single metabolic

pathway does not represent the complexity of the organ, including

metabolic zonation (heterogeneity of functions) along with liver sinusoids.

Here, we integrated multiple metabolic pathways into a single numerical

liver zonation model, including drug and glucose metabolism. The model

simulated the time-course of metabolite concentrations by the combination

of dynamic simulation and metabolic flux analysis and successfully reproduced

metabolic zonation and localized hepatotoxicity induced by acetaminophen

(APAP). Drug metabolism was affected by nutritional status as the

glucuronidation reaction rate changed. Moreover, sensitivity analysis

suggested that the reported metabolic characteristics of obese adults and

healthy infants in glucose metabolism could be associated with the

metabolic features of those in drug metabolism. High activities of

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate

phosphatase in obese adults led to increased APAP oxidation by cytochrome

P450 2E1. In contrast, the high activity of glycogen synthase and low activities of

PEPCK and glycogen phosphorylase in healthy infants led to low

glucuronidation and high sulfation rates of APAP. In summary, this model

showed the effects of glucose metabolism on drug metabolism by

integrating multiple pathways into a single liver metabolic zonation model.
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Introduction

The liver performs hundreds of vital functions such as

metabolism of exogenous and endogenous compounds, bile

production, and maintenance of blood levels of many

substances, including albumin, glucose, amino acids, and

vitamins (Trefts et al., 2017). Anatomically, the human liver

contains approximately a million hepatic lobules with hexagonal

cross-sections, and each lobule consists of a million hepatocytes

and a thousand capillaries called sinusoids. The hepatic artery

and the portal vein from the intestine merge at one end of the

sinusoid in the periportal region of the lobule and flow into the

central vein at the other end of the sinusoid in the pericentral

region of the lobule (Abdel-Misih and Bloomston, 2010).

Metabolic enzymes are expressed at different levels in

hepatocytes along with the sinusoidal axis, which

compartmentalizes hepatic functions (Halpern et al., 2017;

Kietzmann, 2017; Halpern et al., 2018; Ben-Moshe et al.,

2019). This spatial patterning of hepatic functions (hepatic

zonation) presumably contributes to the efficient functional

management of the whole organ since certain pathways

antagonize each other.

Acetaminophen (APAP) is one of the most commonly used

over-the-counter medications; however, its overdoses can lead to

hepatotoxicity and acute liver failure (Sacks et al., 2018). APAP is

intensively used as a model compound to study liver drug

metabolism, and it is well known that hepatocytes in the

pericentral region are initially damaged due to metabolic

zonation (Anundi et al., 1993; Cunningham and Porat-Shliom,

2021). Multiple metabolic pathways are involved in APAP

metabolism, and their mutual interaction and regulation add

another layer of complexity to understanding the metabolic fate

of APAP in the liver (Mazaleuskaya et al., 2015). In hepatocytes,

APAP is eliminated through glucuronidation or sulfation or

converted to the toxic intermediate metabolite N-acetyl-

p-benzoquinone imine (NAPQI) by cytochrome P450 2E1

(CYP2E1), which is detoxified and eliminated through

glutathione (GSH) conjugation. In adults, glucuronidation and

sulfation play a major role in APAP metabolism, and

approximately 5% of the substrate is converted into NAPQI

(Court et al., 2001; Mutlib et al., 2006; Riches et al., 2009).

Sulfation activity and GSH concentration are high in the

periportal region, while glucuronidation, CYP2E1, and GSH

conjugation are high in the pericentral region (Kietzmann,

2017). GSH is depleted in the pericentral region leading to

site-specific accumulation of NAPQI, which covalently binds

to cysteine (Cys) residues in proteins to form protein adducts,

which cause hepatotoxicity (Yoon et al., 2016).

Glucuronidation accounts for the majority of APAP

metabolic pathways in healthy adults (Jiang et al., 2013).

