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Deep transfer learning of cancer drug
responses by integrating bulk and single-cell
RNA-seq data

Junyi Chen1,6, Xiaoying Wang2,6, Anjun Ma 1,3 , Qi-En Wang4, Bingqiang Liu2,
Lang Li1, Dong Xu 5 & Qin Ma 1,3

Drug screening data from massive bulk gene expression databases can be
analyzed to determine the optimal clinical application of cancer drugs. The
growing amount of single-cell RNA sequencing (scRNA-seq) data also provides
insights into improving therapeutic effectiveness by helping to study the
heterogeneity of drug responses for cancer cell subpopulations. Developing
computational approaches to predict and interpret cancer drug response in
single-cell data collected from clinical samples can be very useful. We propose
scDEAL, a deep transfer learning framework for cancer drug response pre-
diction at the single-cell level by integrating large-scale bulk cell-line data. The
highlight in scDEAL involves harmonizing drug-related bulk RNA-seq data with
scRNA-seq data and transferring the model trained on bulk RNA-seq data to
predict drug responses in scRNA-seq. Another feature of scDEAL is the inte-
grated gradient feature interpretation to infer the signature genes of drug
resistancemechanisms. We benchmark scDEAL on six scRNA-seq datasets and
demonstrate its model interpretability via three case studies focusing on drug
response label prediction, gene signature identification, and pseudotime
analysis. We believe that scDEAL could help study cell reprogramming, drug
selection, and repurposing for improving therapeutic efficacy.

Precisionmedicine has achieved remarkable success in understanding
the complexity of the genomic landscape of cancer. The idea of tai-
loring cancer treatments to the particular genomic signature of an
individual cell is gaining traction. Several in vitro drug screening stu-
dies have been conducted, giving rise to drug responsedata on various
cancer cell lines1,2. However, cancer drug treatments suffer from low
efficacies and high relapse rates caused by cancer heterogeneity
among diverse states or cell fates. Such heterogeneity is responsible
for differentiated responses of individual cells to a drug, leading to a
minimal amount of cancerous residues remaining in the body, fol-
lowed by, ultimately, cancer relapse3. The single-cell RNA-sequencing

(scRNA-seq) technique provides an unprecedented opportunity to
discover the heterogeneous gene expressions of cancer subpopula-
tions in response to specific drugs4. Existing drug-response prediction
methods developed for bulk data cannot be directly used for larger-
scale and highly intricate single-cell data. Hence, computational
methods to infer cancer drug responses at the single-cell level are
urgently needed.

Deep learning methods have been deployed to tackle scRNA-seq
data, redefining our capabilities to analyze large-scale data using
sophisticated architectures of artificial neural networks. Deep learning
models applied to scRNA-seq data have achieved competitive
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performances in gene expression imputation, cell clustering, batch
correction, and similar tasks5–7. Themain obstacle in developing adeep
learning-based tool for predicting single-cell drug responses is insuf-
ficient training power owing to the limited number of benchmarked
data in the public domain. Intuitively, drug-related bulk RNA-seq data
can be effective complementary resources to infer gene expression-
drug response relations in support of the drug response predictions at
the single-cell level8,9. Fortunately, deep transfer learning (DTL) can
transfer knowledge and relation patterns from bulk data to single-cell
data, which can be a means to overcome the issue of limited training
data10. Using transfer learning, we can solve a particular task at the
single-cell level using a preliminary trained model at the bulk level,
either entirely or partially. The DTL model has been applied as an
effective strategy in leveraging multiple bulk data sources for cancer
drug response predictions11; however, thus far, its capabilities in
transferring valuable bulk-level knowledge to the single-cell level are
under-investigated.

