
1Scientific Data |           (2022) 9:138  | https://doi.org/10.1038/s41597-022-01171-2

www.nature.com/scientificdata

Caltech Conte Center, a multimodal 
data resource for exploring social 
cognition and decision-making
Dorit Kliemann   1,2, Ralph Adolphs   1,3 ✉, Tim Armstrong1, Paola Galdi   5, David A. Kahn   1, 
Tessa Rusch   1, A. Zeynep Enkavi   1, Deuhua Liang   4, Steven Lograsso   1, Wenying Zhu3, 
Rona Yu1, Remya Nair   1,6, Lynn K. Paul   1,6 & J. Michael Tyszka   1,6

This data release of 117 healthy community-dwelling adults provides multimodal high-quality 
neuroimaging and behavioral data for the investigation of brain-behavior relationships. We provide 
structural MRI, resting-state functional MRI, movie functional MRI, together with questionnaire-based 
and task-based psychological variables; many of the participants have multiple datasets from retesting 
over the course of several years. Our dataset is distinguished by utilizing open-source data formats 
and processing tools (BIDS, FreeSurfer, fMRIPrep, MRIQC), providing data that is thoroughly quality 
checked, preprocessed to various extents and available in multiple anatomical spaces. A customizable 
denoising pipeline is provided as open-source code that includes tools for the generation of functional 
connectivity matrices and initialization of individual difference analyses. Behavioral data include a 
comprehensive set of psychological assessments on gold-standard instruments encompassing cognitive 
function, mood and personality, together with exploratory factor analyses. The dataset provides an 
in-depth, multimodal resource for investigating associations between individual differences, brain 
structure and function, with a focus on the domains of social cognition and decision-making.

Background & Summary
Investigating brain-behavior relationships and their individual differences requires multimodal data that include 
at least neural data (typically structural or functional magnetic resonance imaging data, structural MRI (sMRI) 
or functional MRI (fMRI)) together with behavioral data (typically questionnaire-based scores). Traditionally, 
such data have been acquired in individual studies, often with modest sample sizes, and focused on a specific 
research question. Several more recent datasets combine neuroimaging and behavioral data in larger samples 
with broader but shallow coverage of cognitive domains; a few datasets also provide exceptionally dense data 
with deep phenotyping, but in very small samples1,2. For instance, the UK Biobank3 provides very broad behav-
ioral data together with MRI and genetic data on 500,000 subjects – a resource that has been utilized by over 
20,000 researchers to date and has yielded a number of important findings4,5. At the opposite extreme, dense 
longitudinal rest-state fMRI acquired on a single individual showed that functional brain networks are more 
fine-grained than originally thought1. For many large databases, sample sizes are now becoming sufficiently 
large that nonlinear modeling (e.g., with deep learning) is becoming possible to apply to brain-behavior relation-
ships6. However, breadth across variables and large samples typically come at the expense of shallow assessment 
of most behavioral variables, and often limited quality control over individual neuroimaging data. For instance, 
cognitive variables like intelligence are assessed with short tasks or questionnaires, rather than gold-standards 
in the field such as the Wechsler Adult Intelligence Scale7, which may result in poor precision as well as low 
construct validity. More comprehensive psychological assessment is provided in the Human Connectome 
Project, (HCP), which also provides high-resolution structural and functional neuroimaging data8 and remains 
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a multimodal resource generating a large number of novel discoveries (see https://www.humanconnectome.
org/study/hcp-young-adult/publications). However, across datasets, there is a tradeoff between in-depth and/or 
quality-checked data, on the one hand, versus sample size and domain breadth, on the other hand. For instance, 
social cognition is multifaceted and complex. Thus it can only be adequately assessed with a variety of measures 
to describe individual functioning (and potential individual differences therein). In addition, a major practical 
limitation for users is that databases generally provide only specific neuroimaging formats and processing steps, 
which often become outdated or require further conversion and processing before analyses can be applied.

Our dataset lies intermediate in the space of databases outlined above: a medium-sized sample (n = 117) but 
with exceptional quality control, range of data types, accessibility and ease of usability. Manually quality-checked 
structural and denoised functional (resting-state and movie) MRI data are organized in BIDS9 and are provided 
with quality metrics and in multiple processed formats (including individual native space and multiple standard 
template spaces). We use standardized preprocessing and quality control tools, such as fMRIPrep10, FreeSurfer11, 
and MRIQC12. Behavioral data encompass comprehensive metrics on intelligence, personality, mood, and social 
cognition. A subset of the subjects were retested over months-years. All data were collected by the NIMH-funded 
Caltech Conte Center (http://conte.caltech.edu) and are tailored towards investigations of social cognition and 
decision-making. The precision with which cognitive processes can be estimated usually demands longer tasks 
or questionnaires, and/or the extraction of latent factors across multiple observed measures, both of which we 
provide here. As detailed in Table 1 below, the dataset includes a variety of gold-standard psychological state and 
trait variables relevant to social decision-making. For example, intelligence provides an important continuous 
variable that could be used as a covariate in all analyses. Likewise measures of depression, stress, valenced mood 
and anxiety may be used as covariates or utilized for formulating exclusionary criteria. The dataset also includes 
trait-level questionnaire-based measures that specifically address social decision-making and behavior. For 
example, several of our measures are commonly used to assess traits related to autism spectrum disorder (e.g. 
Empathizing Quotient13, Systematizing Quotient14, and Social Responsiveness Scale15), the social network index 
has been widely used as a proxy for social connectedness in real life, and the 16PF personality questionnaire 
provides a fine-grained assessment of personality traits related to social engagement from which the standard 
“Big-Five” personality factors can be easily derived. Especially notable is the Mayer-Salovey-Caruso Emotional 
Intelligence Test16, a comprehensive and time-intensive collection of questionnaire-based and task-based meas-
ures that index multiple facets of social and emotional ability. Taken together, this array of behavioral meas-
ures provides a particularly rich assessment of individual differences relevant to social decision-making, and 
item-level data availability permits researchers to explore additional structure. We have included an exploratory 
factor analysis to showcase how the included measures and their loadings on potentially underlying factors can 
be used to leverage the richness of this new dataset towards novel questions in human cognitive neuroscience.

