
diseases

Review

Stem Cell Therapy for Post-Traumatic Stress Disorder: A Novel
Therapeutic Approach

Dhir Gala * , Vikram Gurusamy, Krishna Patel, Sreedevi Damodar , Girish Swaminath and Gautam Ullal

����������
�������

Citation: Gala, D.; Gurusamy, V.;

Patel, K.; Damodar, S.; Swaminath, G.;

Ullal, G. Stem Cell Therapy for

Post-Traumatic Stress Disorder:

A Novel Therapeutic Approach.

Diseases 2021, 9, 77. https://doi.org/

10.3390/diseases9040077

Academic Editor: Claudia Altomare

Received: 19 August 2021

Accepted: 25 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Neuroscience, American University of the Caribbean School of Medicine,
1 University Drive at Jordan Dr, Cupecoy, Sint Maarten; vikramgurusamy@students.aucmed.edu (V.G.);
krishnakpatel@students.aucmed.edu (K.P.); sreedevidamodar@students.aucmed.edu (S.D.);
girishswaminath@students.aucmed.edu (G.S.); gullal@aucmed.edu (G.U.)
* Correspondence: dhirgala@gmail.com or dhirgala@students.aucmed.edu

Abstract: Stem cell therapy is a rapidly evolving field of regenerative medicine being employed for
the management of various central nervous system disorders. The ability to self-renew, differentiate
into specialized cells, and integrate into neuronal networks has positioned stem cells as an ideal
mechanism for the treatment of epilepsy. Epilepsy is characterized by repetitive seizures caused
by imbalance in the GABA and glutamate neurotransmission following neuronal damage. Stem
cells provide benefit by reducing the glutamate excitotoxicity and strengthening the GABAergic
inter-neuron connections. Similar to the abnormal neuroanatomic location in epilepsy, post-traumatic
stress disorder (PTSD) is caused by hyperarousal in the amygdala and decreased activity of the
hippocampus and medial prefrontal cortex. Thus, stem cells could be used to modulate neuronal
interconnectivity. In this review, we provide a rationale for the use of stem cell therapy in the
treatment of PTSD.

Keywords: stem cell therapy; pluripotent stem cells; cell therapy; applications; post-traumatic stress
disorder; epilepsy

1. Introduction

Post-traumatic stress disorder (PTSD) is a psychiatric disorder characterized by dif-
ficulty recovering from an exposure to an exceptionally threatening/horrifying event
or to a prolonged trauma. Exposures may include serious accidents, natural disasters,
combat/war, rape or death threats [1]. PTSD presents as persistence of intrusive recollec-
tions, avoidance of trauma-related stimuli, negative alterations in mood, and hyperarousal
symptoms for greater than one month [1]. Events can be relived through nightmares and
flashbacks leading to feelings of sadness, anger, or fear and further leading to detachment
from others. It can present as a significant health burden by increasing the risk of suicide
and other medical conditions [2]. The lifetime prevalence of PTSD is between 1.5% and
8.8%. The prevalence among U.S. adults is 3.5%, with women twice as likely to have
PTSD than men. PTSD is highest among U.S. African Americans, Native Americans, and
Hispanics/Latinos when compared to non-Hispanic/Latino Caucasians [3–5].

Treatment options for PTSD include psychotherapy and medication, either used
alone or in combination. Cognitive processing therapy addresses the negative thoughts
surrounding the trauma and confront distorted thought patterns in order to change how
they feel or act. Prolonged exposure therapy uses detailed repetitive recollection of the
trauma to expose the patient to their symptoms in a controlled and safe environment to
improve coping skills [6]. Group therapy allows survivors of traumatic events to feel
comfortable and supported in sharing their emotions in a non-judgmental setting. Other
psychotherapies include interpersonal, supportive, and psychodynamic therapies focusing
on self-regulation and interpersonal relationships [6]. Medications can be used in PTSD
for symptomatic relief; however, their efficacy and response rates are low with Selective
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serotonin reuptake inhibitors (SSRIs) such as fluoxetine and paroxetine showing limited
efficacy over placebos [7]. Other medications such as serotonin-norepinephrine reuptake
inhibitors (SNRIs) have also shown minimal benefit for PTSD symptoms. The first-line
medications used for PTSD include sertraline, fluoxetine, paroxetine, and venlafaxine.
Prazosin is an alpha-1 adrenergic antagonist used to reduce nightmares in PTSD, but
studies show variability in its efficacy for symptom improvement. The prevalence of
treatment-resistant PTSD is approximately 33%. Current non-pharmacological therapies
for PTSD have limited availability and pharmacological management can lead to significant
adverse effects [8]. PTSD is a chronic condition for many patients and commonly recurs or
resists treatment, suggesting the need to explore further therapeutic options.