Interestingly, uridine diphosphate (UDP)-glucuronic acid

(UDP-GA), a substrate of glucuronide conjugation, is

enzymatically produced from a glycogen metabolism

metabolite constituting the glucose metabolism cascade

(Adeva-Andany et al., 2016). This indicates that drug

metabolism and glucose metabolism interact (Ghafoory et al.,

2013; Dargue et al., 2020; Cunningham and Porat-Shliom, 2021).

Glucose metabolism consisting of glycolysis, gluconeogenesis,

and glycogen metabolism shows metabolic zonation in the liver

(Kietzmann, 2017). Glucose uptake and glycolysis are promoted

in the pericentral region, while gluconeogenesis and glucose

delivery dominate in the periportal region.

The precise evaluation of complex human liver metabolism

and toxicity may include in silico approaches as complementary

or promising alternatives to existing in vivo and in vitro

approaches. The first mathematical model for APAP

metabolism (Reith et al., 2009) was followed by a multi-

compartmental model (Ben-Shachar et al., 2012), a

physiologically based pharmacokinetic model (Ben-Shachar

et al., 2012; Jiang et al., 2013), and simplified models dealing

with only major pathways (Remien et al., 2012; Reddyhoff et al.,

2015). Recently, the zonation effects on APAP metabolism and

the zone-specific hepatotoxicity were simulated in mathematical

models (Smith et al., 2016; Franiatte et al., 2019; Kennedy et al.,

2019; Means and Ho, 2019). Meanwhile, mathematical models

incorporating zonal regulations of glycolysis, gluconeogenesis,

and glycogen metabolisms were reported (Bulik et al., 2016;

Berndt et al., 2018; Berndt and Holzhütter, 2018). However,

most existing models considering metabolic zonation deal with

drug metabolism or glucose metabolism individually. Thus, it is

difficult to investigate crosstalk effects that impair the accuracy of

evaluation under different clinical conditions.

In this study, we integrated metabolic zonation models of

multiple pathways including drug and glucose metabolism into a

single numerical human liver model. This model showed that

changes in glucose metabolism enzyme activities affected APAP

metabolism, and the crosstalk effects were dependent on liver

zonation and nutritional status. These results showed the

importance of incorporating multiple metabolic networks in a

single zonation model.

Materials and methods

Model overview

We built a numerical liver zonation model by integrating

glucose, APAP, and Cys metabolisms (Figure 1 and

Supplementary Material for abbreviations). The glucose

metabolism model consists of glycolysis, gluconeogenesis, and

glycogen metabolism. Glucose metabolism rate equations were

adopted and modified from previous studies (Bulik et al., 2016;

Berndt et al., 2018; Berndt and Holzhütter, 2018). APAP

metabolism utilized a previously described model (Means and

Ho, 2019). Our model also contains Cys metabolism. We divided

the liver into two zones for most cases and three zones for
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calculating glucose exchange rates and glycogen concentrations

to compare with reported results (Berndt et al., 2018). The model

consists of 34 variables (metabolites) and 47 reactions. We

simulated metabolic zonation by changing enzyme activities

depending on the zone that the cell belongs to: from the

periportal-to the pericentral regions. For instance, the

pericentral region has a greater expression of UTP-glucose-1-

phosphate uridylyltransferase than the periportal region

(Kietzmann, 2017). Thus, we used a higher Vmax value for

UTP-glucose-1-phosphate uridylyltransferase in the pericentral

cell. The model contains 13 zonation-dependent kinetic

parameters (Supplementary Material). We assumed that the

organism outside the liver was unchanged during simulations.

The external glucose concentration and APAP administration

rate were the boundary conditions, which we changed during

simulations. We used the external glucose concentrations of

4 and 11 mM for the fasting and feeding states, respectively.

We used the APAP administration rates of 0, 0.5, and 6 mM/h for

no, moderate, and excessive administration, respectively. The

liver zonation model was implemented in Python (ver.3.10,

https://www.python.org) with NumPy library (ver. 1.21.0,

https://numpy.org). The blood concentrations of glucose and

APAP under different conditions, such as fasting, feeding, and

moderate- and over-doses, were determined according to

previous reports (Kennedy et al., 2019; Means and Ho, 2019;

Lammers et al., 2020).

