
Modeling the Case of Early Detection
of Ebola Virus Disease

Diego Chowell, Muntaser Safan and Carlos Castillo-Chavez

Abstract The most recent Ebola outbreak in West Africa highlighted critical weak-
nesses in the medical infrastructure of the affected countries, including effective
diagnostics tools, sufficient isolation wards, and enough medical personnel. Here,
we develop and analyze a mathematical model to assess the impact of early diagnosis
of pre-symptomatic individuals on the transmission dynamics of Ebola virus disease
in West Africa. Our findings highlight the importance of implementing integrated
control measures of early diagnosis and isolation. The mathematical analysis shows
a threshold where early diagnosis of pre-symptomatic individuals, combined with a
sufficient level of effective isolation, can lead to an epidemic control of Ebola virus
disease.
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1 Introduction

The Ebola viral strains are re-emerging zoonotic pathogens and members of the
Filoviridae family consisting of five distinct species: Bundibugyo, Cotes d’Ivoire,
Reston, Sudan, and Zaire with a high case-fatality rate in humans [1]. Filoviruses
are long filamentous enveloped, non-segmented, single-stranded viruses, consisting
of a negative-sense RNA genome [2]. Each Ebola species genome encodes seven
linearly arranged genes: nucleoprotein (NP), polymerase cofactor (VP35), matrix
protein (VP40), glycoprotein (GP), replication-transcription protein (VP30), matrix
protein (VP24), and RNA-dependent RNA prolymerase (L) [2]. While there are
no proven effective vaccines or effective antiviral drugs for Ebola, containing an
outbreak relies on contact tracing and on early detection of infected individuals
for isolation and care in treatment centers [2]. The most recent Ebola outbreak in
West Africa, which began in December 2013, due to the Zaire strain, demonstrated
several weaknesses in the medical infrastructure of the affected countries, including
the urgent need of effective diagnostics, which have a fundamental role in both
disease control and case management.

The Ebola virus is transmitted as a result of direct contact with bodily fluids
containing the virus [3]. The virus enters via small skin lesions andmucusmembranes
where it is able to infect macrophages and other phagocytic innate immune cells
leading to the production of a large number of viral particles [2]. The macrophages,
monocytes, and dendritic cells infected in the early stage of the disease serve to spread
the virus throughout the organs, particularly in the spleen, liver, and lymph nodes
[2]. Consequently, critically ill patients display intensive viremia [4]. Recognizing
signs of Ebola viral disease is challenging because it causes common non-specific
symptoms such as fever, weakness, diarrhea, and vomiting, and the incubation period
typically lasts 5–7 days [3]. Therefore, functioning laboratories and effective point-
of-care diagnostic tests are critically needed in order to minimize transmission, allow
better allocation of scarce healthcare resources, and increase the likelihood of success
of antiviral treatments as they are developed [5].

There is an ongoing effort in place to improve Ebola diagnostics, primarily to
detect the disease early. Currently, the cost and difficulty of testing limit diagnostic
facilities to small mobile laboratories or centralized facilities with turnaround times
measured in days rather than in a few hours, meaning that diagnosis is largely used to
confirm disease. Ebola diagnosis can be achieved in two different ways: measuring
the host-specific immune response to infection (e.g. IgM and IgG antibodies) and
detection of viral particles (e.g. ReEBOV Antigen Rapid Test Kit for VP40), or
particle components in infected individuals (e.g. RT-PCR or PCR). The most general
assay used for IgM and IgG antibody detection are direct ELISA assays. Considering
the physiological kinetics of the humoral immune system aswell as impaired antigen-
presenting cell function as a result of viral hemorrhagic fever, antibody titers are low
in the early stages and often undetectable in severe patients prior to death [6]. This
leaves polymerase chain reaction (PCR) for antigen detection as a viable option for
early diagnostic assays. PCR is a chemical reaction that amplifies pieces of a virus’s
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genes floating in the blood by more than a millionfold, which makes detection of
pre-symptomatic individuals likely identifiable. Indeed, a research article published
in 2000, illustrates the power of this technology to detect Ebola virus in humans in
the pre-symptomatic stage [7]. In this study, 24 asymptomatic individuals who had
been exposed to symptomatic Ebola patients were tested using PCR. Eleven of the
exposed patients eventually developed the infection. Seven of the 11 tested positive
for the PCR assay. And none of the other 13 did.