The pathophysiology of PTSD involves abnormal neural connectivity between the
amygdala, hippocampus, and medial prefrontal cortex (mPFC). PTSD and temporal lobe
epilepsy have similar abnormal neuroanatomic neural networks. Both disorders have
functional abnormalities in the anterior mesial temporal lobe and neural pathways in-
volving the temporal lobe implicating similar therapeutic options could be used for both
disorders [9–13]. In epilepsy, repeated abnormal paroxysmal electrical discharges and
seizure activities lead to progressive neuronal cell damage [14]. In temporal lope epilepsy,
the hippocampus becomes the common target of neuronal injury. This can induce neuroge-
nesis, apoptosis, and neuronal impairment with limited GABAergic receptor expression
resulting in anxiety, depression, and cognitive impairment [15]. More recently, epilepsy has
been considered a candidate for stem cell therapy for use in prophylaxis and enhancement
of cognitive function. By using stem cell therapy and modifying the expression of specific
neurotrophic factors, impairment can be reduced in the affected areas and provide better
outcomes [16]. Studies in children have shown use for stem cell therapy in treatment-
resistant cases [17]. Targeting stem cell therapy to the amygdala and hippocampal regions
of the brains can further help to manage the complications of epilepsy [18]. Stem cell
therapy has been used to treat the neuropsychiatric components of epilepsy. By nature
of their similarities in neuroanatomic neural networks, stem cells could be utilized for
the treatment of PTSD. Loss or over-activation of neuronal nuclei or their projections in
the amygdalohippocampal circuit are implicated in the pathogenic mechanism of both
epilepsy and PTSD. Therefore, we suggest that stem cell therapy targeting specific regions
of the brain to enhance the growth of new neurons could be used in the treatment of PTSD,
to reduce symptoms and potentially address the underlying cause of PTSD.

2. Stem Cell Therapy: Terminology and Cell Lines
2.1. Overview

Stem cell therapies are being extensively used in regenerative medicine, especially
in neurological pathologies, due to the low regenerative potential of the central nervous
system (CNS). Numerous pre-clinical animal models have shown stem cell therapy to
be safe and effective leading to an increasing number of clinical trials [19]. This surge
in clinical trials has led to the formation of regulations and guidelines for the use of
stem cells in treating various neurological disorders [20,21]. Stem cell therapies provide
benefit through various mechanisms in the CNS such as replacement of cells, modulating
the inflammatory response, and providing neuroprotection [22–24]. These mechanisms
vary depending on the source of stem cells. The commonly used stem cells are human
pluripotent stem cells (hPSCs), fetal-derived neural progenitor stem cells (fNPCs) and
mesenchymal stem cells (MSCs).

2.2. Human Pluripotent Stem Cells (hPSCs)

Stem cells such as hPSCs can self-renew and differentiate into specialized tissue types
making them useful in regenerative medicine. The two most widely used subtypes of
hPSCs include human embryonic stem cells (hESCs) and human induced pluripotent stem
cells (hiPSCs). hESCs are obtained from the blastocyst of the growing embryo whereas
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hiPSCs are generated from somatic cells by inducing the expression of four transcription
factors: Oct3/4, Sox2, Klf4, and c-Myc [25,26].

The primary use of hPSCs in the clinical setting is through expansion and cell replace-
ment. This cannot occur by direct implantation due to the high risk of cancer by mutations
accumulated during the proliferation of undifferentiated tissues as well as the effects of
the local microenvironment [27]. Ideally, the cells need to be cultured and differentiated
into tissue prior to transplantation. These cells can then be used in various CNS conditions
involving the loss of neurons such as Parkinson’s disease, spinal cord injury, and Hunting-
ton’s disease [28–30]. However, these therapies have a risk for immunogenicity even with
the use of autologous stem cells [31].

2.3. Fetal-Derived Neural Progenitor Stem Cells

fNPCs are cells that are obtained from the fetal brain and spinal cord [32]. These
stem cells possess the ability to differentiate into various CNS cell types such as neurons,
glial cells and neuroectodermal cells, making them useful for CNS pathologies [33–35].
However, a major limiting factor is the availability of fNPCs; some transplantations may
require ten aborted fetuses for one patient [32,36].