Simulation method

Computer simulations of metabolic pathways often use

dynamic simulation or metabolic flux analysis (MFA). The

dynamic simulation reproduces the time-dependent transitions

of metabolic concentrations but requires many parameters. For

instance, the reversible Michaelis–Menten rate equation

(commonly used for dynamic metabolic models) requires at

least four parameters per enzyme reaction, leading to

hundreds of parameters to construct a single metabolic model.

FIGURE 1
Network map of the constructed model. Schematic representation of the simulation model combining glucose (Glc), acetaminophen (APAP),
and cysteine (Cys) metabolisms indicated by open blue, solid orange, and solid blue shapes, respectively. The definitions of the abbreviations are
listed in the Supplementary Material. Glc, lactate, APAP, and Cys in the blood can be transported into the cytosol. The endoplasmic reticulum and
mitochondria are shown on the background. The square boxes represent enzymes and transporters, whereas the circles represent substrates
and metabolites.
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Due to the limits of experimental data availability, optimizing

many parameters is difficult. Meanwhile, MFA does not require

any kinetic parameters. However, as it assumes that the entire

system is at a steady state, a simple MFA cannot simulate any

temporal changes in metabolite concentrations. Therefore, we

used a hybrid approach in this study to compensate for the

shortcomings of eachmethod (Yugi et al., 2005). Briefly, dynamic

simulation was applied to the rate-limiting reactions of the

metabolic pathways, while MFA was utilized for the other

reactions by assuming a pseudo-steady state at each

simulation step.

In general, the dynamic behavior of a metabolic pathway is

modeled by the following differential equation.

dx
dt

� Sv (1)

where x is the variable vector representing metabolite

concentrations (n × 1), S is the stoichiometry matrix (n × m),

and v is the reaction rate vector (m × 1), which is a function of x.
We divided the system into two modules: dynamic and static.

The dynamic module contains key reactions that are bottlenecks

of dynamic behaviors. The static module contains fast, non-

bottleneck reactions. We divided v into reaction rates in the

dynamic module (vd) and the static module (vs). We divided x
into the variables only associated with dynamic module reactions

(xd) and those with one or more static module reactions (xs). We

divided S into three matrices: Sd,d, Ss,d, and Ss,s. Sd,d is the

stoichiometry matrix for the dynamic module variables and

dynamic module reactions, Ss,d is for the static module

variables and dynamic module reactions, and Ss,s is for the

static module variables and static module reactions. Our

model has 13 variables and 27 reactions in the dynamic

module and 21 variables and 20 reactions in the static

module. The incorporation of the new symbols allows the

previous equation to be written as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxd
dt

� Sd,dvd

dxs
dt

� Ss,dvd + Ss,svs

(2)

Sd,d, Ss,d, and Ss,s values are given. vd is a set of kinetic rate

equations such as mass actions and Michaelis-Menten rate

equations, i.e., vd is a function of xd and xs. Thus, the right-

hand side of the upper equation can be calculated.

To calculate the right-hand side of the following equation, we

assume the static module is at a steady state at each time step in a

simulation. Thus, the following equation becomes:

0 � Ss,dvd + Ss,svs (3)

In the over-determined case (including our model), there is

no solution space for vs to satisfy the previous equation. Instead,

we can obtain vpseudos , the most plausible alternative for vs, by the
following equation:

vpseudos � −S#s,sSs,dvd (4)

where S#s,s is the Moore-Penrose pseudo-inverse of Ss,s. v
pseudo
s

provides the least-squares estimate of the reaction rate

distribution, which minimizes |Ss,dvd + Ss,svs|2. This procedure
equally distributes the error among the reaction rates of the static

module (Yugi et al., 2005). Replacement of vs in the second

equation with vpseudos enables time evolution simulation of xd
and xs.