In this work, we develop scDEAL (single-cell Drug rEsponse Ana-
Lysis) by adapting a Domain-adaptive Neural Network (DaNN)12 to
predict drug responses from bulk and scRNA-seq data. scDEAL is very
powerful at predicting single-cell level drug sensitivity as it establishes
bridges among drug sensitivity, gene features in single cells, and gene
features in bulk samples. scDEAL highlights the following aspects: (i) it
can use a large amount of bulk-level drug response RNA-seq infor-
mation from the Genomics of Drug Sensitivity in Cancer (GDSC)
database13,14 and Cancer Cell Line Encyclopedia (CCLE)15 to train and
optimize the model16,17; (ii) in order to account for data-structure dif-
ferences betweenbulk and scRNA-seqdata, scDEALharmonizes single-
cell and bulk embeddings to ensure that the drug response labels are
transferable from bulk to single cells; (iii) in order to avoid losing
heterogeneity in scRNA-seq data, scDEAL includes cell cluster labels
for loss function regularization in each training epoch; (iv) scDEAL’s
integrated gradient interpretation infers the signature genes of drug
response predictions, which improves the interpretability of the
model. We conduct comprehensive analyses and evaluations on six
benchmark drug-treated scRNA-seq data18–22; scDEAL achieves high
accuracy in predicting cell-type drug responses. We further identify
gene signatures that are considered to directly contribute to drug
sensitivity or resistance in a cell by tracing and accumulating the
integrated gradients of each neuron in the DTL model. Finally, we
prove that the predicted drug response aligned well with the expres-
sion trajectory of treatment procedures. Overall, we believe scDEAL
enables the deployment of the DTLmodel in single-cell drug response
prediction, which may benefit preliminary studies in drug develop-
ment, repurposing, and selection in cancer treatment.

Results
Overview of the scDEAL framework
First, scDEAL models relations between the gene expression feature
anddrug response at the bulk level, where annotations for cell lines are
available. Then, the shared low-dimensional feature space between
single-cell and bulkdata is identified in order to harmonize the relation
between the two data types. The gene expression–drug response rela-
tions at the bulk level are captured via the shared low-dimensional
feature space. A DTL model is trained to learn the optimized solution
to the aforementioned two relations. Finally, the single cell–drug
response relations can be built through the meta-relation of gene
expression at the single-cell level, gene expression at the bulk level, and
drug response in the DTLmodel. Overall, scDEAL infers drug responses
for individual cells without requiring supervised training at the single-
cell level (Fig. 1a).

Bulk and scRNA-seq data were preprocessed prior to the input of
scDEAL (Supplementary Fig. S1). The scDEAL framework involves five
major steps: (1) extracting bulk gene features, (2) predicting drug
response in each bulk cell line using features extracted in step 1, (3)

extracting single-cell gene features, (4) jointly training and updating all
themodels in the previous steps, and (5) transferring and applying the
trained model to scRNA-seq data to predict drug responses (Fig. 1b).
The training of scDEAL is composed of a source model for initial
parameter determination of bulk-level feature reduction and drug
response prediction using bulk data only, as well as a targeted model
to include scRNA-seq data and deploy the transfer learning strategy to
train and update the entire framework for single-cell drug response
prediction. Two denoising autoencoders (DAEs) are trained to extract
low-dimensional gene features from bulk and scRNA-seq data sepa-
rately. The training reduces the reconstruction loss between the
decoder output and the expression profiles, making low-dimensional
features informative enough to represent the original gene expres-
sions. The preliminary training is used to generate the initial neuron
weights within the DTL model. A fully connected predictor is attached
to the trained bulk feature extractor for predicting bulk-level drug
responses.

Finally, the DTL model updates the two DAE models and the
predictor model simultaneously in a multi-task learning manner. Spe-
cifically, the first task is to minimize the differences (i.e., mean max-
imum discrepancy loss) between gene features from two extractors,
bridging the communication between bulk and scRNA-seq data. The
second task is to minimize the difference between the prediction
results and the database-provided drug responses via the cross-
entropy loss. We expect the framework to be updated to harmonize
bulk expression data and scRNA-seq data as well as to transfer the
trustworthy gene-drug relations from the bulk level to the single-cell
level. The output of scDEAL is the predicted potential drug responseof
individual cells.

One of the critical challenges in model training is maintaining
single-cell heterogeneity when harmonizing scRNA-seq data with bulk
data. Two strategies were applied. First, as the noise characteristics in
bulk RNA-seq and scRNA-seq data are quite distinct, we used a DAE
model, rather than a common autoencoder or a variational auto-
encoder, to induce noises in bulk as well as scRNA-seq prior to the
feature reduction. By this means, we could avoid the risk of imbal-
anced training that would only force gene expressions in scRNA-seq
data close to bulk RNA-seq data. Second, we integrated cell-clustering
results to regularize the overall loss function of scDEAL, so that cellular
heterogeneity would be retained during the training process.

