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In a nutshell 

ABSTRACT  Mitochondria are fundamental for eukaryotic cells as they partici-

pate in critical catabolic and anabolic pathways. Moreover, mitochondria play 

a key role in the signal transduction cascades that precipitate many (but not 

all) regulated variants of cellular demise. In this short review, we discuss the 

differential implication of mitochondria in the major forms of regulated cell 

death. 

 

 

Mitochondrial regulation of cell death: a phylogenetically 

conserved control  
 

Lorenzo Galluzzi
1,2,3,4,5,*

, Oliver Kepp
1,2,3,4,6 

and Guido Kroemer
1,2,3,4,6,7,8,*

 
1 

Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France.  
2 

INSERM, U1138, 75006 Paris, France.  
3 

Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France.  
4 

Université Pierre et Marie Curie/Paris VI, 75006 Paris.  
5 

Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France.  
6 

Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France.  
7 

Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.  
8 

Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; 75015 Paris, France. 

* Corresponding Authors: 

Lorenzo Galluzzi, E-mail: deadoc@vodafone.it; 

Guido Kroemer, E-mail: kroemer@orange.fr 

 

 

 

 

 

INTRODUCTION 

Both prokaryotic and eukaryotic cells succumb to very 

harsh microenvironmental conditions in a virtually instan-

taneous and uncontrollable manner. Such form of cellular 

demise, which has been dubbed “accidental cell death” 

(ACD), reflects the mechanical disassembly of cellular con-

stituents exposed to excessive temperatures, shear forces 

and/or pressures, and does not involve any molecular ma-

chinery [1]. In addition, both prokaryotes and eukaryotes 

have evolved systems that precipitate the death of cells 

experiencing moderate but unresolvable perturbations of 

intracellular or extracellular homeostasis [2, 3]. This latter 

form of cellular demise, which has been called “regulated 

cell death” (RCD), relies on the activation of a genetically-

encoded machinery, and hence can be modulated by 

means of pharmacological or genetic interventions [1].  

Generally, RCD is activated once adaptive response to 

stress fail at the cellular level, hence constituting a mecha-

nism for the preservation of organismal homeostasis [4-7]. 

Defects in the signal transduction cascades that control 

RCD in eukaryotes have been associated with clinically 

relevant conditions including acute brain injury, neuro-

degeneration, cardiac stroke, hepatic damage, and viral 

infection (all of which are associated with the excessive 

demise of post-mitotic cells), as well as autoimmune disor-

ders and neoplastic conditions (which are linked to defec-

tive RCD) [8-10].  

Of note, one specific variant of RCD that is known as 

“programmed cell death” (PCD) is initiated at a predeter-

mined point of a cell’s life, as a part of (post-)embryonic 

development or the maintenance of tissue homeostasis in 

the adult [1, 11]. PCD relies on the same molecular ma-

chinery underlying stress-initiated forms of RCD, implying 

that it can also be retarded or accelerated with specific 

chemicals or genetic maneuvers [1, 11].  
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The signal transduction cascades controlling RCD have 

expanded considerably throughout evolution, especially (1) 

once eukaryotic life has been established (i.e., when orga-

nelles including mitochondria became available), and (2) 

along with the transition from a purely unicellular state to 

multicellularity (through colonial life) [12-14]. Nowadays at 

least five mechanistically distinct variants of RCD have 

been described in mammals [1, 15]: (1) intrinsic apoptosis 

[16-18], (2) extrinsic apoptosis [18, 19], (3) necroptosis [20-

22], (4) mitochondrial permeability transition (MPT)-driven 

regulated necrosis [22-24], and (5) ferroptosis [25, 26]. 

Moreover, other forms or RCD including parthanatos, au-

tosis and pyroptosis are being characterized with increased 

precision [27-31]. In this short review, we discuss the dif-

ferential role of mitochondria (which are quintessential for 

eukaryotic life as they mediate critical bioenergetic and 

anabolic functions) [32] in the main forms of RCD. 

 

MITOCHONDRIA AND INTRINSIC APOPTOSIS 

Intrinsic apoptosis is a form of RCD initiated by perturba-

tions of intracellular homeostasis that relies on the catalyt-

ic activity of the cysteine protease caspase-3 (CASP3) [1, 

15-18]. In this context, the proteolytic activation of CASP3 

is catalyzed by caspase-9 (CASP9), which in turn acquires 

catalytic activity within a supramolecular complex that is 

known as “apoptosome” and also contains deoxyATP, the 

cytosolic adaptor apoptotic peptidase activating factor 1 

(APAF1) and an extramitochondrial pool of cytochrome c, 

somatic (CYCS, best known as CYTC) [33, 34].  