In this chapter, we extend the work presented in [8]. Here, we have developed
and analyzed a mathematical model to evaluate the impact of early diagnosis of
pre-symptomatic individuals on the transmission dynamics of Ebola virus disease in
West Africa, under the assumption that the disease is maintained possibly at very low
levels due to the deficiencies in health systems and our incomplete understanding of
Ebola infection as illustrated by the case of Pauline Cafferkey. Therefore, eliminating
Ebola may require a more sustained and long-term control effort.

Table 1 Definition of model
states

Variable Description

S(t) Number of susceptible individuals at time t

E1(t) Number of latent undetectable individuals at
time t

E2(t) Number of latent detectable individuals at time t

I(t) Number of infectious individuals at time t

J(t) Number of isolated individuals at time t

R(t) Number of recovered individuals at time t

Fig. 1 Compartmental model showing the transition between model states
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Table 2 Definition of model parameters

Parameter Value Unit Description

Λ 17182 population
day Recruitment rate

β 0.3335 day−1 Mean transmission rate

μ 4.98 ×
10−5

day−1 Natural death rate

κ1 1/4 day−1 Transition rate from undetectable to detectable latent
state

κ2 1/3 day−1 Exit rate of latent detectable individuals by either
becoming infectious or moving to isolation state

γ 1/6 day−1 Removal rate of infectious individuals by either
recovery or Ebola-induced death

γr 1/7 day−1 Removal rate of isolated individuals by either recovery
or Ebola-induced death

α 1/5 day−1 Rate at which infectious individuals get isolated

fT 0.25 ∈
[0, 1]

– Fraction of latent detectable individuals who are
diagnosed and get isolated

q1 0.7 – Probability that an infectious individual dies due to
Ebola

q2 0.63 – Probability that an isolated individual dies due to Ebola

r 0.35 ∈
[0, 1]

– Effectiveness of isolation

� 0.5 ∈
[0, 1]

– Relative transmissibility of isolated individuals with
respect to infectious individuals

2 Model Formulation

The total population is assumed to be classified into six mutually independent sub-
groups: susceptible S(t), non-detectable latent E1(t), detectable latent E2(t), infec-
tious I(t), isolated J(t), and recovered R(t) individuals. Table1 shows the state vari-
ables and their physical meaning. The transition between all these states is shown in
Fig. 1. And model parameters and their description are presented in Table2. Parame-
ter values have been obtained from previous studies [9, 10].

It is assumed that individuals are recruited (either through birth or migration) into
the susceptible class at a rate Λ and die naturally with rate μ. Susceptible individ-
uals get infected due to successful contacts with infectious or not perfectly isolated
infected individuals at rate λ. As a consequence, they become latent undetectable,
who develop their state of infection to become latent detectable at rate κ1.We assume
that the latent detectable class represent individuals whose viral load is above the
detection limit of the PCR-based diagnostic test [7, 11]. Latent detectable individ-
uals either are diagnosed and get isolated with probability fT or develop symptoms
to become infectious, who sequentially either get isolated at rate α, or are removed
from the system by recovery or Ebola-induced death at rate γ . It is assumed here
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that Ebola-induced deaths occur for the infectious individuals with probability q1.
Similarly, isolated individuals leave their class at rate γr , by either dying due to Ebola
with probability q2, or they get recovered and become immune. It is assumed that
isolation is partially effective so that successful contacts with susceptible individuals
may lead to infection with probability r; this parameter is a measure of isolation
effectiveness of infectious individuals. Thus, the force of infection is given by