Benchmarking single-cell drug response predictions in scDEAL
Weevaluated thedrug responsepredictionperformances on six public
scRNA-seq datasets treated by five drugs, i.e., Cisplatin, Gefitinib, I-
BET-762, Docetaxel, and Erlotinib (Supplementary Table S1). All data-
sets have been provided with ground-truth drug response annotations
(i.e., drug-sensitive or drug-resistant) for individual cells. A ground
truth label is a binary indicator (0 indicates resistant and 1 indicates
sensitive) extracted from the original manuscripts. Most studies
determine the drug response to an entire cell group based on treat-
ment conditions, e.g., dimethyl sulfoxide (DMSO)-treated cells are all
sensitive, and cells surviving after treatment are all resistant. Com-
pared with the ground-truth labels, scDEAL prediction was evaluated
using seven metrics: F1-score, area under the receiver operating
characteristic (AUROC), AP score, precision, recall, Adjusted Mutual
Information (AMI), and Adjusted Rand Index (ARI). We showcase the
results of F1-score, AUROC, and AP score on the six datasets (Fig. 2a)
based on optimized hyperparameters in scDEAL (Supplementary
Table S2), while the rest of the scores can be found in Source Data 1.
The average scores of the six datasets are 0.892 (F1-score), 0.898
(AUROC), 0.944 (AP score), 0.926 (precision), 0.899 (recall), 0.528
(AMI), and 0.608 (ARI). To better visualize the prediction results, we
generated UMAPs for each dataset and colored them by predicted cell
clusters, ground-truth single-cell drug responses, scDEAL-predicted
drug responses (binary labels as well as continuous probability), and
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Fig. 1 | The scDEAL framework. a scDEAL trains themodel to align two relations: (i)
bulk–single-cell relations and (ii) gene–drug response relations at the bulk level.
The trained model will then be transferred to be directly applied to the scRNA-seq
data and to predict the single-cell drug responses. Green-colored elements repre-
sent single-cell relateddata, andgrey-colored elements represent bulk-relateddata.
Different colors of cells represent different cell types. b Bulk RNA-seq data and the
corresponding drug response labels are obtained from the GDSC and CCLE data-
bases. Five steps are then applied. ADAE is used to induce noises into the bulk data.
It uses an encoder (Eb) and a decoder (Db) to obtain low-dimensional features. The
bulk feature ⨯ cell-line matrix is then input to a fully connected predictor (P) to

predict cell-line drug responses. A similar strategy is used for single-cell feature
election using a separated DAE (Es andDs). The overall frameworkwill be trained by
considering themaximummean discrepancy between the low-dimensional feature
spaces of single-cell and bulk data, the cross-entropy loss between predicted bulk
cell-line drug responses and ground-truth labels, and the regularization of cell
clusters predicted from scRNA-seq data. By achieving theminimumoverall loss, Eb,
Es, and P will be updated and optimized simultaneously. scDEAL transfers the well-
trained Es and P to predict single-cell drug responses from the scRNA-seq data.
Abbreviations: deep transfer learning (DTL),GenomicsofDrug Sensitivity inCancer
(GDSC), Cancer Cell Line Encyclopedia CCLE.
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Fig. 2 | Benchmarking results of scDEAL. aOptimized benchmarking results of all
six datasets using scDEAL. Source data are provided as Source Data 1: optimized
benchmarking results of seven metrics. b F1-score comparison using GDSC data-
base only, CCLE database only, and both databases in training scDEAL for all six
datasets. The bar plot shows the mean F1-scores of each data (n = 50; same para-
meter settings for each data; different seeds), with error bars representing +/−
standard deviations. The same rules are also applied for the bar plots in c and d.
Source data are provided as Source Data 2: F1-score of 50 repeated experiments
comparing with and without transfer learning in six datasets. c Drug response
prediction comparisons of scDEAL framework using common autoencoder (dark
grey), denoising autoencoder (light grey), and the combination of denoising
autoencoder in feature extraction and cell-type regularization in DaNN loss func-
tion for transfer learning (pink). Sourcedata are provided asSourceData 3: F1-score