In physiological conditions, CYTC exclusively resides be-

tween the outer and the inner mitochondrial membrane, 

where it is loosely associated with the latter as it operates 

as an electron shuttle of the respiratory chain [35]. Various 

perturbations of intracellular homeostasis, however, cause 

the oligomerization of two members of the Bcl-2 protein 

family, namely BCL2-associated X protein (BAX)- and BCL2-

antagonist/killer 1 (BAK1), in the outer mitochondrial 

membrane, hence altering its permeability to proteins [36]. 

Oligomerized BAX and BAK1 also cause rearrangements of 

the mitochondrial ultrastructure that facilitate the release 

of CYTC into the cytosol and hence the activation of the 

apoptosome [33]. Thus, mitochondrial outer membrane 

permeabilization (MOMP) is a crucial step in the signal 

transduction cascades that fuel intrinsic apoptosis [36].  

In line with this notion, several proteins with prominent 

anti-apoptotic functions, including various other members 

of the Bcl-2 family like B-cell CLL/lymphoma 2 (BCL2) itself, 

BCL2-like 1 (BCL2L1, best known as BCL-XL) and myeloid 

cell leukemia 1 (MCL1), mainly operate by preventing 

MOMP [37].  

There are at least two distinct mechanisms whereby 

BCL2-like proteins mediate such an effect: (1) by physically 

interacting with BAX and BAK1 and hence preventing their 

oligomerization [37]; and (2) by sequestering other mem-

bers of the Bcl-2 protein family that activate BAX and BAK1 

in response to stress, the so-called “BH3-only proteins” 

[38]. Moreover, BCL-XL has been attributed the capacity to 

retrotranslocate active BAX to the cytosol (where it nor-

mally resides in its inactive state) [39].  

Importantly, MOMP drives intrinsic apoptosis not only 

as it initiates the apoptosome-dependent activation of 

CASP3 (which cleaves several substrates that are important 

for cellular survival), but also because it entails the imme-

diate dissipation of the mitochondrial transmembrane po-

tential (Δψm, which is required for ATP synthesis and sev-

eral other mitochondrial functions) [40, 41]. This implies 

that intrinsic apoptosis can occur even in the absence of 

APAF1, CASP9 and CASP3 (or in the presence of chemical 

agents specifically targeting these proteins) [1]. However, 

the inhibition of APAF1, CASP9 or CASP3 generally delays 

intrinsic apoptosis and alters several of its manifestations 

[1]. Indeed, CASP3 is mechanistically responsible for vari-

ous biochemical, morphological and immunological fea-

tures of apoptosis, including the exposure of phosphatidyl-

serine (PS) on the surface of dying cells [42, 43], DNA frag-

mentation (which underlies nuclear condensation) [44, 45], 

and the release of the immunosuppressive factor prosta-

glandin E2 (PGE2) [46]. In spite of the precise kinetics of the 

process, mitochondria play a key role in the signal trans-

duction cascades that precipitate intrinsic apoptosis. 

 

MITOCHONDRIA AND EXTRINSIC APOPTOSIS 

Extrinsic apoptosis is a CASP3-dependent form of RCD initi-

ated by perturbations of the extracellular microenviron-

ment [1, 15, 19, 47]. Extrinsic apoptosis can be elicited by 

two classes of plasma membrane receptors that operate in 

a diametrically opposed fashion: (1) so-called “dependence 

receptors”, which acquire pro-apoptotic activity when the 

concentration of their ligands falls below a specific thresh-

old [47]; and (2) so-called “death receptors”, which trigger 

RCD in the presence of their ligands [19]. The molecular 

mechanisms bridging dependence receptors to the trans-

mission of an RCD-promoting signal have not been eluci-

dated yet, and appear to exhibit a remarkable degree of 

context-dependency [47]. Thus, while unbound patched 1 

(PTCH1) and deleted in colorectal carcinoma (DCC) appear 

to interact with the cytosolic adaptor four and a half LIM 

domains 2 (FHL2, best known as DRAL) to assemble a su-

pramolecular complex that promotes the activation of 

CASP9 [48, 49], other dependence receptors like unc-5 

netrin receptor B (UNC5B) have been shown to respond to 

ligand withdrawal by triggering a death-associated protein 

kinase 1 (DAPK1)-dependent signaling pathway [50].  