Results

Comparison of the liver model with
experimental data

The whole combined model was initially performed at

different blood glucose levels without APAP administration.

Metabolite concentrations and reaction rates are shown in

Figures 2, 3, respectively. As expected, the substrate- and

metabolites concentrations related to APAP metabolisms such

as APAP, NAPQI, and protein adducts were zero. Furthermore,

the reaction rates of APAP sulfation (vSulf), oxidation (vCYP450),

glucuronidation (vUGT), and GSH conjugation (vGSHT) were zero.

In contrast, metabolite concentrations and reaction rates related

to glucose metabolism changed in response to the blood glucose

level and reproduced zonation patterns with the values consistent

with the liver (Halpern et al., 2017, 2018; Ben-Moshe et al., 2019:

(Halpern et al., 2018; Ben-Moshe et al., 2019). The pericentral

region had higher reaction rates of glucokinase (vGK), fructose-

2,6-bisphosphatase (vFBP2), aldolase (vALD), glyceraldehyde-3-

phosphate dehydrogenase (vGAPDH), and pyruvate kinase (vPK)

compared with the periportal region, and the positive lactate

dehydrogenase reaction rate was indicative of glycolysis

promotion and lactate (Lac) production (Miethke et al., 1985).

The periportal region contained higher GSH concentration and

greater reaction rates of fructose-1,6-bisphosphatase (vFBP1) and

phosphoenolpyruvate carboxykinase in the cytosol (PEPCK,

vPEPCK), and glucose-6-phosphate phosphatase in the

endoplasmic reticulum (G6P, vG6P_ER) compared with the

pericentral region (Katz et al., 1977; Ma et al., 2020). Lactate

dehydrogenase works in the reverse direction in the fasting state,

which favors gluconeogenesis. In contrast to cytosolic PEPCK,

mitochondrial PEPCK contribution to glucose metabolism is not

fully understood. Nevertheless, our model predicted that the

reaction rate of mitochondrial PEPCK (vPEPCKmito) was higher in

the pericentral region (Méndez-Lucas et al., 2013; Stark et al.,

2014; Stark and Kibbey, 2014).

The glucose exchange rate by glucose transporter 2 in

response to the external (blood) glucose concentration and the

change of glycogen concentration over time was investigated to

further validate the glucose metabolism model (Figure 4). The

glucose transporter 2reaction rate increased with increased
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external glucose; in other words, cellular glucose consumption

increased (Figure 4A). Pericentral cells consumed glucose faster

than periportal cells. Periportal cells exported 4–9 mM glucose

from external glucose concentrations. The nutritional-status-

dependent glycogen concentration showed that its levels were

lowest in periportal cells in the fasting state (Figure 4B).

However, glycogen accumulated faster in periportal cells in

the feeding state (from 0 to 24 h) and reached higher

concentrations than that of intermediate and pericentral cells.

These glycogen concentration transitions were congruous with

the reaction rates of glycogen phosphorylase and glycogen

synthase (GS) shown in Figure 3. These glucose metabolism

results were consistent with existing observations and

experimental data (Berndt et al., 2018).

Cellular APAP concentration increased with its

administration in the constructed model (Figure 5). After 2 h,

APAP was eliminated by three APAP metabolic reactions:

sulfation (vSulf), oxidation (vCYP450), and glucuronidation

(vUGT) (Figure 1). The rate of APAP sulfation (vSulf) was

higher in the periportal region than that in the pericentral

region, while vCYP450 and vUGT showed the opposite

tendencies. A prominent increase of protein adducts leading

to hepatotoxicity was observed in the pericentral region due to

low GSH concentration and sulfation activity. Indeed, over-

administration of APAP resulted in GSH depletion. Overall,

our model was consistent with the existing observations in the

pericentral region (Yoon et al., 2016; Ahn et al., 2019; Means and

Ho, 2019).