Three features further distinguish our dataset: (1) we went to considerable lengths to control the quality of 
surface reconstructions by manual visual inspection and correction of all structural MRI datasets (where nec-
essary); (2) we provide functional neuroimaging data in multiple preprocessed formats and anatomical spaces 
(including both volumetric and surface data) with open-source processing tools. This not only affords greater 
flexibility in how the data might be analyzed, but largely obviates the need to conduct further preprocessing or 
transformations by users — a task that can be complex and require substantial computational cost and time; (3) 
we provide a customizable denoising pipeline for the analysis of functional connectivity data that includes not 
only state-of-the-art denoising, but also incorporates the generation of functional connectivity matrices on the 
parcellated data and initializes analysis workflow for individual difference studies. Taken together, these features 
aim to provide a dataset that can most easily be used immediately to address scientific questions of interest by 
neuroscientists, psychologists, and data scientists.

Methods
Participants.  Adults (enrollment n = 191; 18–50 years old at time of enrollment) were recruited from the Los 
Angeles area via Craigslist and publicly distributed flyers over the course of the past 8 years. Informed consent 
was obtained from all subjects prior to participation in accordance with the institutional review board (IRB) at 
the California Institute of Technology. Subjects were excluded if they had a full-scale IQ below 90, were not fluent 
in English, had a first-degree relative with schizophrenia or autism spectrum disorder, were currently taking psy-
chotropic medication, had uncorrected vision or hearing impairment, and moderate-severe depression or indi-
cation of current suicidality (Beck Depression Inventory–II total = 25+; score of 3 or 4 on item 917). Additional 
exclusionary criteria included history of any of the following: premature birth, epilepsy, major medical condition, 
metabolic disorder, chemotherapy or radiation, brain surgery, head injury, eating disorder, neurological con-
dition, psychosis, bipolar disorder, autism, suicide attempt, substance dependence or abuse, alcoholism, color 
blindness or strabismus.

Following a brief phone screening, 191 individuals came to Caltech for the enrollment visit. The final sample 
was reduced to 117 individuals due to exclusions and attrition. Information acquired during the enrollment 
visit resulted in exclusion of 47 based on our inclusion/exclusion criteria, 19 were excluded during MRI safety 
screening or due to features of MRI testing (6 due to claustrophobia, incompatible tattoos or pregnancy, 12 due 
to excessive motion during MRI scanning, 1 incidental structural abnormality per expert radiological review) 
and 8 dropped out of the study following the enrollment visit. The final participant group of 117 adults did not 
differ from the initial sample in gender (χ2 = 0.305, p = 0.581), age (t(187) = −0.594, mean difference = −0.581, 
95% CI [−2.511, 1.349]), ethnicity (χ2 = 0.072, p = 0.789), or race (χ2 = 4.270, p = 0.640) (Fig. 1).

Structural magnetic resonance imaging.  All MRI data were acquired using either a 3 Tesla TIM Trio 
(2012 to 2017) or an upgraded 3 T Prisma.Fit system (2018 to 2019) (Siemens Medical Solutions, Malvern, PA) 
with a 32 channel head receive array coil. Stimulus presentation and response capture were performed using an 
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LCD back-projection system and optical response button box (controlled via Psychophysics Toolbox 3). T1w 
structural imaging was performed in all 117 participants. T2w imaging was added in the second phase of the 
Conte Center (2018 onwards) and both structural contrasts were acquired in a subset of participants (Fig. 2). 
Incremental modifications were made over the years to the structural imaging protocol, including a change in 
spatial resolution from 1 mm to 0.9 mm isotropic, the addition of lipid suppression and a change in T1w pulse 
sequence from single-echo MP-RAGE to multi-echo MEMP-RAGE, which are summarized in Table 2.

Functional magnetic resonance imaging.  High-quality BOLD fMRI data with whole-brain coverage 
were acquired in all subjects. BOLD resting-state and movie-viewing fMRI were acquired using single-band or 
multi-band 2.5 mm isotropic T2*-weighted EPI, depending on protocol version (Table 2 and Fig. 2). The imaging 
protocol was refined several times during the first phase of the Conte Center, but remained constant during the 
second phase following the scanner upgrade from TIM Trio to Prisma.Fit. Multiband acceleration was introduced 
in protocol version 1.2 and imaging parameters for all versions of the fMRI protocols are summarized in Table 2. 
Either dual-echo gradient echo imaging or phase-encoding polarity reversed SE-EPI image pairs were acquired 
for distortion correction immediately before each functional run, with identical slice geometry and EPI echo 
spacing to the BOLD EPI series.

Resting-state data consisted of two runs of between 400 (session 1p1) and 420 (session 2p2) seconds of 
resting-state with eyes open and instructions to fixate a white central cross on a black background. Movie view-
ing fMRI consisted of watching the black-and-white Hitchcock film “Bang! You’re Dead (1954)” and the short 
animated movie “Partly Cloudy”18. Alfred Hitchcock’s “Bang! You’re Dead (1954)” movie was edited from the 
original 20 min running time down to 8 min., as in19. Instructions were shown on the screen until the subject 
pressed a key, followed by 10 s of blank screen with a fixation cross. The movie played for 8-min, followed 
by 10 s blank screen with fixation cross until the end of scanning. The “Partly Cloudy” movie began after  
10 s of rest (black screen; TRs 0–5). The first 10 s of the movie consisted of the opening credits (Disney castle, 
Pixar logo; 12–20 s), followed by 5 minutes, 14 seconds of the movie (without credits at the end), followed by 
10 seconds of rest.

Preprocessing of MRI Data.  FreeSurfer segmentation and cortical parcellation.  We performed cortical 
reconstruction and volumetric segmentation of T1w images outside of fMRIPrep with the FreeSurfer image anal-
ysis suite (version 7.1.0, http://surfer.nmr.mgh.harvard.edu/)11,20–22. In summary, processing included motion 

Beck Depression Inventory - II17 A 12-item self-report questionnaire that examines depressive symptomatology over the prior 2 weeks. Total 
scores indicate level of depression: none, mild, moderate, severe.

Empathizing Quotient13 A 40-item self-report instrument that assesses the drive to identify others’ thoughts or emotions

Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT)16 A computerized questionnaire that includes self-report items and 
emotion-identification tasks. Performance on eight subtests are combined to describe 4 aspects of emotion processing (perceiving, facilitating 
thought, understanding, and managing), which are further combined into two index scores (experiencing emotion and strategizing about 
emotion).