of 50 repeated experiments comparing use GDSC, use CCLE, and use both bulk
databases in six datasets. d Comparisons of scDEAL with (grey) and without (pink)
transfer learning in terms of F1-scores. Source data are provided as Source Data 4:
F1-score of 50 repeated experiments comparing use autoencoder, denoise auto-
encoder, and combination of denoise autoencoder and cell type regularization in
six datasets. e Latent representations of scDEAL obtained with/without cell type
regularization forData 5 and 6. f Robustness test on six scRNA-seq datasets via 80%
stratified sampling in termsof F1-score. Eachbox shows theminimum, first quartile,
median, third quartile, and maximum F1-scores of 20 samplings (n = 20). Dots
represent outliers. Source data are provided as Source Data 6: F1-scoreof 80%
stratified sampling of 20 repeats on six datasets. Abbreviations: Genomics of Drug
Sensitivity in Cancer (GDSC), Cancer Cell Line Encyclopedia (CCLE), denoising
autoencoder (DAE).
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generated Sankey plots to observe the discrepancies between the
ground-truth and predicted labels (Supplementary Fig. S2). We
observed that the predicted drug response labels of most cells were
well-aligned with the ground truth and showcased distinct cell cluster
differences. The prediction results at the bulk level also showed good
performances, indicating that the model has been well-trained before
being transferred to analyze scRNA-seq data (Supplementary Table S3
and Fig. S3).

As described above, scDEAL achieved considerably high perfor-
mance in single-cell drug response prediction among all six datasets.
Furthermore, to elucidate the rationale of the scDEAL framework
design, we replaced or removed specific component(s) in scDEAL and
compared the results with those from the final framework. The final
scDEAL framework will be comprehensively validated if it can out-
perform all the alternative models.

First, a comparison testwas performedby training themodel only
on the bulk data and then directly using it for scRNA-seq data pre-
diction without step 3 (transfer learning). For each data, the experi-
mentwas repeated 50 times (n = 50). Noted that the result of scDEAL is
fully reproducible if use the same seed for the same data training. The
results on all six datasets showed a significant increase in F1-scores
when using the transfer strategy compared to without it (Fig. 2b and
SourceData 2). On average, scDEAL achieved a 19% increase in F1-score
compared to the model without transfer learning. Our comparison
showed that transfer learning contributed to the performance
improvement in single-cell drug response prediction.

Second, to evaluate whether the training power of the transfer
model relies on bulk resources, we benchmarked scDEAL using bulk
data from the GDSC database only, CCLE database only, and a com-
bination of GDSC and CCLE databases (Supplementary Tables S4, S5).
Our results showed that combining bulk data from GDSC and CCLE
databases can significantly enhance the prediction power (Fig. 2c and
Source Data 3). On average, the integration of the two databases
resulted in a 130% and 69% increase in the F1-scores compared to the
results using only the GDSC or CCLE database, respectively.

Third, we validated whether using DAE and cell-type regulariza-
tion can help reduce the loss of single-cell heterogeneity and enhance
the prediction performance. We compared the results of the frame-
work using common autoencoders for the feature extraction in bulk
and scRNA-seq data, a framework usingDAEbut not regularized by cell
type, and the final scDEAL framework (including DAE as well as cell
type regularization). For all six datasets, using DAE and cell-type reg-
ularization in the framework achieved a better performance than the
other two options (Fig. 2d and Source Data 4). On average, using DAE
and cell type regularization showed a 36% and 9% increase in the F1-
scores compared to the results only using AE or DAE database,
respectively. To further elucidate how the addition of cell-type reg-
ularization can better preserve the heterogeneity of scRNA-seq data,
we showcased cells with cell-cluster and drug-response annotations
using latent representations from scDEAL with and without the cell-
type regularizer (Fig. 2e and Supplementary Fig. S4). TheUMAP results
showed that, after applying the cell-type regularizer, cells become
more ordered and compact within a cluster.