FIGURE 2
Metabolite concentrations without acetaminophen administration. Hepatocytes were in a feeding state from 0 to 12 h and in a fasting state for
the rest of the simulation time. The external (blood) glucose levels were set to 4 and 11 mM for the fasting and feeding states, respectively. The solid
red lines and blue dotted lines indicate the periportal and pericentral regions, respectively. The definitions of the abbreviations are listed in
Supplementary Material.
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Finally, the contribution of each APAP metabolic reaction was

investigated (Table 1). According to a previous study (Mcgill and

Jaeschke, 2013), APAP is eliminated mainly through glucuronidation

(50%–70%), followed by sulfation (25%–35%) and oxidation (5%–

15%). In our model, glucuronidation was also the main route of APAP

elimination in most cases, and the range of contribution of each

metabolic reaction was consistent with previous studies (Mcgill and

Jaeschke, 2013) (Table 1). Sulfation and oxidation increased, while

glucuronidation decreased following excessive administration of APAP

(6.0mM/h). Increasing protein adduct production in the pericentral

regionunder these conditions is indicative of site-specific hepatotoxicity.

Taken together, our liver metabolism model was validated through

reproduced contributions of main APAP metabolic reactions and

localized toxicity previously observed in the liver.

Prediction

It is widely known that obese and healthy individuals have

different enzyme activities. For example, PEPCK and G6P

activities are increased in obese individuals (Ropelle et al., 2009;

Wang et al., 2011). Thus, we increased the enzyme activities (Vmax) of

FIGURE 3
Metabolite reaction rates without acetaminophen administration. Hepatocytes were in a feeding state from 0 to 12 h and in a fasting state for
the rest of the simulation time. The external (blood) glucose levels were set to 4 and 11 mM for the fasting and feeding states, respectively. The solid
red lines and blue dotted lines indicate the periportal and pericentral regions, respectively. The definitions of the abbreviations are listed in
Supplementary Material.

FIGURE 4
Validation of the constructed model. (A) Simulated glucose
exchange rate by glucose transporter 2 in response to external
(blood) glucose concentration. (B) Simulated glycogen
concentrations over time. Hepatocytes were in a feeding
state from 0 to 24 h and in a fasting state for the rest of the
simulation time. The external (blood) glucose concentrations were
set to 4 and 11 mM for the fasting and feeding states, respectively.
The external lactose concentration was fixed at 1 mM in all
simulations.
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PEPCK andG6P by 50% in ourmodel and investigated the effects on

APAP metabolism. Interestingly, increased PEPCK and G6P

activities influenced APAP metabolism in only two cases out of

eight (bold letters in Table 2; Figure 6): both cases were in the

periportal region in the fasting state. In both cases, glucose-1-

phosphate, UDP-glucose, and UDP-GA (metabolites connecting

glycolysis and APAP metabolism) were depleted. UDP-GA is a

substrate of glucuronidation; therefore, APAP could not be

metabolized by this pathway. Decreased glucuronidation in the

periportal region led to increased sulfation and oxidation by

CYP2E1, suggesting the potential risk of increased hepatotoxicity

in obese individuals.

Infants have low PEPCK and glycogen phosphorylase

activities and high GS activity compared with adults

(Mitanchez, 2007). Sulfation is the major conjugation pathway

in drug metabolism in children, while glucuronidation is

dominant in adults (Jiang et al., 2013). We simulated the

infant glucose metabolism by increasing the enzyme activities

of PEPCK and glycogen phosphorylase and decreasing the GS

activity using our liver metabolism model to investigate the

possible mechanistic interconnection behind these two

observations (Figure 6). There was decreased glucuronidation

and increased sulfation in all cases in infants compared with

adults (Tables 1 and 3). The impact was the most prominent in

FIGURE 5
Simulation of acetaminophen (APAP) metabolism. APAPwas administered for the initial 30 min of the simulation. The red and blue lines indicate
the periportal and pericentral regions, respectively. The solid and dotted lines indicate moderate (0.5 mM/h) and excessive (6.0 mM/h) APAP
administration, respectively. The definitions of the abbreviations are listed in Supplementary Material.