λ(t) = β[I(t) + (1 − r)�J(t)]
N(t) − rJ(t)

. (1)

The assumptions mentioned above lead to the following model of equations

dS

dt
= Λ − λS − μS,

dE1

dt
= λS − (κ1 + μ)E1,

dE2

dt
= κ1E1 − (κ2 + μ)E2,

dI

dt
= (1 − fT )κ2E2 − (α + γ + μ)I, (2)

dJ

dt
= fTκ2E2 + αI − (γr + μ)J,

dR

dt
= (1 − q1)γ I + (1 − q2)γrJ − μR

where
N(t) = S(t) + E1(t) + E2(t) + I(t) + J(t) + R(t)

is the total population size at time t. On adding all equations of system (2) together,
we get

dN

dt
= Λ − μN − q1γ I − q2γrJ. (3)

3 Model Analysis

3.1 Basic Properties

Since model (2) imitates the dynamics of human populations, all variables and para-
meters should be non-negative. Thus, following the approach shown in appendix A
of [12], we show the following result.

Theorem 1 The variables of model (2) are non-negative for all time.

Lemma 1 The closed set
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Ω = {
(S,E1,E2, I, J,R) ∈ R

6+ : Λ

μ + q1γ + q2γr
≤ S + E1 + E2 + I + J + R ≤ Λ

μ

}

is positively invariant for model (2) and is absorbing.

Proof: Equation (3) implies that

dN

dt
≤ Λ − μN, (4)

dN

dt
≥ Λ − (μ + q1γ + q2γr)N . (5)

It follows from (4) that

N(t) ≤ Λ

μ
+

(
N(0) − Λ

μ

)
e−μt (6)

and from (5) that

N(t) ≥ Λ

μ + q1γ + q2γr
+

(
N(0) − Λ

μ + q1γ + q2γr

)
e−(μ+q1γ+q2γr)t . (7)

If we assume N(0) > Λ/μ, then dN/dt < 0 and therefore (based on inequality (6)),
N(t)decreases steadily until reachingΛ/μwhen t tends to∞. Similarly, ifwe assume
N(0) < Λ/(μ + q1γ + q2γr), then dN/dt > 0 and therefore (based on inequality
(7)),N(t) increases steadily until reaching amaximum atΛ/(μ + q1γ + q2γr)when
t tends to ∞. It remains to check the case if N(0) lies in the phase between Λ/(μ +
q1γ + q2γr) andΛ/μ. To this end, both inequalities (6) and (7) are combined together
to get

Λ

μ + q1γ + q2γr
+

(
N(0) − Λ

μ + q1γ + q2γr

)
e−(μ+q1γ+q2γr)t

≤ N(t) ≤ Λ

μ
+

(
N(0) − Λ

μ

)
e−μt .

On taking the limit when t tends to ∞, we find that N(t) remains within the same
phase. Thus, the set Ω is positively invariant and absorbing.

3.2 Equilibrium Analysis

3.2.1 Ebola-Free Equilibrium and the Control Reproduction
Number Rc

It is easy to check that model (2) has the Ebola-free equilibrium
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E0 =
(

Λ

μ
, 0, 0, 0, 0, 0

)′
(8)

where the prime “ ′ ” means vector transpose.
The basic reproduction number, R0, is a measure of the average number of sec-

ondary cases produced by a typical infectious individual during the entire course of
infection in a completely susceptible population and in the absence of control inter-
ventions [13, 14]. On the other hand, the control reproduction number,Rc, quantifies
the potential for infectious disease transmission in the context of a partially suscepti-
ble population due to the implementation of control interventions.WhenRc > 1, the
infection may spread in the population, and the rate of spread is higher with increas-
ingly high values of Rc. If Rc < 1, infection cannot be sustained and is unable to
generate an epidemic. For our model, Rc is computed using the next generation
matrix approach shown in [15]. Accordingly, we compute the matrices F (for the
new infection terms) and V (for the transition terms) as

F =

⎛

⎜
⎜
⎝

0 0 β (1 − r)�β
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , V =

⎛

⎜
⎜
⎝

κ1 + μ 0 0 0
−κ1 κ2 + μ 0 0
0 −(1 − fT )κ2 α + γ + μ 0
0 −fTκ2 −α γr + μ

⎞

⎟
⎟
⎠ .