Furthermore, to validate whether relations between gene
expression and drug responses at the bulk level have been success-
fully learned and transferred to the single-cell level, we calculated an
integrated gradients (IG) score to reflect the potential contribution
of each gene to the final drug response label prediction (Supple-
mentary Fig. S5 and Methods). Traditional DEG analysis may lead to
biased results related to cell types rather than drug response; hence,
we used the differential IG scores between sensitive and resistant
cells to represent genes that are critical to drug response. The IG
score is based on the accumulation of gradients of neurons in a
neural network following the path of layer connections. A gene with a
higher IG score to the drug-sensitive labeling indicates that the gene

is more related to drug sensitivity and contributes more to cate-
gorizing samples as drug-sensitive. Similar rules were applied to the
resistant labels. By comparing the number of genes contributing to
the drug response labeling at the bulk and single-cell levels, we found
that, on average, 46% of genes were shown to be overlapped in both
data types contributing to drug sensitivity, while 53% of genes were
shown overlapped with drug resistance (Supplementary Table S6).
The results indicate that various gene-drug relations can be inferred
at the bulk and single-cell levels.

Finally, we showcased a grid parameter tuning result, including
480 combinations of six hyperparameters (e.g., bulk sampling
method, predictor dimension, learning rate, single-cell encoder
dimension, dropout, and bottleneck dimension) (Supplementary
Fig. S6 and Source Data 5). Overall, our results showed no significant
effects of single parameter selections on scDEAL performances. Four
datasets, i.e., Data 1, 2, 4, and 5, are more robust on all parameter
combinations than Data 3 and 6. The performance and robustness of
scDEAL are likely related to the combination of parameters, but not in
a sensitive fashion. For any new dataset, we recommend adjusting the
bulk samplingmethods and bottleneck dimensions, because we found
these two parameters differed considerably among six datasets when
achieving the best prediction performance (Supplementary Table S2).
To evaluate the robustness of scDEAL, we performed a randomly
stratified sampling test (n = 20) on the six datasets (Fig. 2f, Supple-
mentary Fig. S7, and Source Data 6). The variations of F1-score,
AUROC, AP score, precision, recall, AMI, and ARI are 0.031, 0.046,
0.027, 0.029, 0.031, 0.156, and 0.198, respectively, indicating that
scDEAL is robust across multiple runs of random sampling.

scDEAL achieves good drug response prediction results in leu-
kemia cells under a variety of I-BET treatment conditions
We showcased the analytical power of scDEAL on Data 6
(GSE110894)22, including 1419 Mixed Lineage Leukemia-AF9 (MA9)
leukemic cells treated with a BET inhibitor (I-BET) (Fig. 3a). Four
treatment conditions were included with two sensitive states (DMSO
and I-BET 400nM) and two resistant states (IBET-resistant and IBET-
resistant withdraw)22. It was observed that scDEAL predicted leukemic-
cell drug responses consistently as compared to the original study.We
found that 97.1% of predicted drug-resistant cells and 95.8% of pre-
dicted drug-sensitive cells in scDEAL matched original labels. In addi-
tion, scDEAL provided two types of drug-response prediction scores,
i.e., the continuous probability score and the binary sensitive/resistant
label. A higher continuous score in a cell reflects a higher likelihood of
the cell being sensitive to the drug. The binary label is determined by
counting cells with a continuous probability score between 0–0.5 as
resistant cells and 0.5–1 as sensitive cells.