TABLE 1 Relative contribution of APAP metabolic pathways in healthy adults.

APAP
administration
(V_APAPext) (mM/h)

Extracellular
glucose
(Glcext) (mM)

Position vUGT
(Glucuronidation)
(%)

vSulf (Sulfation)
(%)

vCYP450 (Oxidation)

GSHT (%) Protein adduct
production (%)

0.5 4 Periportal 53.8 32.5 13.4 0.2

0.5 4 Pericentral 73.7 7.5 18.4 0.4

0.5 11 Periportal 36.8 44.4 18.5 0.3

0.5 11 Pericentral 72.8 7.8 19.0 0.4

6.0 4 Periportal 47.1 35.2 17.3 0.3

6.0 4 Pericentral 70.4 8.2 17.6 3.7

6.0 11 Periportal 21.5 50.5 27.4 0.6

6.0 11 Pericentral 66.3 9.3 17.8 6.5
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TABLE 2 Relative contribution of APAP metabolic pathways in obese patients.

APAP
administration
(V_APAPext) (mM/h)

Extracellular
glucose
(Glcext) (mM)

Position vUGT
(Glucuronidation)
(%)

vSulf (Sulfation)
(%)

vCYP450 (Oxidation)

GSHT (%) Protein adduct
production (%)

0.5 4 Periportal 0 70.1 29.4 0.5

0.5 4 Pericentral 73.7 7.5 18.4 0.4

0.5 11 Periportal 36.9 44.3 18.4 0.3

0.5 11 Pericentral 72.8 7.8 19.0 0.4

6.0 4 Periportal 0 62.5 36.7 0.9

6.0 4 Pericentral 70.3 8.3 17.7 3.8

6.0 11 Periportal 21.6 50.5 27.4 0.6

6.0 11 Pericentral 66.4 9.3 17.8 6.5

FIGURE 6
Visual representation of the results in Tables 1, 2, and 3. Acetaminophen (APAP) was administered for the initial 30 min at 0.5 mM/h (moderate
dose) or 6.0 mM/h (overdose) under either 4 mM (fasting) or 11 mM (feeding) of blood glucose. The reaction rates of APAPmetabolic pathways were
integrated up to 5 h, and the results are shown as relative contributions to APAP metabolism in pie charts. In each chart, the outer and inner circles
represent the results in the periportal and pericentral regions, respectively. The activities of phosphoenolpyruvate carboxykinase (PEPCK) and
glucose-6-phosphate phosphatase (G6P) increased in obese adults compared with healthy adults. Furthermore, the glycogen synthase activity
increased, and PEPCK and glycogen phosphorylase activities decreased in healthy infants compared with healthy adults. The modified enzymatic
activities are highlighted in green on the network maps. Dashed squares (red to red and blue to blue) highlight the prominent differences in relative
contributions of APAP metabolic pathways among three model cases.
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the state of feeding (Figure 6). For example, adults mainly used

glucuronidation (66.3%) for APAP metabolism in the pericentral

region with excessive APAP administration (Table 1). In

contrast, glucuronidation decreased to 55.6% of the APAP

metabolism in infants, while both sulfation and oxidation

increased as compensation. This resulted in a drastic increase

in protein adducts from 6.5% to 14.2%. These results showed that

infants were susceptible to APAP-induced hepatotoxicity more

than adults because of the reduced glucuronidation activity and

increased oxidation.

Discussion

In this study, we integrated multiple metabolic pathways

including drug and glucose metabolism into a single numerical

liver zonation model and validated it with the results and

observations of previous reports in a semi-quantitative

manner. Then, we investigated the possible crosstalk between

those pathways. The model showed the effects of glucose

metabolism on drug metabolism in different contexts, which

indicated the importance of integrating multiple metabolic

pathways.