The major mechanism of therapy for fNPCs is cell replacement. In primate models of
spinal cord injury, intraparenchymal injection of fNPCs proved efficacious and safe with
histologic evidence of nerve growth in the injured region [37]. Similar studies have been
replicated in rat models of Parkinson’s disease, Huntington disease, traumatic brain injury,
and stroke with promising results [38–41]. These pre-clinical studies on fNPCs have led
to clinical trials for a variety of CNS pathologies including amyotrophic lateral sclerosis,
traumatic cervical spinal cord injury, and stroke [42–44].

2.4. Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are multipotent self-renewing stem cells that are
commonly obtained from the bone marrow but can also be found in the umbilical cord,
peripheral blood, and adipose tissue [45]. MSCs have been tested mostly in animal models
with pathologies of the heart, liver, eye, and blood [46]. However, there are clinical
trials using MSCs for conditions such as amyotrophic lateral sclerosis, stroke, spinal cord
injury, multiple sclerosis, traumatic brain injury, and epilepsy [47–52]. MSCs delivered
intravascularly have a high degree of safety with a meta-analysis showing no increase in
acute infusional toxicity, organ system complications, infection, death, or malignancy [53].

3. Epilepsy
3.1. Overview

Epilepsy is a CNS condition that involves recurrent seizures (≥2) more than 24 h apart,
an unprovoked seizure with a probability of subsequent seizures, or a diagnosis of a type
of epilepsy syndrome. It affects over 70 million people around the world with the highest
risk groups including infants and older aged adults [14]. Causes of epilepsy are broad
and up to 60% of patients have an idiopathic cause of epilepsy [54]. Common etiologies
include temporal lobe lesions, cerebrovascular disease post-stroke, primary or metastatic
brain tumors, vascular malformations, prior CNS infection such as neurocysticercosis, head
injury, and Alzheimer’s disease [55].

3.2. Mechanism

The pathophysiology of epilepsy can be viewed as a shift in the balance of GABA and
glutamate neurotransmission with an increase in glutamate excitatory neurotransmitters
due to loss of GABAergic neurons after epileptic insults such as strokes, traumatic brain
injury, and status epilepticus. The neuronal circuits are often reorganized to favor abnormal
connections -such as in the granule cells of the dentate gyrus collectively called mossy fiber
sprouting. The deficit in GABA signaling and enhancement of glutamate signaling is one
of the goals in pharmacotherapy [56]. However, research has shown that the mechanism
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of epilepsy is more complex and may involve several neuropeptides. Neuropeptides
are important in the mechanism of epilepsy with their release dependent on neuronal
activity, typically released during high neuronal firing frequencies, as opposed to neuro-
transmitters [57]. In the in-vitro single neuron epilepsy model, the firing rate of neurons
is abnormally high compared to normal neurons. As a result, targeting neuropeptide
receptors has become an alternative option for future pharmacotherapy [58].

Partial onset seizures are the most common form of adult seizures with temporal lobe
epilepsy as the most common subset. Temporal lobe epilepsy is thought to be partially
caused by the dysregulation of the amygdala and hippocampus activity. Owing to its
structural pattern, the hippocampus is one of the most vulnerable foci in the brain for
epileptogenesis [59]. In addition, hippocampus and amygdala play a pivotal role in
long-term potentiation and memory consolidation [59]. Therefore, deficits in declarative
and spatial memory have been specifically implicated with enhancement of emotional
memories when these areas are targeted [59]. Deficits in fear conditioning are also seen
in temporal lobe epilepsy in those undergoing unilateral lobectomy of the temporal lobe
that includes parts of the amygdala and hippocampus [60]. Neuronal loss in either the
hippocampus or amygdala leads to damage in both areas due to the interconnectivity;
therefore, when the seizures occur in one region, mirror foci develop contralaterally [61].

Animal studies have reported the posteromedial and posterolateral cortical nuclei
disappear in temporal lobe epilepsy with severe neuronal loss in addition to damage to a
large projection in the lateral amygdala-hippocampal area that provides emotional sensory
input for hippocampal processing [62]. The emotional significance of memories could be
affected in temporal lobe epilepsy if hippocampal-dependent. The lateral nucleus used
for auditory inputs and fear conditioning was additionally affected, suggesting temporal
lope epilepsy can lead to behavioral impairments in fear conditioning. The medial nucleus
remains intact and has been proposed to be involved in seizure initiation [63].