Perceived Stress Scale77,78 A ten-item self-response questionnaire that measures the extent to which a participant perceives personal life 
events in the previous month as stressful.

Positive and Negative Affect Scales79 A 20-item self-report measure designed to assess the current affective state.

16 Personality Factors (16PF)80,81 A self-report questionnaire comprised of 185 multiple-choice items addressing personal preferences and 
tendencies. The normative sample reflects the 2000 census data on age, sex, race, and education level. Scores reflect 5 global personality factors 
(Extraversion, Anxiety, Tough-Mindedness, Independence, and Self-Control), as well as 16 personality dimensions (primary scales) that are 
anchored by polarized characteristics. For example, scores on the “Warmth” factor reflect the subject’s interest in social contact by placing 
them on a continuum from “reserved” to “warm.” Other Primary Scales include: Reasoning (concrete vs. abstract), Emotional Stability 
(reactive vs. emotionally stable), Dominance (deferential vs. dominant), Liveliness (serious vs. lively), Rule-Consciousness (expedient vs. 
rule-conscious), Social Boldness (shy vs. socially bold), Sensitivity (utilitarian vs. sensitive), Vigilance (trusting vs. vigilant), Abstractedness 
(grounded vs. abstracted), Privateness (forthright vs. private), Apprehension (self-assured vs. apprehensive), Openness to Change (traditional 
vs. open to change), Self-Reliance (group-oriented vs. self-reliant), Perfectionism (tolerates disorder vs. perfectionistic), and Tension (relaxed 
vs. tense).

Social Network Index82 A self-report questionnaire used to quantify the extent of one’s social connections during a specific timeframe. 
Outcome variables include: a) Network Diversity (number of social roles in which the respondent has contact with one person or more at least 
once every 2 weeks; maximum is 12 including spouse, parent, child, child-in-law, close relative, close friend, church/temple member, student, 
employee, neighbor, volunteer, and group member), b) Number of People in Social Network (measures the total number of people which 
whom respondent maintains contact at least once every 2 weeks–reflecting overall network size), and c) Number of Embedded Networks 
(measures the number of different groups these contacts belong to, reflecting network complexity; maximum is 8, including family, friends, 
church/temple, school, work, neighbors, volunteering, and groups).

Social Responsiveness Scale - Second Edition, Adult Form, Self-Report15 A 65-item self-report questionnaire that assesses the presence of 
social difficulties common in autism.

Systematizing Quotient - Revised14 A 75-item self-report questionnaire that assesses the drive to understand and construct lawful systems 
for governing behavior.

State Trait Anxiety Inventory (state & trait)54 A self-report questionnaire that differentiates between the temporary condition of “state 
anxiety” and the more general and long-standing quality of “trait anxiety.” State anxiety is characterized by feelings of apprehension, tension, 
nervousness, and worry.

Wechsler Abbreviated Scales of Intelligence (WASI)52 A measure of cognitive abilities which includes 4 subtests (Matrix Reasoning, Block 
Design, Vocabulary, and Similarities) and provides 3 index scores (Full Scale IQ, Verbal Intelligence Quotient, and Performance Intelligence 
Quotient).

Wechsler Abbreviated Scales of Intelligence - Second Edition (WASI-II)53 A measure of cognitive abilities which includes 4 subtests 
(Matrix Reasoning, Block Design, Vocabulary, and Similarities) and provides 3 index scores (Full Scale IQ, Verbal Comprehension Index and 
Perceptual Reasoning Index).

Table 1.  Conte Core Behavioral Test Battery.
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correction and averaging23 of volumetric T1w images, removal of non-brain tissue, automated Talairach trans-
formation, segmentation of the subcortical white matter and deep gray matter volumetric structures, intensity 
normalization24, tessellation of the gray matter-white matter boundary, automated topology correction25,26, and 
surface deformation following intensity gradients for optimal tissue boundary placement. T1w MP-RAGE data 
were used for FreeSurfer reconstruction if T1w MEMP-RAGE data from the Phase 2 protocol were unavailable 
for a given subject. T2w images were passed to FreeSurfer reconstruction where available (n = 59). See Fig. 2 for 
a full breakdown of T1w and T2w image availability for all subjects.

Standardized MRI preprocessing.  Both structural and functional MRI data were minimally preprocessed using 
fMRIPrep 20.2.110, which is based on Nipype 1.5.127. The processing steps for anatomical and functional MR 
data are summarized below, with specific software noted in italics. Independent, quality controlled FreeSurfer 
reconstructions (above) were integrated automatically by the fMRIPrep pipeline. Preprocessing scripts, includ-
ing the exact parameters used with fMRIPrep and a detailed description of individual steps are provided in the 
code folder of the OpenNeuro BIDS data release28.

Anatomical data preprocessing.  T1-weighted (T1w) structural images were corrected for intensity 
non-uniformity (N4BiasFieldCorrection, ANTS 2.3.3)29,30 and skull-stripped (antsBrainExtraction.sh, ANTS 
2.3.3). Brain tissue was segmented into cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) 
(fast, FSL 5.0.9)31. Where multiple T1w images were available for a given subject, a robust, registered average 
was constructed (mri_robust_template, FreeSurfer 6.0.1)20. Brain extracted T1w images were then registered dif-
feomorphically (antsRegistration, ANTs 2.3.3) to two standard spaces: (1) the ICBM/MNI 152 2009c Nonlinear 
Asymmetric space used by OpenNeuro (MNI152NLin2009cAsym)32 and (2) the ICBM/MNI 152 Version 6 
Nonlinear Asymmetric space used by FSL (MNI152NLin6Asym)33.