The glucose metabolism model consisting of glycolysis,

gluconeogenesis, and glycogen metabolism was determined by

adopting and modifying previous rate equations (Bulik et al.,

2016; Berndt et al., 2018; Berndt and Holzhütter, 2018). APAP

metabolism was determined by modifying a previous model

(Means and Ho, 2019). Our model also contained Cys

metabolism. The combined model was validated by initially

testing it without APAP administration at different blood

glucose levels representing fasting and feeding states. Overall,

the glucose metabolism metabolite concentrations and reaction

rates in our model were consistent with existing observations of

liver zonation (Figures 2–4) (Halpern et al., 2017; Halpern et al.,

2018; Ben-Moshe et al., 2019). Drug metabolism in the

constructed model was validated by monitoring metabolite

concentrations and reaction rates of APAP metabolic

pathways under moderate- and excessive APAP

administration in fasting and feeding states (Figure 5).

Besides, the relative contribution of each APAP metabolic

reaction was investigated (Table 1). High reaction rates and

contributions of glucuronidation and oxidation were observed

in the pericentral region, while sulfation was promoted in the

periportal region. Zonal characteristics and the contribution

ranges of each metabolic reaction were similar to a previous

study (Mcgill and Jaeschke, 2013). Besides, a prominent increase

of protein adducts leading to hepatotoxicity was observed in the

pericentral region due to GSH depletion. Altogether, our model

reproduced the main contribution of APAP metabolic reactions

and localized toxicity observed in the liver (Yoon et al., 2016; Ahn

et al., 2019; Means and Ho, 2019).

The model showed that drug metabolism was affected by

nutritional status (Table 1). The nutritional status changed the

concentrations of UDP-glucose and UDP-GA and the GS

reaction rate (Figures 2, 3). The low concentration of UDP-

GA in the feeding state seemed to slow down glucuronidation.

Decreased glucuronidation in the feeding state under moderate

APAP administration was compensated by sulfation and

oxidation followed by GSH conjugation and did not lead to

increased protein adducts. Sulfation and GSH conjugation were

promoted during excessive APAP administration; however,

protein adducts increased in the feeding state, especially in the

pericentral region. In general, drug administration during the

feeding state is considered safer than that during the fasting state,

mostly because the rate of drug administration through the

digestive system decreases during feeding. However, our

model suggested that the feeding state could have adverse

effects by altering liver metabolism and result in higher

hepatotoxicity, provided that other things are equal. This

result may be slightly controversial; however, it at least

suggests the necessity of careful interpretation of in vivo

TABLE 3 Relative contribution of APAP metabolic pathways in healthy infants.

APAP
administration
(V_APAPext) (mM/h)

Extracellular
glucose
(Glcext) (mM)

Position vUGT
(Glucuronidation)
(%)

vSulf
(Sulfation)
(%)

vCYP450 (Oxidation)

GSHT (%) Protein adduct
production (%)

0.5 4 Periportal 50.8 34.7 14.3 0.2

0.5 4 Pericentral 73.0 7.7 18.8 0.4

0.5 11 Periportal 18.8 57.0 23.8 0.4

0.5 11 Pericentral 70.9 8.3 20.3 0.5

6.0 4 Periportal 40.2 39.5 19.9 0.4

6.0 4 Pericentral 67.0 9.2 17.8 6.1

6.0 11 Periportal 8.7 57.7 32.8 0.7

6.0 11 Pericentral 55.6 12.2 18.1 14.2
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observation and demonstrates the advantage of simultaneously

considering multiple metabolic pathways.