Seizures in temporal lobe epilepsy are facilitated via decreased inhibition, increased
excitability, and decreased seizure threshold [64]. The decreased seizure threshold is
caused by a loss of GABAergic neurons, specifically GABAergic somatostatin contain-
ing non-pyramidal neurons. The destruction of the GABAergic somatostatin contain-
ing neurons increases the spread of seizures and decreases the synchronized activity of
the amygdala-hippocampal neuronal circuitry for emotional declarative memory and
fear conditioning [65].

Kindling is a widely used model for describing the development of temporal lobe
epilepsy [66]. The model describes how a single seizure can increase the likelihood of
subsequent seizures as the seizure threshold lowers. Kindling leads to a lasting change in
brain function, predisposing to neuropsychiatric symptoms [67]. A new study in 2021 on
mice used optokindling to activate pyramidal cells in the piriform cortex which disrupted
GABA production in feedback inhibitory cells, thereby increasing seizure severity and
frequency [68]. Alterations in neuronal circuitry after recurrent seizures could be a potential
target for therapy to reduce the adverse effects of epilepsy and the progression of kindling,
thereby, decreasing neuropsychiatric symptoms [68].

3.3. Stem Cell Therapy for Epilepsy

While pharmacotherapy can be used to treat epilepsy, it can induce detrimental side
effects and is largely limited to symptomatic treatment rather than prevention. Surgery,
while effective in reducing seizure initiation, is invasive with numerous adverse effects
and may not be a viable treatment option for all patients. Stem cell therapy has been
considered as an alternative to medications and surgery and has proven to be effective in
addressing other neurological disorders, such as spinal cord injury and stroke [69]. In a
study conducted in Belarus, 22 patients with refractory epilepsy were split into 10 patients
in a stem cell therapy group and 12 patients in a control group [52]. A total of 70% of the
stem cell therapy group showed transformations of generalized tonic-clonic seizures to
simple or complex partial seizures, 50% showed improvement in cognitive status, and 60%
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demonstrated improvement in anxiety. There was a significantly higher number of respon-
ders in the cell therapy group compared to the control. Further, the cell therapy group had
a significant reduction in monthly seizure frequency, seizure severity and anxiety com-
pared to control group [52]. In another pilot study, one patient, who initially had epileptic
seizures 20–40 times per week, had the episodes decrease in frequency, to 14 episodes per
week, after two rounds of bone-marrow derived CD271 + MSCs transplantation [17].

hESCs have the capacity to differentiate into different cell types of the three germ
layers and can replace damaged neural cells with healthy stem cells. A study using mice
models of status epilepticus showed that neural progenitor cells have the capacity to differ-
entiate into mature neurons after transplantation into the hippocampi [18]. Further research
trials suggest hESCs could be used as a means of treatment and prevention of epilepsy with
MSCs triggering the release of neurotrophic factors and immunomodulation to reduce the
occurrence of seizures [70]. In addition, MSCs have neuroprotective effects by suppressing
glutamate toxicity and oxidative injury [70]. An in vitro study demonstrated that MSCs can
suppress the expression of the glutamate receptors, including GluR1 AMPA receptors AM-
PAR subunit as well as the expression of NR1 and NR2A (both NMDAR subunits), yielding
reduced glutamate excitotoxicity and reactive oxygen species (ROS) accumulation [71].
hESCs can significantly decrease the frequency and severity of spontaneous seizures and
help improve learning and cognitive defects associated with status epilepticus [72].

Stem cell therapy can yield attenuated neuronal death, increased synthesis of neural
cells, decreased microglia and astrocyte reactivity, and modulation of neuroinflamma-
tion [73]. As astrocyte dysfunction is a common feature in the mechanism of epilepsy,
certain stem cells can differentiate into functioning astrocytes [73]. According to another
study, MSC derived exosomes attenuated astrocyte dysfunction and neuroinflammation in
mice models of status epilepticus, in addition to demonstrating improvement in cognition,
learning, and memory [73]. Another approach to stem cell therapy for epilepsy manage-
ment includes stimulating GABAergic interneurons, as recurrent epilepsy can diminish the
prevalence of GABAergic interneurons responsible for inhibitory control in affected brain
regions [74]. Cells derived from medial ganglionic eminence (MGE) that are GABAergic
progenitors migrate after grafting into the different layers of the hippocampus, leading
to a reduction of spontaneous recurrent seizures and reduced abnormal neurogenesis as
demonstrated by a mouse model of temporal lobe epilepsy [75]. The formation of synapses
by axons of graft-derived GABAergic interneurons with the dendrites of the host CA1 pyra-
midal neurons plays a significant role in the reduction of spontaneous recurrent seizures,
as does reduced EEG amplitude in between seizure episodes [75].