Thus, the control reproduction number is given by

Rc = ρ(FV−1) = κ1κ2β[(1 − fT )(μ + γr) + (1 − r)�(α + fT (γ + μ))]
(κ1 + μ)(κ2 + μ)(α + γ + μ)(γr + μ)

= κ1κ2β

(κ1 + μ)(κ2 + μ)(α + γ + μ)

[
1 − fT + (1 − r)�

(
α

γr + μ
+ fT

γ + μ

γr + μ

)]

= R0

[
1 − α

(α + γ + μ)

] [
1 − fT + (1 − r)�

(
α

γr + μ
+ fT

γ + μ

γr + μ

)]
(9)

where ρ is the spectral radius (dominant eigenvalue in magnitude) of the matrix
FV−1 and

R0 = κ1κ2β

(κ1 + μ)(κ2 + μ)(γ + μ)
(10)

is the basic reproduction number for the model.
The local stability of the Ebola-free equilibrium, E0, for values of Rc < 1 is

established based on a direct use of Theorem 2 in [15]. We summarize our result in
the following lemma.

Lemma 2 The Ebola-free equilibrium E0 of model (2) is locally asymptotically
stable if and only if Rc < 1.
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3.2.2 Ebola-Endemic Equilibrium

On putting the derivatives in the left hand side of (2) equal zero and solving the
resulting algebraic system with respect to the variables S̄, Ē1, Ē2, Ī, J̄ , and R̄, we
obtain

S̄ = Λ

λ̄ + μ
,

Ē1 = Λ

λ̄ + μ
· λ̄

κ1 + μ
,

Ē2 = κ1

κ2 + μ
· Λ

λ̄ + μ
· λ̄

κ1 + μ
,

Ī = (1 − fT )κ2

α + γ + μ
· κ1

κ2 + μ
· Λ

λ̄ + μ
· λ̄

κ1 + μ
, (11)

J̄ = κ1

κ2 + μ
· Λ

λ̄ + μ
· λ̄

κ1 + μ
· κ2

γr + μ

[
fT + (1 − fT )

α

α + γ + μ

]
,

R̄ = 1

μ
[(1 − q1)γ I + (1 − q2)γrJ]

where

λ̄ = β(I + (1 − r)�J̄)

N̄ − rJ̄
(12)

is the equilibrium force of infection. On substituting from (11) into (12) and simpli-
fying (with the assumption that λ �= 0), we get

λ̄ = μ(Rc − 1)

1 − Term
(13)

where

Term = κ1κ2[q1(1 − fT )γ (γr + μ) + (rμ + q2γr)(fT (γ + μ) + α)]
(κ1 + μ)(κ2 + μ)(α + γ + μ)(γr + μ)

.

Hence, the Ebola-endemic equilibrium is unique and we show the following lemma.

Lemma 3 Model (2) has a unique endemic equilibrium that exists if and only if
Rc > 1.
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3.3 Normalized Sensitivity Analysis onRc

In considering the dynamics of the Ebola system (2), we conduct normalized sensi-
tivity analysis onRc to determine the impact of parameter perturbations on the trans-
mission dynamics of the system. By computing the normalized sensitivity indices,
we consider the percent change in the output with respect to a percent change in
the parameter input. Those parameters with the largest magnitude of change impact
the compartment model the most; the sign indicates whether the change produces an
increase or a decrease onRc.

The normalized sensitivity indices for Rc are calculated by taking the partial
derivative ofRc with respect to each parameter and multiply the derivative with the
ratio of the parameter to Rc. This value represents the percent change in Rc with
respect to a 1% change in the parameter value [16].