Our integrationmodel was also useful for proposing hypothetical

insights into themechanisms ofmetabolic features involving glucose-

and drug metabolism. Increased activities of PEPCK and G6P in

glucose metabolism are reported in obese patients (Ropelle et al.,

2009; Wang et al., 2011). Meanwhile, CYP2E1-mediated oxidation

and sulfation in drug metabolism are higher than that of non-obese

individuals (Brill et al., 2012; Van Rongen et al., 2016).We found that

the contributions of CYP2E1-mediated oxidation and sulfation

became higher in obese patients than that in healthy adults

following increasing PEPCK- and G6P activities to reproduce

glucose metabolism (Tables 1 and 2; Figure 6). This suggested

that the increased activities of PEPCK and G6P could at least

partly account for increased CYP2E1-mediated oxidation and

sulfation in obese patients. However, there was a discrepancy in

the contribution of glucuronidation between ourmodel and reported

observations (Brill et al., 2012; Van Rongen et al., 2016). Therefore,

the model could be improved by considering activity changes in drug

metabolism in obese patients, and the amount of glycogen stored in

the liver may need to be adjusted for obese patients. On the contrary,

these results suggest the difficulty of mechanism-based

interpretations of in vivo observations and the complementarity of

in vivo and in silico approaches. We also investigated the case of

healthy infants in our model by adjusting some of the glucose

metabolism enzymatic activities to reproduce healthy infant

characteristics according to previous reports (Mitanchez, 2007).

The adjustments affected drug metabolism, which successfully

recapitulated the difference in relative contributions of

glucuronidation and sulfation between adults and infants (Jiang

et al., 2013). Although enzymatic activities in drug metabolism

can have a larger impact on drug metabolism, our model

suggested that the crosstalk between glucose and drug metabolism

should not be neglected for the precise assessment of drug kinetics.

The study has some limitations. The model successfully

reproduced periportal and pericentral characteristics of metabolic

zonation regarding many metabolites and reaction rates in APAP

and glucose metabolisms. Nonetheless, such validations were

performed by comparing the present results with the results and

observations of previous studies in a semi-quantitative manner, and

we performed these validations using a limited number of conditions

regarding glucose and APAP blood concentrations. The model

contains only 13 zonation-dependent kinetic parameters

(Supplementary Material), and metabolic zonation was simulated

by manually changing enzyme activities depending on the zone that

the cell belongs to, either the periportal or pericentral region.

Conversely, the actual zonation is gradual and continuous along

the sinusoidal axis without any histological borders and involves

crosstalks of various metabolisms (Panday et al., 2022). This model

also lacked the dynamic interaction of hepatocytes between the

periportal and the pericentral regions through sinusoidal blood

flow (Berndt and Holzhütter, 2018; Kennedy et al., 2019) and

omitted the regulatory effects of oxygen and growth factors that

are critical for maintaining metabolic zonation (Schmierer et al.,

2010; Kietzmann, 2017; Scheidecker et al., 2020). Furthermore, there

was a discrepancy between our model and the reported in vivo

observations in drug metabolism in obese patients. To overcome

these limitations, the modification of boundary conditions and

parameters in drug metabolism based on actual measurements

may lead to better prediction. The contribution of fatty acid

metabolism is another challenge, especially for the better

reproduction of energy metabolism in obese patients (Aubert

et al., 2011; Berndt et al., 2021). To understand the regulatory

mechanisms, the effects of hypoxia-inducible factor and

coenzymes such as ATP may need to be considered as dependent

variables of blood oxygen levels (Ainscow and Brand, 1999; Maher

et al., 2007; Rankin et al., 2009). Considering future perspectives, the

model may contribute to drug development and personalized

medicine. The incorporation of multiscale regulatory networks

ranging from gene expression to metabolisms will facilitate the

complementary use of such models in in vivo and in vitro

experiments, contributing to a better understanding and

prediction of complex biological systems (Brunak et al., 2020;

Waltemath et al., 2020).

To conclude, we integrated multiple metabolic zonation

models into a single numerical human liver model and

validated it with the results and observations of previous

reports in a semi-quantitative manner. This model showed

that changes in the enzyme activities of glucose metabolism

affected APAP metabolism, and the crosstalk effects were

dependent on liver zonation and nutritional status. These

results showed the importance of incorporating multiple

metabolic networks in a single zonation model.
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