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Model-Free Cluster Analysis of 
Physical Property Data using 
Information Maximizing Self-
Argument Training
Ryohto Sawada1 ✉, Yuma Iwasaki1,2 & Masahiko Ishida1

We present semi-supervised information maximizing self-argument training (IMSAT), a neural network-
based classification method that works without the preparation of labeled data. Semi-supervised 
IMSAT can amplify specific differences and avoid undesirable misclassification in accordance with the 
purpose. We demonstrate that semi-supervised IMSAT has a comparable performance with existing 
methods for semi-supervised learning of image classification and can also classify real experimental 
data (X-ray diffraction patterns and thermoelectric hysteresis curves) in the same way even though 
their shape and dimensions are different. Our algorithm will contribute to the automation of big data 
processing and artificial intelligence-driven material development.

High-throughput materials fabrication and characterization are in strong demand in the field of material devel-
opment due to the increasing complexity of the industrial materials1,2. The composition-spread technique is a 
promising solution where one can fabricate the gradient of a composition in a single fabrication. For example, Yoo 
et al., fabricated a Fe-Ni-Co ternary alloy and measured a continuous phase diagram3 and Wang et al., fabricated 
La1−x(Ca, RE)xVO3 composition-spread films and measured thermoelectricity4. Furthermore, high-throughput 
materials fabrication also enables to apply big data analysis to material development. Big data analysis helps to 
discover unexpected features and new materials5–7.

High-throughput data processing is inevitable to utilize high-throughput material fabrication. However, the 
automation of the data processing is challenging for two reasons. First, raw experimental data varies depending 
on not only essential physical properties but also unessential experimental conditions. Second, one usually needs 
to classify the data based on purpose-specific rules. For example, for X-ray diffraction (XRD), the spectrum varies 
depending on not only the crystal structure but also experimental conditions such as the power of the source, sen-
sitivity of the detector, and background noise8. The dependence on the experimental conditions not only makes 
analysis costly but also prevents data sharing between different databases. Additionally, a noteworthy feature of 
the spectrum changes depending on the purpose. For example, one needs to focus on the position of the peak to 
classify the crystal structure. On the other hand, to evaluate the purity of the crystal, one needs to focus on the 
width of the peak9. For these reasons, to realize automatic classification, an algorithm that enables users to adjust 
the classification method while working with a small amount of data is required.

A machine-learning approach is a good solution if there is a sufficient amount of labeled data. A neural net-
work is especially promising because it can handle various types of data10. Neural network can solve various 
problems without domain knowledge (e.g. image recognition, text recognition and sound recognition11,12, crystal 
structure13 chaotic phase and quantum mechanics14–16). However, a neural network requires a large amount of 
labeled data for supervised learning, and data collection is difficult in real experimental data.

In terms of profit, it is desirable to use unsupervised learning that does not require labeled data. The key ques-
tion for automated classification using unsupervised learning is how to quantify the similarity between two pieces 
of data. For XRD, the spectrum is given as s x( ) where x is the diffraction angle. The similarity between the two 
pieces of data s t,  is defined by the kernel function D s t( , ). Iwasaki et al. tried to classify the XRD data of Fe-Co-Ni 
ternary-alloy thin film by using several kernel functions (Euclidean, Manhattan, Pearson, cosine, and normalized 
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and constrained dynamic time warping (NC-DTW)) and found only NC-DTW can classify a crystal structure 
because it can accommodate peak shifting due to lattice constant change17. In NC-DTW, D s t( , ) is given by
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where w is the window size that limits the range of time warping. However, the appropriate kernel function varies 
depending on the problem. For XRD, NC-DTW is suitable only because the XRD spectrum can move depending 
on the lattice constant. Furthermore, many of the existing kernel functions, including NC-DTW, are limited to 
low dimensional classification, even though a lot of raw experimental data is complicated multi-dimensional data. 
These problems prevent us from reusing kernel functions and make the automation non-profitable.

In this paper, we present a comprehensive solution based on information maximizing self-argument train-
ing (IMSAT)18 that uses a neural network to maintain versatility and does not require manual kernel function 
searches or preparation of labeled data. We demonstrate our algorithm performs comparably with existing meth-
ods for semi-supervised learning of image classification and succeeds in classifying line charts and scatter plots 
from raw experimental data. Our algorithm can accelerate the automation of big data collection and open the way 
to the study of artificial intelligence-driven material development.