Epileptic seizures can induce anomalous neurogenesis, apoptosis, and neuronal im-
pairment, along with limited GABAergic receptor expression [64]. In epilepsy, the induction
of neurogenesis is correlated with significant cognitive impairment, anxiety, and depres-
sion [15]. Modifying the expression of neurotrophic factors like brain-derived neurotrophic
factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) could be a potential
approach for stem cell therapy [68]. Endothelial progenitor cells are known to increase
the expression of BDNF and autophagy-related proteins while improving neuronal cir-
cuitry, thereby reducing impairment to learning, memory, and anxiety [16]. Furthermore,
in a research study, after one and/or multiple rounds of CD271+ bone marrow MSCs
implantation, patients with prior extrapyramidal abnormalities experienced more severe
emotional reactions and facial expressions, stronger motor development, better speech,
and increased eye and head reactivity to visual and auditory stimuli [17]. Through various
target neuronal circuitry such as neurotrophic factors, glutamate receptors, GABAergic
interneurons, and astrocytes, stem cell therapy is considered effective in the management of
epilepsy. Consequently, it can be utilized to treat neuropsychiatric conditions with similar
pathophysiological mechanisms, including but not limited to PTSD.
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4. PTSD
4.1. Overview

PTSD is the persistence of intrusive recollections, avoidance of trauma-related stimuli,
negative alterations in mood, and hyperarousal symptoms after exposure to an excep-
tionally threatening or horrifying event or to prolonged trauma [1]. While many people
show capacity to recover after exposure to trauma, it remains a challenge to predict who
will develop PTSD [76]. Patients are at increased risk of experiencing poor physical
health including somatoform, cardiorespiratory, musculoskeletal, endocrine, gastrointesti-
nal, genitourinary, integumentary, and immunological disorders burden [2]. It is associ-
ated with substantial psychiatric comorbidity, increased risk of suicide, and considerable
economic burden [2].

4.2. Prevalence of PTSD and Treatment-Resistant PTSD

Under DSM-5 criterion A, the prevalence of exposure to potentially traumatic and
other life events over the course of a lifetime is estimated at 89% [77,78]. Up to 3% of adults
have PTSD at a given moment [79]. Lifetime prevalence rate is between 1.5% and 8.8% and
in regions of conflict this rate doubles [3–5]. More than half of rape survivors are affected
by the condition [80]. Approximately 33% of people with PTSD have treatment-resistant
PTSD. Patients undergoing cognitive behavioral therapy may have non-response rates
as high as 50%, and for SSRIs about 20–40% [81]. In a study of PTSD patients receiving
treatment in a primary care setting, the course of the disorder was chronic, with a recovery
rate of 38% and a recurrence rate of 30% [82].

4.3. Neuroanatomy and Pathophysiological Mechanism of PTSD

In healthy individuals, stress activates the amygdala, hippocampus, and rostral an-
terior cingulate cortex for appropriate consolidation of fear memory and extinction of
fear. This includes encoding the explicit memory of the stressor, identifying safe contexts
relative to the stressor, and habituating appropriately to the stressor (Figure 1). In PTSD,
stress hyper-activates the amygdala and there is reduced functional top-down governance
of the hippocampus and rostral anterior cingulate cortex over the amygdala, leading to
over-consolidation of fear memory and impaired fear extinction.
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Abnormal interactions between the amygdala and the hippocampus and mPFC are
thought to underlie PTSD, resulting in over-consolidation of fear-based memories and/or
weakened fear extinction, which is the decrease in the conditioned fear response [83,84].
The pathogenic mechanism is thought to be a process of fear conditioning marked by
amygdala hyperarousal [84] and reduced mPFC activity, resulting in impaired extinction
(Figure 2). Reduced hippocampal/parahippocampal activity is also implicated, resulting
in over-generalization of fear to non-threatening stimuli and inability to differentiate safe
and threatening contexts [84,85].
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with PTSD.