Functional data preprocessing.  For each of the BOLD runs found per subject (across all tasks and sessions), the 
following preprocessing was performed. First, a reference volume and its skull-stripped version were generated 
by aligning and averaging single-band references (SBRefs). Spatial distortion corrections for BOLD EPI data 
were derived from two spin echo EPI reference images with opposing phase-encoding directions (3dQwarp, 
AFNI 20160207)34. A distortion-corrected BOLD EPI reference image was constructed and registered to the 
T1w reference using a boundary-based approach (bbregister, Freesurfer)35. Rigid-body head-motion parameters 
with respect to the BOLD EPI reference were estimated (mcflirt, FSL 5.0.9)36 before any spatiotemporal filter-
ing. BOLD runs belonging to the single band acquisition sessions were slice-time corrected (3dTshift, AFNI 
20160207). The BOLD time series were resampled onto the fsaverage and fsaverage6 standard FreeSurfer surface 
spaces. The BOLD time series (including slice-timing correction when applied) were resampled onto their orig-
inal, native space by applying a single, composite transform to correct for head motion and susceptibility dis-
tortions. The BOLD time series were resampled into the MNI152NLin2009cAsym standard space. Grayordinate 
files37 containing 91,000 samples were also generated using the highest-resolution fsaverage as an intermediate 
standardized surface space. Several physiological confound time series were calculated based on the preproc-
essed BOLD: framewise displacement (FD), DVARS and three region-wise global signals. FD was computed 

Fig. 1  Demographics of Final Sample. Demographics of the final sample (n = 117, inner pie) are compared to 
demographics of participants who were excluded (outer pie; excluded n = 66; attrition n = 8). Top row: Sex (a) 
and Race (b) proportions. Middle: Ethnicity proportions (c). Bottom row: Number of participants by highest 
education level (d) and age grouping (e; green = final sample, gray = excluded/attrition group). Abbreviations: 
AA, Associates in Arts; BA/BS, Bachelor of Arts/Science; Grad, Graduate degree; HS, high school; Some C, 
some college.
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for each functional run using two definitions: absolute sum of relative motions38 and relative root-mean-square 
displacement between affine transforms36.

Physiological Denoising of fMRI Data.  Physiological noise regressors were extracted using 
CompCor and are provided for use in alternative physiological denoising approaches, but were not used in the 
rsDenoise pipeline described below39. Principal components were estimated for the two CompCor variants: tem-
poral (tCompCor) and anatomical (aCompCor). A mask to exclude signal originating in cortex was obtained by 
eroding the brain mask, ensuring it only contained subcortical structures. Six tCompCor components were then 
calculated including only the top 5% variable voxels within that subcortical mask. For aCompCor, six compo-
nents were calculated within the intersection of the subcortical mask and the union of CSF and WM masks cal-
culated in T1w space, after their projection to the native space of each functional run. Framewise displacement38 
was calculated for each functional run using the approach implemented by Nipype.

Resting-state and movie fMRI data were further processed with rsDenoise (https://github.com/adolphslab/
rsDenoise), a denoising pipeline specifically designed to correct for artifactual influences of non-neuronal fluc-
tuations in signals acquired in the absence of an explicit task. This software was originally developed to study 
individual differences in intelligence and personality detectable from resting-state fMRI functional connectivity 
data40,41. The pipeline is based on open-source libraries and frameworks for scientific computing, including 
SciPy, Numpy, NiLearn, NiBabel, Nipype, Scikit-learn, Pandas and Matplotlib27,42–47, and accepts both volumetric 
data (in NIfTI format) and surface data (GIfTI or CIFTI format) that were minimally preprocessed with either 
fMRIPrep or the HCP pipelines37. It implements a wide variety of denoising strategies described by previous 
literature1,48–51, and works by performing a sequence of operations grouped in seven categories: motion scrub-
bing, voxel-wise normalization, detrending, tissue regression, global signal regression, motion regression and 

before
denoising

after
denoising

Resting state networks

Single band vs. multiband

Single band vs. multiband

Movie vs. rest

Movie vs. rest

a b

c d

Fig. 2  Comparison of functional connectivity (FC) matrices estimated before denoising (top row, a,b) and 
after denoising (bottom row, c,d) on subjects with two complete resting-state runs (N = 116). On the left (a,c), 
the lower triangular matrices are the average FC derived from single-band resting-state acquisitions (N = 34), 
while the upper triangular matrices show the average FC derived from multiband resting-state acquisitions 
(N = 100). Note that some subjects (N = 18) have both SB and MB scans and therefore contribute to both upper 
and lower triangles. On the right (b,d), lower triangular matrices are derived from movie fMRI data (N = 57), 
while upper triangular matrices are derived from multiband resting-state acquisitions (N = 100). We used data 
in CIFTI format registered to the MNI152NLin2009cAsym space, processed through fMRIPrep and denoised 
with rsDenoise with the strategy described in48 For each subject, two runs were concatenated before computing 
the average time series for each of 400 parcels of the Schaefer cortical parcellation83. Parcels are grouped 
following the 7 resting-state networks defined in the Yeo parcellation84. FC was computed as the pairwise 
Pearson’s correlation between parcel time series (color scale). For subjects with more than one session available, 
individual FC matrices are averaged across sessions before averaging them across subjects (so that each subject 
only contributed once).
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temporal filtering. In addition to enabling the user to reproduce previously published methods, the software 
allows testing of new combinations of denoising steps and adding custom functions to the pipeline. The pipeline 
also offers support for the generation of functional connectivity matrices (as in Fig. 3) and a framework for 
the prediction of individual differences from functional connectivity features. For the results presented in this 
work, we adopted a pipeline that reproduces the denoising strategy described in48. There are seven consecutive 
steps: (1) each voxels’ signal is z-score normalized, (2) using tissue masks, temporal drifts from cerebrospinal 
fluid (CSF) and white matter (WM) are removed with third-degree Legendre polynomial regressors, (3) CSF 
and WM mean signals are regressed from gray matter (GM) voxels, (4) rotational and translational realignment 
parameters and their temporal derivatives are used as explanatory variables in motion regression, (5) signals 
are low-pass filtered with a Gaussian kernel, (6) temporal drift from gray matter (GM) signal is removed using 
third-degree Legendre polynomial regressors, and (7) lastly global signal regression (GSR) is performed.