Next, we introduce a gene score to reflect the overall gene
expression level of differentially expressed genes identified in the
sensitive (or resistant) cell clusters. The hypothesis behind the score is
that an accurate prediction assigns the correct response label to cells.
Therefore, the gene scores of DEGs between the resistant and the
sensitive states for an accurate prediction should be correlated to
DEGs derived from the ground truth. In addition, our DEG showed
gene score patterns that can separate resistant and sensitive cells
better than DEGs identified using ground-truth labels (Fig. 3b). The
correlation between predicted DEG scores and ground truth DEG
scores is as high as R2 = 0.90 for the sensitive DEG list, and R2 = 0.77 for
the resistant DEG list (Fig. 3c and Source Data 7). We performed an
empirical null model test to evaluate the significance of the correla-
tion. We randomly selected the same number of genes as our pre-
dicted DEGs and calculated the correlation as described above 1000
times. Our empirical test (n = 1000) results showed p-values for
bother-sensitive and resistant DEG score correlations are lower than
0.001, indicating that our correlation is significant and statistically
meaningful (Fig. 3d).
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scDEAL can identify critical genes responsible for drug response
Though scDEAL delivered accurate predictions for single-cell drug
responses, comprehension of the active genetic features within the
model is essential. We conducted scDEAL analysis for oral squamous
cell carcinoma (OSCC) treated by Cisplatin in Data 118. Cisplatin exerts
its anti-cancer activity via the generation of DNA crosslinks by inter-
acting with purine bases on DNA, interfering with DNA replication and
causing additional deleterious DNAdouble-strand breaks,which, if not
repaired, can lead to apoptosis of cancer cells23. Thus, any factor that
can enhance DNA repair or/and inhibit cellular apoptosis is able to
render cancer cells resistance to Cisplatin treatment. Using scDEAL,
85% of cells were correctly predicted as either sensitive or resistant to
Cisplatin,with anF1-scoreof0.92,AUROCof0.92, andAP scoreof0.97
(Fig. 4a and Supplementary Fig. S8 and Source Data 8). Genes with
adjusted p values <0.05, log-fold change <0.1, and cell percentage in
either comparison group higher than0.2 were defined as critical genes
(CGs) that impact the drug response. We identified 936 drug-sensitive
CGs in the HN120P (sensitive cell group) and 868 drug-resistant CGs in
the HN120PCR (resistant cell group after Cisplatin treatment over four

months) with significantly differential IG scores (Fig. 4b and Supple-
mentaryData 1).We observed that several top predicted resistant CGs,
e.g., BCL2A124 and DKK125, possess anti-apoptotic activity (Fig. 4c).
Overexpression of these genes has been shown to mediate resistance
to Cisplatin26,27.

Gene Oncology (GO) pathway enrichment analysis (Supplemen-
tary Data 2) of the 868 drug-resistant CGs further revealed that the
Cisplatin-resistant CGs predicted in HN120PCR cells are significantly
enriched in “DNA repair” (Benjamini adjustedp-value =0.039),which is
one of the major Cisplatin resistance-related biological processes.
Among the 26DNA repair-relatedgenes in the list of drug-resistantCGs
in HN120PCR cells, we find strong literature evidences for eight of
them RAD5128, EXO129, FANCL30, MSH331, RIF132, USP2833, FANCG34, and
POLH35. These genes are critical to the DNA repair pathways that are
used to dealwith Cisplatin-inducedDNA lesions, including inter-strand
crosslinks36 and DNA double-strand breaks37, as well as the DNA
damage tolerance pathway that is used to bypass Cisplatin-induced
DNA damage to promote cancer cell survival38. On the other hand,
another significantly enriched GO pathway, “cell division” (Benjamini
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adjusted p-value = 0.003), contains multiple genes involved in cell
cycle checkpoint, e.g., CCNF39, BUB1B40, BUB140, and CDC25C41. The
activated cell cycle checkpoint can protect cells from Cisplatin-
induced cell death and plays a critical role in Cisplatin resistance42. In
addition, a few pathways that also have associations with Cisplatin
resistance, such as “negative regulation of cell death”43, “response to
hypoxia”44, and “mitotic cell cycle checkpoint”45, are also identified
from the resistant CGs, further validating that our scDEAL is able to
identify genes that are important to drug responses (Supplemen-
tary Data 2).

scDEAL drug response prediction is highly correlated with
pseudotime analysis
We applied Monocle346 for the trajectory inference on Data 6 (treated
with I-BET) to validate whether our predicted drug response is corre-
lated with the progression of drug treatment. The gene expression-
based pseudotime analysis showed a trajectory trend starting from
DMSO samples towards the 1000-ml I-BET treated samples (Fig. 5a).
When comparing the pseudotime results with the drug response
(continuous probability score) on the same diffusion UMAP, we
observed an increased resistance from DMSO control towards the
treated samples (Fig. 5b). Such results indicate that the remaining liv-
ing cells sequenced after high drug doses exhibited significant drug
tolerance, which also aligns well with the experimental drug-response
labels (ground-truth labels). In addition to the consistency between
prediction and the trajectory topology, we further explained the trend
of resistance development byCGs identified in scDEAL.We showcased
the expression values of two representative I-BET resistant CGs, i.e.,
Eid2 and Galnt17 (Fig. 5c), and two representative I-BET sensitive
genes, i.e., Emilin1 and Ramp1 (Fig. 5d). We observed that the expres-
sion levels of these genes matched the trajectory of pseudotime ana-
lysis and predicted drug response probability scores.