We use the parameters values from Table2 to study the sensitivity of Rc to each
parameter. We compute normalized sensitivity analysis on all parameters, but we
just consider the impact of parameters that are the most sensitive: β, r, �, γr, γ, α,
and fT . The other parameters (μ, κ1, and κ2) have a very low impact, namely less
than 0.001%. The numerical simulations to the sensitivity of Rc with respect to
each of the most sensitive parameters are given in Table3, for two different levels
of isolation effectiveness (r = 0.35 and r = 0.95) and two values of fT (fT = 0.25
and fT = 0.75), which is the fraction of pre-symptomatic individuals diagnosed and
isolated. The other parameter values are kept as shown in Table2.

In the case of high isolation effectiveness (r = 0.95), simulations show that both
the removal rate, γr , of isolated individuals and the relative transmissibility para-
meter � of isolated individuals with respect to infectious individuals are the least
sensitive parameters (with 0.053% change of Rc), while the parameter of isolation
effectiveness, r, is the most sensitive one, where a 1% increase in r causes a 1.014%

Table 3 Percent change inRc with respect to a 1% change in the parameter value, for a low and a
high isolation effectiveness r, and a low and a high value of fT , while keeping the other parameter
values as presented in Table2

Parameter β r � γr γ α fT

fT =
0.25

% change
for
r = 0.35

1% −0.23% 0.423% −0.423% −0.382% −0.195% −0.119%

% change 1% for
r = 0.95

−1.014% 0.053% −0.053% −0.445% −0.501% −0.306%

fT =
0.75

% change
for
r = 0.35

1% −0.402% 0.747% −0.747% −0.167% −0.086% −0.471%

% change
for
r = 0.95

1% −3.521% 0.185% −0.185% −0.383% −0.431% −2.373%
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reduction in the value ofRc. Also, the rate atwhich infectious individuals get isolated,
α, and the fraction of pre-symptomatic individuals detected and isolated, fT , impact
negatively on the level ofRc, where a 1% percent increase in the value of fT causes
approximately a 0.31% decline in the value of the reproduction number Rc. Thus,
as pre-symptomatic individuals are diagnosed and as isolation is highly effective,
the number of available infectious individuals who are capable of transmitting Ebola
decreases and therefore, the reproduction number decreases. Also, the removal (by
recovery or Ebola-induced death) rate γ of infectious individuals affects negatively
on Rc. Hence, for the case of highly effective isolation, the parameters concerning
early diagnosis and isolation have a significant impact on the reproduction number.

This percent impact of the parameters on Rc remains so as long as isolation
is highly effective. However, if the effectiveness of isolation is low, in the sense
that all parameter values are kept the same except the value of the parameter r,
which is reduced to 0.35, then we get the results presented in Table3. In this case,
both the relative transmissibility � and the removal rate of isolated individuals, γr ,
are the second most sensitive parameters, after β which is the most impactful one.
Also, � became more sensitive than r. The implication is that, when isolation is less
effective, there exists the possibility for isolated people to make successful contacts
with susceptible individuals and therefore the possibility of causing new infections
increases. This causes an increase in the reproduction number. Also, it is noted that
the effect of fT and α is reduced, which means that diagnosing and isolating infected
individuals becomes a weak strategy if the effectiveness of isolation is low.

On repeating the previous analyses, but this time for a higher value of fT (fT =
0.75), we obtain the results shown in Table 3. In comparison to the scenario when
fT = 0.25, the simulations show that increasing the fraction of pre-symptomatic
individuals who are diagnosed and isolated, fT , increases the percent impact of the
parameters r, �, γr, and fT , and decreases the percent impact of the parameters γ and
α, on the value of the control reproduction number Rc.