Behavioral assessment.  Assessment of cognitive and behavioral functioning was conducted using the 
12 standardized psychological instruments described in Table 1. These instruments were administered by one 

T1w Structural

Protocol Version Sequence Acquisitions Total Time Voxel (mm) TR/TE (ms) TI (ms)
Flip Angle 
(deg) Fat Suppression R

1.1 MP-RAGE 2 0:12:52 1.0 × 1.0 × 1.0 1500/2.9 800 10 None 1

1.2 MP-RAGE 2 0:12:52 1.0 × 1.0 × 1.0 1500/2.9 800 10 None 1

1.3.0 MP-RAGE 2 0:12:52 1.0 × 1.0 × 1.0 1500/2.9 800 10 None 1

1.3.1 MP-RAGE 2 0:12:52 1.0 × 1.0 × 1.0 1500/2.9 800 10 Water Excite 1

1.4 MP-RAGE 2 0:12:36 0.9 × 0.9 × 0.9 2400/2.6 1000 8 Water Excite 2

2.1 MEMP-RAGE 1 0:06:03 0.9 × 0.9 × 0.9 2530/Var 1100 7 None 2

2.1.1 MEMP-RAGE 1 0:06:03 0.9 × 0.9 × 0.9 2530/Var 1100 7 None 2

2.2 MEMP-RAGE 1 0:06:03 0.9 × 0.9 × 0.9 2550/Var 1100 7 Water Excite 2

T2w Structural

Protocol Version Sequence Acquisitions Total Time Voxel (mm) TR/TE (ms) TI(ms) Flip Angle 
(deg) Fat Suppression R

1.1 — — — — — — — — —

1.2 — — — — — — — — —

1.3.0 T2 SPACE 1 0:08:02 1.0 × 1.0 × 1.0 2500/144 — Var None 2

1.3.1 T2 SPACE 1 0:08:02 1.0 × 1.0 × 1.0 2500/144 — Var None 2

1.4 T2 SPACE 1 0:08:42 0.9 × 0.9 × 0.9 2500/212 — Var None 2

2.1 T2 SPACE 1 0:04:43 1.0 × 1.0 × 1.0 3200/390 — Var None 2

2.1.1 T2 SPACE 1 0:04:43 0.9 × 0.9 × 0.9 3200/393 — Var None 2

2.2 T2 SPACE 1 0:05:38 0.9 × 0.9 × 0.9 3200/564 — Var None 2

T2*w Functional MRI

Protocol Version Sequence Voxel (mm) TR/TE (ms) Flip Angle (deg) Fat Suppression EPI Echo Spacing (ms) R M

1.1 GRE-EPI 3.0 × 3.0 × 3.0 2500/30 85 Yes 0.47 2 1

1.2 MB GRE-EPI 2.5 × 2.5 × 2.5 1000/30 60 Yes 0.54 1 4

1.3.0 MB GRE-EPI 2.5 × 2.5 × 2.5 1000/30 60 Yes 0.54 1 4

1.3.1 MB GRE-EPI 2.5 × 2.5 × 2.5 1000/30 60 Yes 0.54 1 4

1.4 MB GRE-EPI 2.5 × 2.5 × 2.5 1000/30 60 Yes 0.54 1 4

2.1 MB GRE-EPI 2.5 × 2.5 × 2.5 1000/30 60 Yes 0.54 1 4

2.1.1 MB GRE-EPI 2.5 × 2.5 × 2.5 1000/30 60 Yes 0.54 1 4

2.2 MB GRE-EPI 2.5 × 2.5 × 2.5 700/30 53 Yes 0.49 1 6

B0 Fieldmap MRI

Protocol Version Sequence Voxel (mm) TR/TE (ms) Flip Angle (deg) Fat Suppression EPI Echo Spacing (ms) R M

1.1 Dual Echo GRE 3.0 × 3.0 × 3.0 400/2.6, 5.0 45 No — 1 —

1.2 Dual Echo GRE 3.0 × 3.0 × 3.0 400/2.6, 5.0 45 No — 1 —

1.3.0 Dual Echo GRE 3.0 × 3.0 × 3.0 400/2.6, 5.0 45 No — 1 —

1.3.1 Dual Echo GRE 3.0 × 3.0 × 3.0 400/2.6, 5.0 45 No — 1 —

1.4 MB SE-EPI 2.5 × 2.5 × 2.5 4800/50 90 Yes 0.54 1 1

2.1 MB SE-EPI 2.5 × 2.5 × 2.5 4800/50 90 Yes 0.54 1 1

2.1.1 MB SE-EPI 2.5 × 2.5 × 2.5 4800/50 90 Yes 0.54 1 1

2.2 MB SE-EPI 2.5 × 2.5 × 2.5 5500/48 90 Yes 0.49 1 1

Table 2.  Structural and functional MRI sequence parameters for all protocol versions of the Caltech Conte 
Imaging Core. MB: multiband, R: in-plane acceleration factor, M: multiband (MB) slice acceleration factor.
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trained research assistant (T.A.), and the majority of data were collected on one day. Demographic and behavioral 
data are curated in a comma-separated value (CSV) file, accompanied by a data dictionary explaining all varia-
bles28. The dataset includes summary scores and item-wise responses. Descriptive group statistics of the summary 
scores from all behavioral measures are provided in Table 3.

Descriptive group statistics of the summary scores from all behavioral measures are provided in Table 3. 
When available, participants’ scores were converted to standardized scores using published norms that account 
for demographic factors relevant to each measure (per the publisher). The WASI52, WASI-II53, and SRS-215 norms 
are age-specific. STAI54 and MSCEIT16 norms are specific for age and sex. Table 3 presents 95% confidence inter-
vals for the difference from the expected mean (e.g. participant T-score minus 50) based on 1000 bootstrapped 
samples. The 95% confidence intervals indicate that our cohort had elevated IQ scores, with elevated emotion 
perception but lower emotion management (MSCEIT) scores than the published normative sample. On average, 
personality traits (16PF) reported in our sample indicated elevations in liveliness, sensitivity, vigilance, abstract-
edness, openness to change, and self-reliance, with reduced evidence of warmth, rule-consciousness and tension. 
The 95% confidence intervals for SRS-2 and STAI trait anxiety difference scores included zero, but our cohort 
reported notably low levels of state anxiety. Additionally, for the tests with standardized scores we examined the 
number of participants who scored more than 1.5 standard deviations above or below the normative mean (i.e. 
within the range of clinical significance). After applying measure-wise Bonferroni adjustment, the frequency of 
participants with clinically-significant scores was not greater than expected by chance for any measure.