Further investigation regarding the comparisons of predictedCGs
and DEGs along with the trajectory indicated that the predicted CG
lists have more distinct expressions in separating sensitive and resis-
tant cell states (Fig. 5e and Source Data 9). The Pearson’s correlations
between scores and the pseudotime value are as high as 0.81 (posi-
tively correlated; resistant probability score vs. pseudotime) and −0.93
(negatively correlated; sensitive probability score vs. pseudotime),
which indicated that predictions of scDEAL could imply drug response
development. The top ten CGs in the sensitive and resistant cell group
showed distinct expression patterns and were highly correlated with
the pseudotime score (Fig. 5f and Source Data 10). In summary, we
confirmed that the drug response results and CGs predicted in scDEAL
have strong correlations to the I-BET treated cell pseudotime
trajectory.

Discussion
scDEAL augments scRNA-seq data analyses and interpretation using
bulk gene expression data, which can be applied to predict drug
responses of cell populations in cancer scRNA-seq data and other
diseases. The neural networks adapted to scRNA-seq data can be
preliminarily trained on a large volume of bulk cell-line data. Conse-
quently, drug sensitivity can be predicted from scRNA-seq data. Noted
that, scDEAL predicts single-cell drug response solely based on the
trained model and scRNA-seq gene expression matrix, and no labels
(neither cell type nor drug response) are needed. We performed
comprehensive analyses to benchmark scDEAL on six drug-treated
scRNA-seq data with experimentally validated drug-response labels.
Our results indicate that scDEAL performs well and is robust in drug
response label prediction and gene signature identification.We reason
that AMI and ARI scores are sensitive to mislabeling, especially with
only two categories in the data (sensitive and resistant); hence, they
showed relatively lower scores in Data 1 and 2, and the variation of
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these twometrics is higher than that of the otherfivemetrics (F1-score,
AUROC, AP, precision, and recall) among six datasets. We also con-
ducted comparative analysis to showcase the rationale of scDEAL
framework design, including the contribution of DTL method, bulk
data usage, autoencoder selection, and cell-type regularization. We
identified CGs corresponding to the Cisplatin responses in OSCC,
showing distinct predicted response patterns in drug-sensitive and
-resistant cells. Our results demonstrated highly correlated drug
response predictions with single-cell pseudotime analysis.

The accuracy of the prediction results in scDEAL could vary,
depending on the collection of bulk gene expression of cell lines. We
will update scDEAL training data by integrating additional bulk-level
databases in the future. Furthermore, increased experimentally vali-
dated drug response scRNA-seq data would help determine better
model hyperparameters and even help develop direct single-cell-to-
single-cell deep transfer learning models. Databases, such as
DrugCombDB47, can be included to predict combinatory drug
responses. In addition, the genetic features between bulk and scRNA-
seq data can be explained and biologically interpreted using the IG
score and CG identification. The predicted CGs can be used as targets
for experimental validations on drug–gene relations via single-cell
Perturb-seq48.

Noted that a recent study pointed out a potential sample swap
betweenData 1 and 2 (HN120 andHN137)49. To test the reliability of our
method, we carried out a similar drug resistance analysis by re-
assembling the HN120 and HN137 datasets as suggested in the above
study. Specifically, we reassembled a new HN120 data with cells ori-
ginally labeled asHN137P, HN120PCR, HN120M, andHN120MCR, and a
new HN137 data with cells originally labeled as HN120P, HN137PCR,
HN137M, and HN137MCR. A similar grid-searchmethod was applied to
optimize the reassembled data analysis using scDEAL. The new drug
response prediction F1-score of re-assembled HN120 data is 0.750
(originally 0.839) and of re-assembled HN137 data is 0.764 (originally
0.765) (Supplementary Fig. S9). The results indicated that, regardless
of data re-assembly, scDEAL achieves competitive response prediction
to Cisplatin, which demonstrates the reliability of our approach.
Additionally, CGs identified in the re-assembled data between HN120P
and HN120PCR aligned well with our previous results. All the impor-
tant CGs related to Cisplatin resistance are also found in the re-
assembled data. Such results indicate that scDEAL can find the CGs to
drug response even though the sensitive and resistant tissues are
derived from different patients and showcased the potential usage of
scDEAL for combined data from different patients.