The signal transduction cascades activated by death re-

ceptors upon ligand binding, conversely, are well charac-

terized. Normally, FAS trimers (which assemble and disas-

semble spontaneously) get stabilized in the presence of 

FAS ligand (FASLG), favoring the recruitment of a large 

multiprotein complex at the cytosolic tail of the receptor 

[19]. This supramolecular entity, which is known as “death-

inducing signaling complex” (DISC), contains receptor-

interacting protein kinase 1 (RIPK1), FAS-associated protein 

with a death domain (FADD), various isoforms of CASP8 

and FADD like apoptosis regulator (CFLAR, best known as c-

FLIP) as well as several members of the baculoviral IAP 
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repeat containing (BIRC) protein family (which act as E3 

ubiquitin ligases), and operates as an activating platform 

for caspase-8 (CASP8) or caspase-10 (CASP10). CASP8 (as 

well as CASP10) can catalyze the proteolytic activation of 

CASP3, hence precipitating apoptotic RCD [51, 52], while 

the other components of the DISC either (1) play structural 

roles (like FADD does), (2) mediate direct RCD-inhibitory 

functions (like BIRC proteins and c-FLIP do), or (3) connect 

DISC activation to other signal transduction cascades in-

cluding the activation of the pro-inflammatory transcrip-

tion factor NF-κB (like RIPK1 does) [53].  

Importantly, distinct death receptors assemble struc-

turally different DISCs upon activation, implying that the 

signaling pathway initiated by death receptors can exhibit a 

remarkable degree of variation (although they generally 

culminate in CASP8 or CASP10 activation) [53]. In some cell 

types (which are commonly referred to as Type I cells, e.g., 

lymphocytes), the activation of CASP8 by the DISC is per-

fectly sufficient to drive CASP3-dependent apoptotic RCD 

[54]. However, in other cell types (which are commonly 

indicated as Type II cells, e.g., hepatocytes), the optimal 

activation of CASP3 by CASP8 critically relies on MOMP 

[54]. In this setting, MOMP is driven by the CASP8-

catalyzed activation of BH3 interacting domain death ago-

nist (BID), a potent BH3 only protein [55, 56]. Whether cells 

behave in a Type I or Type II manner upon death receptor 

ligation depends on the cytosolic abundance of X-linked 

inhibitor of apoptosis (XIAP), a BIRC family members that 

exerts potent caspase-inhibitory functions [57]. Thus, mi-

tochondria play an active role in some (but not all) instanc-

es of extrinsic apoptosis.  

 

MITOCHONDRIA AND NECROPTOSIS 

Necroptosis is a variant of RCD that obligatorily relies on 

the activation of the RIPK1-like protein receptor-interacting 

protein kinase 3 (RIPK3) and the pseudokinase mixed line-

age kinase domain-like (MLKL), and generally manifests 

with a necrotic morphology [1, 15, 20-22]. Various (but not 

all) instances of necroptosis also impinge on the activation 

of RIPK1 itself, implying that they can be retarded by the 

RIPK1-targeting agent necrostatin-1 (Nec-1). For instance, 

this applies to necroptosis elicited by tumor necrosis factor 

receptor superfamily member 1A (TNFRSF1A) ligation in 

CASP8-deficient conditions [58-60]. Heterotrimeric com-

plexes containing CASP8, FADD and the long isoform of c-

FLIP operate indeed as tonic inhibitors of necroptosis, 

normally preventing the activation of this RCD modality 

upon death receptor ligation [61, 62]. However, when 

RIPK1 ubiquitination by BIRC family members is chemically 

antagonized (with agents commonly known as Smac mi-

metics) and CASP8 is absent or blocked, prolonged 

TNFRSF1A signaling efficiently drive the assembly of a 

RIPK1- and RIPK3-containing complex that phosphorylates 

MLKL, endowing it with the ability to translocate to the 

inner leaflet of the plasma membrane and compromise its 

structural integrity [63-66].  

Initially, mitochondria were thought to participate in 

necroptotic signaling in at least two ways: (1) necroptosis 

was linked to an oxidative burst caused by the RIPK3-

dependent activation of various metabolic enzymes, in-

cluding mitochondrial glutamate dehydrogenase 1 (GLUD1) 

[67], and (2) MLKL was suggested to boost the catalytic 

activity of PGAM family member 5, serine/threonine pro-

tein phosphatase, mitochondrial (PGAM5), resulting in the 

activating dephosphorylation of dynamin 1-like (DNM1L, 

best known as DRP1) and consequent mitochondria frag-

mentation [68, 69]. Subsequent evidence from several 

independent laboratories, however, demonstrated that 

mitochondria are completely dispensable for necroptosis. 