In addition to the psychological variables from specific tasks, we also provide an example use case of the rich 
psychological data in an exploratory factor analysis based on all of the behavioral measures available in all of the 
subjects (Note: MSCEIT and SRS-2 were not included as they were not available for all participants and STAI 
state was not included due to high correlation with STAI trait; Fig. 4). We conducted exploratory factor analy-
sis on all subjects with complete datasets, which were 144 Conte Center participants, of which the 117 whose 
imaging data are presented here were a proper subset. Due to non-normal distribution of multiple measures, 
Spearman rank-order coefficients were used for all correlations in the factor analysis (see Fig. 4). The number 
of factors was estimated in R55 using the following methods (processing packages are shown in italics): Horn’s 
Parallel Analysis56 (paran); Cattell’s Scree Optimal Coordinate Index57 (nFactors); CNG scree test58 (nFactors); 
Zoski and Jurs’ multiple regression b coefficient59 (nFactors); the Minimum Average Partial (MAP) test, both 
the original60 and revised61 versions (paramap); and the Very Simple Structure criterion (vss). All tests, with the 
exception of Horn’s Parallel Analysis, consistently predicted three to four factors. Based on these estimates, four 
factors were retained. The R code for estimating the optimal number of factors and generating rotated and unro-
tated solutions for 3- and 4-factor models, as well as all data files related to this analysis are provided at https://
github.com/adolphslab/ConteDataRelease/blob/main/FactorAnalysis/Factor_Analysis.R.

Specifying a three-factor and four-factor solution, factor analysis was conducted in R using maximum like-
lihood estimation, with varimax rotation and without rotation (fa), and factor scores were generated with the 
Bartlett formula. Figure 4 shows factor loadings for the four-factor varimax-rotated solution. Factor loadings 

Fig. 3  Factor Analysis. (a) Spearman rank-order correlations between each pair of variables. Variables are 
ordered according to the four-factor varimax-rotated solution, with dark outline boxing each factor grouping. 
(b) Four-factor varimax-rotated solution based on data from 144 participants. Maximal absolute loadings of 
task scores onto each of the four factors, leading to the interpretation of the factors we give in the text. Lighter 
colors indicate flipped scale interpretation (negative loadings).

https://doi.org/10.1038/s41597-022-01171-2
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for the rotated and unrotated solutions were highly congruent (rc = 0.99 for factors 1 and 2 and rc = 0.91 for 
factors 3 and 4). Factor 1 is associated with negative emotionality, including elevations in anxiety, depression, 
stress, negative affect, and emotional instability, as well as lowered empathy. Factor 2 reflects cognitive flexibility, 
with elevations on cognitive ability and openness to change, and a negative association with rule consciousness. 
Factor 3 relates to elevated levels of social engagement. Factor 4 reflects cognitive rigidity. It is noteworthy that 
lowest factor loadings were for two social measures (SNI People in Network and 16PF Sensitivity), suggesting 
that while these factors account for some shared variance in social skills, they are unlikely to mask unique 
individual variations in social functioning. Individual scores across these 4 factors are provided for all our 117 
subjects as part of this data release28; however, this is only one illustrative approach to factor analysis and should 
not preclude exploration using alternative methods.

Index/Scale N Mean SD Min Max Mean Diff 95% CI

FSIQ (standard score, μ = 100) 117 106.89 9.65 87 132 6.889 5.165 8.571

 PIQ/PRI 117 103.78 10.67 83 133 3.778 1.821 5.762

 VIQ/VCI 117 108.03 9.75 87 137 8.034 6.323 9.769

BDI-2 117 5.03 5.30 0 25

Empathizing Quotient 117 49.50 12.79 20 74

MSCEIT (standard score, μ = 100)

 Perceiving 97 105.21 15.26 70 150 5.213 2.294 8.232

 Using 97 100.74 13.47 64 127 0.736 −1.802 3.437

 Understanding 97 101.40 9.86 72 126 1.400 −0.649 3.312

 Managing 97 96.59 9.28 70 114 −3.410 −5.255 −1.458

 Perceived Stress Scale 117 12.46 6.65 0 32

PANAS

 Positive 117 32.40 8.65 12 50

 Negative 117 12.46 4.23 10 33

16PF (sten, μ = 5.5)

 Warmth 117 5.02 1.65 1 9 −0.483 −0.786 −0.175

 Reasoning 117 5.48 1.79 1 9 −0.021 −0.338 0.307

 Emotional Stability 117 5.23 1.56 1 8 −0.269 −0.548 0.030

 Dominance 117 5.27 1.68 2 9 −0.226 −0.554 0.084

 Liveliness 117 6.38 1.79 3 9 0.876 0.518 1.214

 Rule-Consc. 117 4.00 1.49 1 7 −1.500 −1.779 −1.241

 Social Boldness 117 5.96 1.82 2 9 0.457 0.156 0.773

 Sensitivity 117 6.21 1.51 3 10 0.705 0.407 0.973

 Vigilance 117 6.46 1.81 3 10 0.962 0.647 1.318

 Abstractedness 117 6.33 1.68 2 10 0.833 0.527 1.152

 Privateness 117 5.53 1.94 1 9 0.030 −0.324 0.372

 Apprehension 117 5.39 1.77 1 9 −0.107 −0.421 0.203

 Open to Change 117 6.74 1.55 2 10 1.235 0.959 1.500

 Self-Reliance 117 6.15 1.77 2 10 0.645 0.337 1.000

 Perfectionism 117 5.28 1.57 1 9 −0.218 −0.526 0.056

 Tension 117 5.03 1.73 2 9 −0.466 −0.787 −0.150

Social Network Index

 Network Diversity 117 4.54 1.65 0 9

 Total People 117 15.21 12.68 0 106

 Embedded Networks 117 1.38 1.24 0 5

SRS- 2 Adult, SR (T-score, μ = 50) 99 49.80 8.04 36 75 −0.202 −1.585 1.494

State Trait Anxiety Inventory (T-score, μ = 50)

 Trait 117 49.06 9.81 33 87 −0.940 −2.736 0.893

 State 117 45.15 8.04 34 73 −4.855 −6.263 −3.386

 Systematizing Quotient 117 67.88 20.81 22 138

Table 3.  Summary of Behavioral Data. Bold indicates the 95% confidence interval of the difference between 
expected mean and means of 1000 bootstrapped samples did not include zero. Mean Diff = mean difference 
from the expected mean (e.g. participant T-score minus 50); SD = standard deviation; 95% CI = 95% confidence 
interval of the mean difference based on 1000 bootstrapped samples; SRS-2 = Social Responsiveness Scale - 2; 
SR = Self-report; Consc. = Conscientiousness.
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Data Records
The data types described below are available on the OpenNeuro data sharing platform28. The dataset follows 
the Brain Imaging Data Structure (BIDS version 1.6.0)9 which organizes the imaging data using a simple folder 

Fig. 4  An example abbreviated BIDS directory structure for one subject showing the range of imaging and 
auxiliary data types available for multiple protocol variants. Briefly, the main data records consist of: (i) 
structural MRI (raw T1w and T2w images; manually edited segmented and parcellated cortical data), (ii) 
resting-state fMRI (raw, preprocessed, denoised, available in 3 anatomical spaces), (iii) movie fMRI (raw, 
preprocessed, available in 3 anatomical spaces), (iv) physiological data to accompany the fMRI datasets An 
overview of all the MRI data available across the entire subject sample is provided in Fig. 5.