3.4 Impact of Early Detection and Isolation on the Value
ofRc

To study the impact of early detection of pre-symptomatic individuals and isolation
on the reproduction number, we first depictRc as a function of fT , for different levels
of isolation effectiveness r. Figure2 shows that the control reproduction number
declines as the proportion, fT , of pre-symptomatic individuals, who get diagnosed
and isolated, increases. Simulations are done using parameter values from Table2,
but for three different values of r. It further shows that the curve corresponding to a
low and an intermidate value of isolation effectivenes r (e.g. r = 0.35 for the solid
curve and r = 0.65 for the dashed curve) hits Rc = 1 at some critical value of fT
(say f �

T ), while for the high value of r (r = 0.95), it never hits the critical threshold
Rc = 1, as the curve is totally below the critical threshold. This indicates that for a
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Fig. 2 Impact of early detection of pre-symptomatic individuals on the value of Rc

high effectiveness of isolation, the control reproduction number is less than one and
therefore the infection dies out. Analytically, the exact form of f �

T is

f �
T =

[
1 + (1 − r)�

α

γr + μ
− 1

R0

(
1 + α

γ + μ

)]
/

[
1 − (1 − r)�(γ + μ)

γr + μ

]
.

(14)

The critical proportion f �
T represents the minimum proportion of pre-symptomatic

individuals who are detected and get isolated to ensure an effective control of Ebola.
This critical value remains feasible as long as the following inequality holds

(1 − r)� <
γr + μ

(γ + μ)R0
. (15)

If we keep all parameters fixed except r, then condition (15) could be rewritten in a
more convenient form

r > 1 − γr + μ

�(γ + μ)R0
. (16)

This gives the minimum level of effectiveness of isolation required to obtain an
isolation and early diagnosis-based control strategy for Ebola tranmission.

Now, we could also ask a similar question on the role of isolating infectious
individuals to contain Ebola transmission. Figure3 shows the impact of changing
the rate at which infectious individuals get isolated, α, on Rc, for the same three
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Fig. 3 Impact of isolating infectious individuals on the value of Rc

different levels of isolation effectivenes, as used above. The analysis shows that it is
possible to control the epidemic if and only if α > α�, where

α� = [(1 − fT )(γr + μ)(γ + μ) + (1 − r)�fT (γ + μ)2]R0 − (γr + μ)(γ + μ)

(γr + μ) − �(1 − r)R0(γ + μ)

(17)

and with the implementation of condition (15).

4 Discussion and Conclusion

The Ebola epidemic has shown us major weaknesses not only in health systems in
West Africa, but also in our global capacity to respond early to an outbreak with
effective diagnostic capacities. After multiple outbreaks of infectious diseases, from
severe acute respiratory syndrome (SARS) to Middle East respiratory syndrome
coronavirus (MERS-CoV), we still do not have effective diagnostic tools to rapidly
respond to a number of potential epidemics. The main reason why we lack of such
diagnostic preparedness against infectious diseases is becauseof the lackof afinanced
global strategy that can be implemented ahead, rather than during an epidemic. This
strategy must primarily focus on two critical aspects: First, a continuous interaction
between the field to detect small outbreaks and collect samples, and reference labo-
ratories with advanced sequencing tools to identify the pathogen. Second, the need
of assay development for early diagnosis, their regulatory approval, and a plan of
implementation in anticipation of an outbreak.
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Here, motivated by some studies showing that PCR assay can detect Ebola virus
in both humans and non-human primates during the pre-symptomatic stage [7, 11],
we have developed and analyzed a mathematical model calibrated to the transmis-
sion dynamics of Ebola virus disease in West Africa to evaluate the impact of early
diagnosis of pre-symptomatic infections. In the absence of effective treatments and
vaccines, our results show the importance of implementing integrated control mea-
sures of early diagnosis and isolation. Importantly, our analysis identifies a threshold
where early diagnosis of pre-symptomatic individuals, combined with a sufficient
level of effective isolation, can lead to an epidemic control of Ebola virus disease.
Furthermore, the need to incorporate vital dynamics is justified by our still limited
understanding of Ebola infection including whether or not Ebola virus may persist
among recovered individuals. The use of Rc in this context reflect our view that
control measures should be sustainable and not just in response to an outbreak.
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