Indeed, necroptotic signaling was found to be normal in 

cells lacking mitochondria upon a widespread mitophagic 

response [70], as well as in cells from Pgam5
-/-

 mice [71]. 

Very recent findings linking MLKL to mitochondrial MCL1 

depletion and consequent MOMP remain to be verified 

[72]. Thus, necroptosis should be considered as a mito-

chondrion-independent form of RCD. 

 

MITOCHONDRIA AND MPT-DRIVEN REGULATED NE-

CROSIS 

The term MPT is commonly employed to indicate an ab-

rupt increase in the permeability of the inner mitochondri-

al membrane to small solutes, resulting in immediate Δψm 

dissipation, massive water intake, and osmotic organelle 

breakdown [1, 15, 22-24]. According to current models, the 

MPT ensues a conformational change in a multiprotein 

complex assembled at the juxtaposition between the inner 

and outer mitochondrial membranes, the so-called “per-

meability transition pore complex”, (PTPC) [17, 24]. The 

precise molecular composition of the PTPC remains matter 

of debate and may exhibit considerable degree of context 

dependency [17, 24]. However, at least one protein has 

been attributed a key, non-redundant role in MPT, i.e., 

peptidylprolyl isomerase F (PPIF, best known as CYPD) [73-

75]. Recent findings suggest that also the c subunit of the 

FO ATPase (which in humans exists in 3 isoforms, ATP5G1-

3) plays a critical function within the PTPC [76], yet compel-

ling genetic evidence in support of this hypothesis is diffi-

cult to obtain. Irrespective of this unknown, MPT results in 

a rapid drop of intracellular ATP availability, driving a form 

of RCD that generally manifests with necrotic morphologi-

cal features [17, 44]. As per definition, MTP-driven regulat-

ed necrosis occurs with a delayed kinetics in cells lacking 

CYPD, as well as in the presence of the chemical CYPD in-

hibitor cyclosporin A (CsA) [1, 15]. Thus, mitochondria play 

a fundamental role in the signal transduction cascades 

underlying MPT-driven regulated necrosis. 

 

MITOCHONDRIA AND FERROPTOSIS 

Ferroptosis is an iron-dependent form RCD generally initi-

ated by the inhibition of plasma membrane system xC- (a 

cystine/glutamate antiporter), resulting in the depletion of 

antioxidant defenses and lethal lipid peroxidation [1, 15, 25, 

26]. Ferroptosis is under the endogenous control of cyto-

solic glutathione peroxidase 4 (GPX4) [77, 78], and can be 

delayed by the small molecule ferrostatin-1 (Fer-1) as well 
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as by other chemical agents that inhibit lipid peroxidation 

[79].  

Of note, Fer-1 and alike fail to inhibit the generation of 

mitochondrial reactive oxygen species (ROS) [79]. Moreo-

ver, ferroptosis proceeds normally in Ppif
-/-

 cells as well as 

in the presence of the MPT inhibitor CsA [80]. Thus, it 

seems that mitochondria and mitochondrial ROS are per-

fectly dispensable for ferroptosis, although this conjecture 

has not yet been addressed experimentally in a direct fash-

ion. 

 

MITOCHONDRIA AND OTHER FORMS OF RCD 

Parthanatos 

Parthanatos is a peculiar form or RCD depending on 

poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein 

involved in DNA repair, and apoptosis inducing factor, mi-

tochondria associated 1 (AIFM1) [1, 15, 81]. PARP1 hyper-

activation by DNA alkylating agents entails a very pro-

nounced depletion in intracellular NAD
+
 stores, resulting in 

a potentially lethal bioenergetic crisis [82]. Moreover, 

poly(ADP-ribose) moieties generated by PARP1 appear to 

bind AIFM1 in the mitochondrial intermembrane space, 

hence favoring its release to the cytosol [83]. Upon binding 

to peptidylprolyl isomerase A (PPIFA, best known as CYPA), 

extramitochondrial AIFM1 acquires the ability to translo-

cate to the nucleus and mediate large-scale DNA fragmen-

tation [83]. Mitochondria are therefore required for par-

thanatos to proceed according to a normal kinetics.  