Fig. 5  Availability of structural (sMRI, a) and functional (fMRI, b) runs for each subject and session (i.e., 
protocol version). Note that not all subject ID labels are shown for clarity. Key: Cyan = one run, Blue = two runs. 
See Table 2 for full pulse sequence parameter details.
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structure with nested files, each with standardized file naming conventions and accompanying JSON and TSV 
format metadata. T1w and T2w structural images were irreversibly deidentified using a customization of pyde-
face (https://github.com/jmtyszka/voxface). An example of the data structure and variety of data types available 
for subjects is given in Fig. 5. Note that events TSV files are empty placeholders for BIDS validation in the 
absence of response behavior for passive movie viewing and resting-state series.

Technical Validation
Quality Control of Automated Cortical and Subcortical Reconstructions.  Freesurfer supports 
visual inspection and manual corrections of automatic reconstruction to the initial and final brain masks, white 
and gray matter delineation and specification of white matter bias correction control points. All initial tissue 
constructions were visually inspected and manually corrected as necessary by a team of eight trained editors (DK, 
DAK, TR, ZE, DL, SL, WZ, JMT). Training included i) prior training through Freesurfer course material and ii) 
expert-guided learning of manual interventions (http://surfer.nmr.mgh.harvard.edu/fswiki/CourseDescription). 
Editors were randomly assigned to edit 10–15 scans. The most common issues that needed correction included: 
1) inclusion of non-brain tissue (e.g., dura, skull, sinus blood) in the grey matter (pial surface), 2) incomplete 
temporal pole reconstruction, 3) white matter surface inaccuracies in ventral temporal regions. Manual edits 
were applied as outlined in detail by the FreeSurfer documentation (http://surfer.nmr.mgh.harvard.edu/fswiki/
Tutorials) and respective reconstruction steps were run as implemented by the pipeline. Resulting next round 
reconstructions were again visually inspected and edited where necessary. An example of the impact of editing 
the brain mask on the pial surface in an individual subject is shown in Fig. 6 (top) with the surface displacement 
caused by editing, averaged over all subjects, shown in Fig. 6 (bottom).

Quality control of fMRIPrep reports.  fMRIPrep provides visual quality assessment reports per sub-
ject allowing a thorough visual assessment of processing quality. Three raters (D.K., J.M.T., P.G.) each visually 
inspected about one third of all reports, using previously agreed-upon criteria with regards to i) visual artifacts, 
ii) registration/transformation errors, iii) brain tissue segmentation and iv) quality of susceptibility distortion 
correction. We used a threshold intended to be conservative for gross errors, yet not specific to minor inaccu-
racies. We provide the three-tiered ratings (1, major issues; 2, minor issues; 3, no obvious issues) in a CSV file 
(fmriprep_output_manualQA.csv)28.

Image quality control metrics for bold fmri.  Detailed image quality metrics (IQMs) were calcu-
lated for all structural and functional imaging series using MRIQC (v0.15, Stanford Center for Reproducible 

Fig. 6  Example impact of manual brain mask editing on pial surface estimation. Prior to correction (a), the 
automatically estimated pial surface extended into the sagittal sinus (arrows). Deletion of voxels from the brain 
mask (b, heatmap color scale overlay) restored the pial surface to its edited position (arrows). (c) Cortical 
regions requiring pial surface editing. The number of subjects with pial surface displacement following editing 
of greater than 1 mm is shown overlaid on the partially inflated fsaverage pial surface. Overall, pial editing is 
concentrated in medial temporal, ventromedial frontal and lateral temporal cortices, consistent with areas prone 
to local susceptibility effects resulting in boundary inaccuracies.
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Neuroscience)62 and full reports are included in this data release. Two example IQMs for the fMRI series, frame 
wise displacement (FD) and temporal signal-to-noise ratio (tSNR), are reported in more detail here.

Framewise displacement.  Rigid body head motion was characterized using the framewise displacement 
(FD) metric defined in63. FD was computed with and without linear low-pass filtering (LPF) (Butterworth filter, 
order 5, f < 0.2 Hz) of the individual motion parameter time series calculated by MRIQC. LPF minimizes high 
frequency respiratory contamination in FD timeseries following arguments made in64–67. Filtered FD distribu-
tions for the three fMRI experiments (“Bang, You’re Dead!”, “Partly Cloudy” and resting-state) are shown in 
Fig. 7. Note that a very small number of subjects show rare relatively large motion spikes at times during the scan, 
as expected in a larger sample. All motion is fully characterized in the combination of fMRIPrep and MRIQC 
reports of this data release28.

Temporal SNR.  Temporal signal-to-noise ratio (tSNR) was calculated by MRIQC for each fMRI series. Raw 
tSNR estimates were normalized to voxel volume and EPI repetition time (TR) to allow comparison between 
sequence variants with different multiband acceleration factors and spatial resolutions (Fig. 8).