Conditioning of fear and its extinction in humans is associated with activation of
both the amygdala and the hippocampal/parahippocampal cortices [83,84]. This is cor-
roborated by functional imaging studies of PTSD patients showing reductions in hip-
pocampal/parahippocampal activity and hippocampal volumes [86–89]. Furthermore,
hippocampal/amygdala activity was seen correlated with extinction of conditioned fear
by context, indicating that amygdalohippocampal interconnectivity is involved [88]. Con-
sequently, patients with PTSD show reduced ability to process contextual surroundings
during extinction of fear [90] and decreased renewal of fear when tested for extinction in a
different context from the extinction context [91]. Investigations in human subjects concur
with findings from rodent studies indicating that the hippocampal/parahippocampal re-
gion plays a major role in distinguishing safe versus threatening contexts and can regulate
the activity of amygdala “fear neurons”. As patients undergoing exposure therapies for
PTSD commonly experience context-dependent relapse of extinguished fear [92], imped-
ing fear renewal via replacement of hippocampal neurons may be a useful therapeutic
intervention in this condition.

4.4. Shortcomings of Current Treatments

First-line treatment with trauma-focused psychotherapy is preferred to an SSRI in
PTSD. An SSRI is a reasonable alternative for patients who prefer it and when cognitive-
behavioral therapy cannot be obtained. Multiple clinical trials have shown that the psy-
chotherapies most effective for this condition include exposure therapy, a combined expo-
sure and cognitive therapy known as trauma-focused cognitive-behavioral therapy, as well
as eye movement desensitization and reprocessing [6,93]. However, these therapies have
limited availability and inconsistent treatment outcomes. While some patients have a robust
response to treatment, others have poor or partial relief of symptoms requiring restructure
of regimen based on predominant symptom clusters, treatment availability and/or patient
preference. Studies have shown between 18% and 50% of patients with PTSD have a stable
recovery within three to seven years, the rest have either a more persistent or chronic
course [94]. Furthermore, while it is thought that early treatment of PTSD may prevent its
chronicity, this has not been shown empirically, especially for pharmacotherapy [95].

Unfortunately, SSRI may have adverse effects including but not limited to sexual
dysfunction, drowsiness, weight gain, insomnia, anxiety, dizziness, headache, and dry
mouth [96]. Serotonin norepinephrine reuptake inhibitors (SNRIs) may additionally cause
increases in blood pressure, nausea, and diaphoresis among others. Patients may fail to
respond to up to two SSRI/SNRI trials until fourth-line treatment with a second-generation
antipsychotic (SGA), such as risperidone or quetiapine is indicated. These SGAs have
adverse effects including extrapyramidal symptoms, sedation, weight gain, glucose abnor-
malities, hyperlipidemia, orthostatic hypotension, QTc prolongation, and anticholinergic
symptoms as well as others [8,97].
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4.5. Similarities of PTSD to Epilepsy

In epilepsy, the loss of inhibitory projection neurons leads to alteration in the syn-
chronized oscillatory activity of amygdalohippocampal circuits and further spread of
seizure activity via excitation of the basolateral nucleus of the amygdala, ultimately caus-
ing dysfunctionality of both fear conditioning and emotional enhancement of declarative
memory. Trauma in PTSD causes amygdala hyperarousal and associated decreases in
hippocampal and mPFC activity which ultimately produce the nearly opposing effect of
over-consolidation of fear-based memories and impaired fear extinction. As it is either
the loss or over-functionality of nuclei or their projections that are implicated in both
syndromes, it is plausible that use of stem cell therapies modulating the connectivity of
this circuit could be of therapeutic benefit in both conditions [98].

Additionally, seizures are precipitated by stressful events or durations in about half
of individuals with epilepsy. It is thought that stress hormones play a role in neuronal
excitability. Case studies of PTSD patients have shown a pattern of video electroencephalo-
gram recorded seizure activity related in time to stressful occurrences. Thus, stress exposure
has been linked to the development of epilepsy and the susceptibility to stress as a seizure
trigger. These findings together suggest that stress-induced epilepsy might be more likely
to result in stress-precipitated seizures [99]. Furthermore, PTSD is a known risk factor for
psychogenic nonepileptic seizure (PNES), and up to one-third of epilepsy patients treated
at tertiary care epilepsy centers have PNES as well. Lastly, temporal lobe epilepsy (TLE) is
commonly misdiagnosed as PTSD and vice-versa [99].

4.6. Behavioral Sensitization and Electrophysiological Kindling

The process of behavioral sensitization is thought to occur when emotional trauma is
connected with episodes of depression, leaving traces of electrophysiological “kindling”
which persist after remission. The scar theory of depression presumes that even under mod-
erate or no psychosocial stress, this “scar” of negative concept neuronal connectivity might
increase susceptibility to the onset of new depressive episodes [100]. This is supported by
associative network theory which predicts that as connections between negative concepts
strengthen the “scarring” increases, ultimately lowering threshold for activation and thus
increasing susceptibility [100]. These findings together suggest that traumatic experiences
and associated strengthening of connections relating to negative concepts could lead to
neuronal hyperresponsiveness precipitating seizure-like activity. This relative excitation
could potentially be a target of stem cell therapy, as neuronal regeneration could weaken
those connections made by trauma just as it does for epileptogenic foci in epilepsy.