Semi-supervised IMSAT.  Model complexity is the core of a neural network’s versatility; however, it is also 
the reason that a neural network can easily overfit small data sets. Therefore, the degree of freedom of the neural 
network needs to be reduced to avoid overfitting by “regularization”. Recently, the neural network regularized by 
Virtual Adversarial Training (VAT) succeeded in clustering handwritten numerals with only a small amount of 
data. VAT19 is a representative regularization method based on local perturbation. The objective function of VAT 
is defined by the following function:
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θ is parameter of the neural network, N  is the number of data, xi is the i-th data, Vy is the number of clusters, 
p y x( ) is conditional probability, θT x( )i  is the perturbated data, Nl is the number of data with label information, 
and β is a hyper parameter. Hl is the same as the target function of supervised learning. θT x( )i  is chosen to be
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Regularization using local perturbation is based on the idea that it is preferable for data representations to be 
locally invariant (i.e., remain unchanged under local perturbations on data points). The idea would enable neural 
networks to learn meaningful representations of data.

IMSAT is an expansion of VAT for unsupervised learning. The objective function of IMSAT is defined by the 
following equation:

R H y H y x( ) ( ( ) ( )) (6)pert θ λ µ− − |

where µ and λ  are hyper parameters, H y( ) and H y x( ) are marginal entropy and conditional entropy, 
respectively,
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Increasing the marginal entropy H y( ) encourages uniformity among the cluster sizes, while decreasing the 
conditional entropy H y x( )|  encourages unambiguous cluster assignments. IMSAT achieved over 90% accuracy in 
unsupervised learning of the clustering of handwritten numerals.

The original IMSAT is not suitable for regarding specific differences as important because IMSAT only 
attempts to make data representation locally invariant. However, specific differences are sometimes regarded as 
important due to domain knowledge. Therefore, we added HI to enable semi-supervised learning. Our algorithm 
optimizes the following function:

θ λ µ− − | .R H y H y x( ) ( ( ) ( )) (10)vat

Semi-supervised IMSAT has two advantages in terms of the application to real experimental data. The first 
is it can amplify specific differences and modify the classification method in accordance with the purpose. The 
second is it does not restrict data structures. Many current semi-supervised learning methods use data-structure 
dependent augmentations such as flipping, rotation, and color filtering to improve accuracy. On the other hand, 
semi-supervised IMSAT is applicable to most of the existing network architectures without restricting data 
structure.

Results
Comparison with existing algorithms.  We compared the classification accuracies of VAT, IMSAT, 
semi-supervised IMSAT (our method) and mean teacher20 for handwritten digit images (MNIST) download 
from21. We addressed two tasks, usual classification, and classification using a quotient divided by two where 
[0, 1], [2, 3], [4, 5], [6, 7], [8, 9] are classified as the same group respectively. We used 64 images for labeled training 
data, 10,000 images for testing, and 60,000 images for unlabeled data for semi-supervised learning. Table 1 shows 
the classification results. Semi-supervised IMSAT outperforms VAT, IMSAT, and mean teacher in classifying the 
quotients. This indicates that semi-supervised IMSAT is suitable for modifying the classification method in 
accordance with a user-specific purpose.

Clustering line chart (XRD patterns).  We applied our algorithm to the clustering of a line chart. 
Figure 1(a) shows the phase map manually deduced from individual XRD patterns of a Fe-Co-Ni ternary-alloy 
thin film17. The XRD patterns are from ref. 3. The number of data N  is 1240. There are four types of diffraction 
data, fcc (face centered cubic), bcc (body centered cubic), hcp (hexiagonal closed packed), and combination of fcc 
and bcc8,9. Examples of XRD patterns are shown in Fig. 1(b). The automated composition-phase maps identified 
using IMSAT and NC-DTW are shown in Fig. 1(d,e), respectively. These maps appear to be nearly the same.

We also examined how robust these algorithms are to the noise in the data. Figure 1(c) shows examples of 
XRD patterns where random noise was added to the diffraction data. The XRD patterns are noisy and diffi-
cult to manually classify. Figure 1(f–h) show the automated composition-phase maps identified using IMSAT, 
NC-DTW and semi-supervised IMSAT, respectively. Surprisingly, IMSAT succeeded in clustering noisy XRD 
patterns and was more accurate than NC-DTW. Additionally, misclassification of bcc + fcc area was corrected by 
semi-supervised learning.

Clustering scatter graph (hysteresis curve).  To verify the versatility, we also applied IMSAT to the 
clustering of scatter graph data; clustering of the hysteresis curve of a magnetic FePt thin film. The FePt thin 
film was fabricated by composition-spread sputtering. Figure 2 shows an example of the thin film fabricated by 
composition-spread sputtering (a) and the hysteresis curve of the anomalous Nernst effect (ANE) where thermo 
electric voltage exhibits a hysteresis curve depending on the external magnetic field (b)22,23. The shape of the curve 
will change if fabrication of the thin film fails. There are two reasons for failure, disconnection inside the sample 
and the insulator basis leaking onto the sample. Figure 2(b) shows examples of the thermoelectric voltage curve 
of the disconnected and leaked samples. Typical curves of the disconnected and leaked samples are random noise 
and a V-shaped curve, respectively.