Usage Notes
Limitation and opportunities of an in-depth sample of small size.  As compared to other multi-
modal data releases such as the HCP or UK BioBank, the sample size of the present release is small. It is by now 
well known that small sample sizes severely limit the statistical reliability of conclusions that can be drawn about 
individual differences using neuroimaging data68–70, in line with a general upwards correction for the statistical 
reliability of correlations between datasets71. Generalization of findings regarding individual differences is thus 
limited in our dataset, although the details will vary depending on the exact question asked and method used72. 
As we have recommended previously70, we encourage the use of a predictive framework (using cross-validation 

Fig. 7  Head motion measured by framewise displacement (FD). (a) Raw and (b) low-pass filtered (LPF) 
temporal mean FD for all task and resting-state fMRI runs. The scatter plots compare typical (temporal median) 
and upper range (temporal 95th percentile) FD for all fMRI runs. (c) Temporal median LPF FD by task (“Bang, 
You’re Dead!”, “Partly Cloudy”) and resting-state, and (d) by MRI protocol version.
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within the dataset and/or replication to other, independent datasets), permutation-based statistical evaluation, 
and where feasible pre-registration in order to minimize the risk of false positive findings. A recent example based 
on a subset of the present dataset (prior to its further processing and release) illustrates that valuable negative 
findings, as well as estimates of sample sizes required for future studies, can be derived from this dataset73. We 
would anticipate that the present data release may be more valuable for adding cautionary notes and power esti-
mates to the literature than for strong demonstrations of positive findings.

Nonetheless, the dataset is distinguished by its in-depth and comprehensive psychological and behavioral 
assessments, especially in the domain of social cognition and decision making. We note that the factor analysis 
that we also provide (Fig. 4), while of interest in its own right, in no way precludes more fine-grained inves-
tigation of the original individual variables. Indeed, we would recommend that the factors be considered as 
broader covariates in analyses that wish to isolate variance in a specific individual behavioral variable more 
selectively. The in-depth behavior data together with high-quality neuroimaging data provides a powerful plat-
form to discover new brain-behavior relationships even with our modest sample size, since the measurement 
error of the variables is no less important than the sample size. However, we would expect such positive discov-
eries to be relatively constrained, ideally driven by specific pre-registered hypotheses. One possible research 
program could thus consist of an initial discovery study in a large-sample database, such as the UK Biobank, 
followed with a hypothesis-driven replication of the finding in our database—where the relevant variables are 
provided both with greater precision and, for the behavioral data, likely greater validity. The breadth of psycho-
logical characterization in our data release (see Table 1) provides further opportunities for comparison with 
other databases, where related cognitive variables are estimated from less detailed assessments. Applications of 
“far replicability”74 could be extended to databases in clinical populations (e.g., of participants with psychiatric 
diagnoses of depression, anxiety, autism, schizophrenia, and other disorders that impact social cognition and 
decision-making).

Our data release is also distinguished by providing multiple data formats and degrees of preprocessing. This 
affords the opportunity to test results, for instance, against variations in denoising decisions in an accessible 
and straightforward manner, as a further check on the robustness of findings to variations in typically complex 
processing pipelines, a well-known source of variation in the results obtained75,76. The denoising code we are 
co-releasing, in particular, allows researchers to explore a range of processing pipelines with substantial flex-
ibility. Taken together, the internal processing flexibility enabled by this data release, together with the above 

Fig. 8  Mean, whole-brain temporal SNR normalized to repetition time and voxel volume for comparison 
between sequence protocol variants. Multiband protocol variants consistently perform between 2.5 and 3 
times better than the single band variant (core1p1) in terms of tSNR efficiency. (a) Mid-coronal sections of the 
normalized tSNR efficiency (raw tSNR calculated by the MRIQC pipeline, adjusted for voxel volume and TR) 
averaged over all available subjects for the initial single-band protocol (core1p1) and (b) second phase multi-
band T2*-weighted EPI protocol (core2p2) demonstrating the increase in normalized tSNR efficiency offered 
by multiband acquisitions despite the reduction in spatiotemporal resolution from 3.0 mm and 2.5 s to 2.5 mm 
and 0.7 s. (c) Normalized tSNR distributions within the brain, showing an approximately three-fold increase in 
mean normalized tSNR with the core2p2 protocol. (d) Whole-brain averaged normalized tSNR distributions for 
each task and protocol version.
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recommendations to interface the present data with other datasets that purport to measure similar variables, 
should aim to maximize the meaningful generalizability of findings.

Note on the informed usage notes and quality control (QC).  We highlight below some processing and 
quality-specific aspects regarding the MRI data of this release.

We have used a combination of manual (human) and automated quality inspection of both structural 
(human: manual visual inspection and editing of FreeSurfer outputs; automated: MRIQC) and functional MRI 
data (human: manual visual inspection and resulting QC rating data; automated: MRIQC; see fMRIPrepQC_rat-
ings.csv). We provide the outputs of our careful QC with the actual data resulting from it. It is the responsibility 
of the end-users to use the information available depending on their intended use of the data and study-specific 
QC criteria. For example, rigor and attention to minor surface reconstruction errors might be less strict for stud-
ies that aim to use cortical reconstruction outputs only for surface-based registration. In contrast, for a specific 
volumetric study (e.g., cortical thickness analysis), one might be less lenient. Note that given in vivo data (as well 
as the current possible imaging resolution) there is no clear “ground truth” for anatomical tissue segmentations, 
beyond consensus in human judgment of the images. In addition, remaining image quality aspects due to factors 
such as motion and regional susceptibility effects (e.g., in inferior temporal brain regions) cannot be eliminated 
post hoc and result in residual imprecision in individual data. These and other intrinsic measurement errors in 
our dataset require users to apply expert judgment in how they use the data release to answer specific scientific 
questions of interest.

For example, caution should be applied when using functional data in orbital frontal regions and data pro-
cessed with fMRIPrep. As of the submission date of this paper, there is a known issue with susceptibility distor-
tion correction (SDC) using spin echo fieldmaps as implemented in fMRIPrep. fMRIPrep currently uses AFNI’s 
3dQwarp function to implement distortion correction, which can produce suboptimal SDC outputs in some 
subjects (see https://github.com/nipreps/fmriprep/issues/2210). While issues such as this are not a result of our 
specific data, they can be serious issues that require knowledge about the limitations inherent to MRI and estab-
lished processing tools, an ongoing set of issues actively discussed among expert users.

Code availability
We used containerized versions of fMRIPrep 20.2.1 and MRIQC for data preprocessing and quality control. 
Example calling scripts for fMRIPrep, jupyter lab notebooks for figure recreation and R code for the example 
factor analysis are provided at https://github.com/adolphslab/ConteDataRelease.

The code to reproduce resting-state and movie analyses are provided at https://github.com/adolphslab/rsDe-
noise. As outlined in detail in the source, this codebase can easily be adapted to run many different configurations 
of denoising decisions on the data.
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