4.7. Stem Cell Therapy in Memory Symptoms, Neuropsychiatric Disorders, and PTSD

Stem cell therapy for PTSD has been studied in the brains of rats in which human
iPSCs were differentiated into neural progenitor cells (NPCs). Induced pluripotent stem
cell-derived neural progenitor cell transplantation was shown to promote regeneration and
functional recovery after PTSD in rats [101]. It is thought that PTSD affects the brain at a
cellular level by reducing the number of GFAP immunoreactive cells as well as decreasing
production of BDNF, resulting in hippocampal neuron injury. Hippocampal astrocytes
in rats with PTSD manifest morphological alterations including a change in cell polarity
towards a more fusiform shape [102]. The animal model showed efficient differentiation of
iPSCs into NPCs and glial cells in vivo to replace damaged hippocampal neurons (Table 1).
The transplanted cells enhanced the expression of mature neurons, as measured by NeuN
levels. These cells also over-expressed BDNF and GDNF, neurotrophic and neuroprotective
factors that suggest the potential for further neurogenesis capability (Figure 3).
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Table 1. Summary of results from Liu et al. [101]. Legend: PTSD—post traumatic stress disorder group (as induced
by previously established protocol), PBS—phosphate buffer solution (does not contain any stem cells), iPSC—induced
pluripotent stem cells, Day #—indicates number of days post-transplantation.

Variables
Tested Control PTSD PTSD + PBS PTSD + iPSC

Day 7
PTSD + iPSC

Day 14
PTSD + iPSC

Day 21

Total distance
in Open Field

Test
No change

Significantly
decreased
relative to

control

Significantly
decreased
relative to

control

Increased relative
to PTSD

Increased
relative to

PTSD

Increased relative
to PTSD

Interest area
stay time in
Open Field

Test

No change

Significantly
decreased
relative to

control

Significantly
decreased
relative to

control

No significant
change from PTSD

Significantly
increased
relative to

PTSD

Significantly
increased relative

to PTSD

Behavior
modification
in Open Field

Test

No change

Significantly
decreased
relative to

control

Significantly
decreased
relative to

control

No significant
change from PTSD

Significantly
increased
relative to

PTSD

Significantly
increased relative

to PTSD

Freezing time
in Fear

Conditioning
Test

No change

Significantly
increased
relative to

control

Significantly
increased
relative to

control

Significantly
decreased relative

to PTSD

Significantly
decreased
relative to

PTSD

Significantly
decreased relative

to PTSD

Astrogliosis No change

Increased
GFAP (+) astrocytes

compared to
control

Significantly
increased

GFAP (+) astrocytes
compared to

control and PBS
NeuN

neuronal
maturation

marker
expression

No change

Significantly
decreased
expression
relative to

control

Significantly
decreased
expression
relative to

control

Increased relative
to PTSD+PBS

Increased
relative to
PTSD+PBS

Increased relative
to PTSD+PBS

BDNF
expression No change

Significantly
decreased
expression
relative to

control

Significantly
decreased
expression
relative to

control

Slightly increased
expression relative

to PTSD

Significantly
increased

expression
relative to

PTSD

Significantly
increased

expression relative
to PTSD
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BDNF has been shown to be significantly decreased in animals following PTSD [103].
Memory deficits as a result of PTSD cause reduction in BDNF expression in the hippocam-
pus and deficient performance in hippocampus-dependent tasks. This suggests that an
increase in BDNF expression mediates the beneficial effects of iPSC-NPC transplantation.
The cells also expressed GFAP, a cytoskeletal protein thought to be necessary for recovery
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processes following injury to the brain. This occurs through the remodeling of astrocytes in
response to different physiological and pathological situations [104].

Induced pluripotent stem cell-derived astrocytes were shown to generate increased
downstream cytokine production (including IL-1 and TNF) when exposed to IL-1B [105].
They have potential to be utilized in management of PTSD, as immune system dys-
function is a common comorbidity, in particular elevated levels of norepinephrine and
impaired glucocorticoid receptor signaling [106]. Modulation of promoters in the glu-
cocorticoid receptor gene can influence gene expression and receptor affinity, thereby
serving as a potential mechanism for stem cell modification in the treatment of PTSD.
Furthermore, the hypothalamic-pituitary axis tends to be upregulated with sustained in-
creases in corticotrophin-releasing factor in PTSD, and could serve as a target for stem
cell therapy [106].