The left column of Table 2 shows the automatic clustering results of the FePt thin film’s ANE voltage curve 
using IMSAT. Manual clustering was implemented by considering the curvature shape and the results of the 

VAT IMSAT our method
mean 
teacher

Normal 96.3% 95.8% 96.1% 93.6%

Quotient 72.5% 48.2% 93.7% 90.5%

Table 1.  Classification accuracies of VAT, IMSAT, semi-supervised IMSAT (our method) and mean teacher for 
handwritten digit images (MNIST).
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Figure 1.  Result of clustering of XRD data of Fe-Co-Ni ternary-alloy thin film. (a) Phase map manually 
deduced from individual XRD patterns of spread wafer. (b) Example of XRD patterns where random noise was 
added to the diffraction data. (c) Example of XRD patterns where random noise was added. (d) Result of cluster 
analysis using IMSAT ( =V 4y ) and (e) that using NC-DTW. (f) Result of cluster analysis using IMSAT ( =V 4y ), 
(g) that using NC-DTW, (h) and that using semi-supervised IMSAT, where random noise was added to the 
diffraction data. We used 16 labeled data for semi-supervised IMSAT(shown by dots).

Figure 2.  (a) Magnetic thin film fabricated by composition-spread sputtering. (b) Hysteresis curve of 
ANE exhibited by thermo electric voltage depending on the external magnetic field and examples of the 
thermoelectric voltage curve of the disconnected and leaked samples (b). We measured the thermoelectric 
voltages of the thin film using a semi-automatic wafer prober24.
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four-terminal measurement. Clearly, our algorithm was successful and highly accurate in classifying the normal 
samples. However, the classification accuracy of the disconnected and leaked samples was not so high, possibly 
because disconnection and leakage can occur simultaneously.

In terms of industrialization, classifying a failed sample as a normal sample is critical. The left column of 
Table 2 shows that IMSAT sometimes classified a failed sample as a normal sample because IMSAT only attempts 
to make data representation locally invariant. We addressed the problem with semi-supervised learning where a 
penalty is added to the misclassification of labeled data. The samples for labeled data are randomly chosen from 
those that are classified as normal by IMSAT even though they were manually classified as failed samples. We set 
Nl as 5 and β as .3 34. The right column of Table 2 shows the result of automatic clustering using semi-supervised 
learning. Semi-supervised learning suppressed the misclassification by adding a penalty, but it increased Rpert at 
the same time. This indicates semi-supervised IMSAT can flexibly respond to a user’s needs by regarding small, 
specific differences as important. We could not achieve 100% accuracy with a normal sample, possibly because the 
amounts of disconnection and leakage were not discrete quantities.

Discussion
We presented how semi-supervised IMSAT can effectively classify raw experimental data without manual 
kernel function searches or preparation of large amounts of labeled data. We demonstrated semi-supervised 
IMSAT performs comparably with existing algorithms in the clustering of handwritten digits. We also applied 
semi-supervised IMSAT to the clustering of XRD patterns and the thermoelectric curve and showed that 
semi-supervised IMSAT is versatile and robust against noise and easily tunable by small data. Our algorithm 
can accelerate the automation of big data collection and open the way to the study of artificial intelligence-driven 
material development.

Methods
Condition for the clustering.  We used 3-layer convolutional neural network for the clustering by mean 
teacher with kernel size 5. We optimized consistency weight to 1.0 to maximize the accuracy.

We used commonly reported parameter values for the clustering by VAT, IMSAT and semi-supervised IMSAT. 
We set the network dimensionality to d-1200-1200-Vy for the clustering of XRD patterns, where d(=89) is input 
dimensionality. Nl, µ, and λ were set to 0 (unsupervised learning), .0 2, and .0 2, respectively. We set the size of the 
mini-batch to 64 and ran 50 epochs. We also tried the clustering using NC-DTW. We used the same parameters 
as Iwasaki’s paper for NC-DTW. We set the window size w to be 10 (0.5 degrees) and used hierarchy clustering 
analysis with the average linkage method.

The parameter values for neural networks for the clustering of the ANE voltage curve were almost the same as 
the clustering of XRD patterns. We set the network dimensionality to d-1200-1200-Vy for the clustering, where 
d(=28 × 28) is input dimensionality. Nl, µ, and λ were set to be 0 (unsupervised learning), 0.2, and 0.2, respec-
tively. We set the size of the mini-batch to 40 and ran 50 epochs.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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