 

Autosis 

Autosis is a variant of autophagic cell death, i.e., a form of 

RCD that is precipitated by the molecular machinery for 

macroautophagy [1, 15, 27, 28]. In addition, autosis im-

pinges on the plasma membrane Na
+
/K

+ 
ATPase, implying 

that it can be modulated with chemical agents that target 

this ionic pump, like cardiac glycosides [27, 84]. The mor-

phological manifestations of autosis differ from those of 

classical apoptosis and necrosis, encompassing a pathog-

nomonic dilation of the perinuclear space and the massive 

accumulation of autophagic vacuoles in the cytoplasm [27, 

28, 44]. Although some components of the molecular ma-

chinery for macroautophagy interact with mitochondrial 

proteins (including BCL2), the involvement of mitochondria 

in the signal transduction cascades that precipitate autosis 

has not been investigated yet. 

 

Pyroptosis 

Pyroptosis is a form of RCD that critically rely on the cleav-

age of gasdermin D (GSDMD) by inflammatory caspases, 

i.e., caspase-1 (CASP1), caspase-4 (CASP4), caspase-5 

(CASP5) or caspase-11 (Casp11, the mouse orthologue of 

human CASP4 and CASP5) [1, 15, 29-31]. Thus, pyroptosis 

is generally associated with the assembly and activation of 

so-called “inflammasomes”, which are supramolecular 

platforms that promote the CASP1-, CASP4-, CASP5- or 

Casp11-dependent proteolytic processing of pro-

interleukin-1β (pro-IL-1β) and pro-interleukin-18 (pro-IL-

18) [85]. These observations imply that pyroptosis (1) can 

only occur in cell types that express sufficient amount of 

inflammatory caspases (e.g., cells of the monocytic lineage) 

 
 

FIGURE 1: Implication of mitochondria in RCD signaling. Mitochondria play a key, non-redundant role in the signal transduction cascades 

that precipitate intrinsic apoptosis, some instances of extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven regulated ne-

crosis (RN), and parthanatos, but are completely dispensable for necroptosis, ferroptosis, and autophagic cell death by autosis (at least ac-

cording to current knowledge). The actual contribution of mitochondria to the signaling pathways that drive pyroptotic regulated cell death 

(RCD) remains to be formally elucidated. 
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[86], (2) is associated with the release of mature IL-1β and 

IL-18 [86], and (3) is sensitive to broad-spectrum caspase 

inhibitors like Z-VAD-fmk (which also delays apoptosis) as 

well as to chemicals that specifically block CASP1, CASP4, 

CASP5 or Casp11 (which have no effects on apoptosis) [1].  

Morphologically, pyroptosis manifests with features 

that resemble (at least in part) those of apoptosis [44, 87]. 

Importantly, mitochondrial ROS have been shown to act as 

intracellular danger signals and promote inflammasome 

activation coupled CASP1-dependent RCD in some cells 

[88]. However, the integrity of mitochondria appears to be 

preserved in the first phases of pyroptotic signaling [89-91].  

In summary, it remains to be formally demonstrated 

whether mitochondria are a core component of the signal 

transduction cascades that precipitate pyroptosis or 

whether they simply act as pyroptosis initiators in specific 

pathophysiological settings. 

 

CONCLUDING REMARKS 

The signal transduction cascades that precipitate RCD have 

become increasingly more complex with evolution, espe-

cially along with the acquisition of the eukaryotic state and 

multicellularity [12-14, 92]. Modern prokaryotes harness 

RCD to favor the survival of the species when colonies are 

threatened by environmental conditions [93, 94], and it 

seems that such an evolutionarily ancient capacity has 

been fixed by evolution. Mitochondria (the remnants of 

bacteria that at some stage were incorporated into proto-

eukaryotes to generate eukaryotic life) play indeed a fun-

damental function in some (but not all) RCD-stimulating 

pathways in modern eukaryotes (Figure 1). Interestingly 

enough, evolutionarily ancient eukaryotes including Sac-

charomyces cerevisiae mostly (if not exclusively) rely on 

mitochondrion-dependent forms of RCD [92, 95-97]. Con-

versely, mitochondrion-dependent RCD variants seem to 

have completely disappeared in post-mitotic animals like 

Caenorhabditis elegans [98] and Drosophila melanogaster 

[99]. Taken together, these observations suggest that mi-

tochondrion-dependent variants of RCD may have evolved 

before their mitochondrion-independent counterparts.  

In conclusion, mitochondria are quintessential for eu-

karyotic cells, not only as they mediate fundamental bio-

energetic and anabolic functions, but also as they contrib-

ute to several (but not all) signal transduction cascades 

that precipitate RCD. 
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