Stem cell therapy has additionally been implicated for treatment in models of neu-
ropsychiatric disorders; however, studies applying stem cells to these disorders are scarce.
A study using stem cell therapy in mice found improvement in memory function in mice
with brain damage from replicated human diseases such as strokes and dementia. The
study used glial cells to stimulate repair mechanisms within the brain to support neurons
and limit progression of brain damage. It showed enhancement in new neural connections
and myelin production to protect the connections. The study was able to reprogram iPSCs
back to an embryonic stem cell-like state. When the cells were removed from the mice
after a few months, the repair in the brain was not reversible, suggesting that there is not a
reliance on the transplanted stem cells long-term for the treatment to be effective [107].

In Alzheimer’s disease, neural precursor cells have been implicated in mice for behav-
ior restoration. These stem cells have been linked to improvements in memory, learning,
and behavioral dysfunction [108]. Umbilical cord blood CD34+ cells stimulate angiogen-
esis leading to positive outcomes in cerebral ischemia mice models, improving memory
deficits [109]. BDNF has also been shown to increase the effects of neural precursor cells in
rat brains, leading to cognitive improvement related to increased hippocampal synaptic
density [110]. In rats, mesenchymal stem cells were injected in the stroke-damaged areas,
leading to improved neurobehavioral function and reduction in the volume of the stroke le-
sion [111]. Inflammatory mononuclear phagocyte microglia have also been studied in their
production of neurodegenerative proinflammatory cytokines in Alzheimer’s disease [110].
Some studies, on the other hand, have found neuroprotective functions of the microglia
such as eliminating plaques and releasing neurotrophic agents [112]. In mice, applying
mesenchymal stem cell improved cognitive function and microglia activation, decreasing
the inflammatory response [108].

Clinical cases of autistic children receiving CD34+ cells have shown positive responses
in areas of the brain undergoing hypoperfusion and ischemia related to the neurophysiol-
ogy of autism [113]. Additionally, the abnormal migration and reduction in GABAergic
interneurons during prenatal development leads to neuronal dyssynchrony in autism,
epilepsy, and schizophrenia. In studies using mouse xenografts, human stem cell-derived
interneuron precursors were able to differentiate in vivo [114]. When transplanted in rat
and mouse models for epilepsy, hPSC-derived interneuron precursors fired action poten-
tials and developed synaptic connections that reduced abnormal seizure activity. However,
minimal migration was observed after four to seven months post-transplantation in the
host mouse brain. The main benefits of interneuron grafts in these models were seen after
numerous months post-transplantation [114]. Human PVECs were also implanted into the
host mouse brains, mimicking mouse angiogenesis and allowed for migration of human
GABAergic interneurons after transplantation. This allowed for improvement in cell migra-
tion and reduced GABA levels that were being released by the brain [115]. This further led
to an improvement in the behavioral outcome in preclinical psychiatric disorder models
within a month of transplantation, compared to the several months observed with solely
interneuron precursors [116]. With cotransplantation, the prenatal forebrain developed
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angiogenesis and showed potential for regeneration and repair in adult brains to help
improve psychiatric behaviors, particularly behavioral function [117].

5. Conclusions: Stem Cell Therapy for PTSD

Stem cells are currently being employed in the treatment of focal epilepsies that share
similar neuroanatomical targets with PTSD. Targeting the amygdala in epilepsy using stem
cells provides benefit by reducing the complications, centers of epileptic activity and neuropsy-
chiatric comorbidities of epilepsy. It follows that such therapy could be used in conditions
which have a similar neuronal basis, such as PTSD. Animal models in rats have provided
proof-of-concept for how stem cells can influence functional outcomes in PTSD, as trans-
planted induced-pluripotent stem cells have shown the capability to differentiate into and
replace damaged neuronal and glial tissue, secrete protective neurotrophic factors, and pro-
mote neuronal regeneration. Additionally, stem cells could help re-establish regulation of the
abnormal pro-inflammatory cascade implicated in PTSD and potentially mitigate develop-
ment of the condition in addition to reducing symptom intensity. Stem cell therapy could
potentially be used for treatment resistant PTSD with milder side effects compared to current
treatment regimens. Now that animal research has begun to demonstrate the utility of stem
cells in treating PTSD, it has opened doors for future clinical trials.
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