One remaining challenge in single-cell drug responseprediction is
the prediction across different species. Considering the genetic var-
iation between human and mouse, drug response in one species can-
not be directly transferred to predict the other. In our case study of
mouse scRNA-seq data (Data 6), only homologous genes were kept in
the mouse data and the scDEAL model was still trained with human
cancer cell lines. Due to the limited number of drug-treated mouse
benchmark scRNA-seq data in the public domain, we could not sys-
tematically evaluate and optimize the trans-species reliability in the
current study. Such a topic is of significant interest in the single-cell
field50, and will be one focus of our future study along this research
direction.

In summary, scDEAL has considerable potential for improving drug
development at the single-cell level. First, it can be used to predict drug
responses and link gene signatures with treatment effects. Second, the
CGs are potential target signatures that can be used for CRISPR
screening or cell reprogramming. Third, it can be applied to existing
non-drug-treated scRNA-seq data to predict the potential drug response
inmultiple cell clusters that can be selected for animal drug tests. In the
long run, we believe our work can contribute towards and provide
insights into cell reprogramming, drug selection and repurposing, and
combinatory drug usage for improving therapeutic efficacy.

Methods
Datasets
The GDSC database [https://www.cancerrxgene.org/] is publicly avail-
able online. Drug response annotation, including half maximal inhibi-
tory concentration (IC50) and area under the dose-response curve
(AUC) are available online [https://www.cancerrxgene.org/downloads/
bulk_download]. Gene expression data (RMA-normalized basal
expression profiles) for cell lines can be accessed on GDSC [https://
www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.
html]. We also collected the CCLE cell line expression profile and
PRISM cell line viability assay. Expression profiles and viability assays
can be downloaded from [https://depmap.org/portal/]. Considering
the discrepancies between the two databases, we integrated the two
databases by keeping the shared genes, as well as all cell lines and
drugs without missing values. Overall, we collected bulk-level drug
response data with 1280 cancer cell lines, 1557 drugs/chemical com-
pounds, and their expression profiles on 15,962 genes (Supplementary
Table S4-S5).

All scRNA-seq data analyzed in this study are publicly available.
The following datasets are available from the National Center for
Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO
[https://www.ncbi.nlm.nih.gov/geo/]). All data are accessible through
the GEO Series accession numbers in Data Accessibility and Supple-
mentary Table S1. All metadata is available in the supplementary
information files from the original publication.

Preprocessing of drug response labels at the bulk level
The drug response labels of cell lines in the bulk data are derived from
the response AUC values in the GDSC and CCLE databases. For each
drug, we used the same method in the CCLE study15, to binarize the
AUC scores among bulk samples and determine whether the drug is
sensitive or negative to the sample. Cell lines sensitive to a specifically
selected drug are annotated as 1, whereas the resistant lines are
annotated as 0. Thewaterfall method sorts cell lines according to their
AUC values in descending order and generates an AUC-cell line curve
in which the x-axis represents cell lines, and the y-axis represents AUC
values. The cutoff of AUC values is determined via two strategies: 1) for
linear curves (whose regression line fitting has a Pearson correlation
>0.95), the sensitive/resistant cutoff of AUC values is the median
among all cell lines; 2) otherwise, the cutoff is the AUC value of a
specific boundary data point, which has the largest distance to a line
linking two datapoints having the largest and smallest AUC values.

Data sampling for predictor training
The proportion of sensitive and resistant cell lines is different across
different drug treatments. This imbalance issue of drug response
labels in the training set may affect the model’s performance. We,
therefore, introduce other sampling methods to balance the propor-
tion of sensitive and resistant cell lines when training the prediction
model at the bulk level. Three sampling methods as hyperparameters
are introduced in the bulk model training, including up-sampling,
down-sampling, and SMOTE-sampling51. Up-sampling randomly
duplicates samples in the minority, and down-sampling discards
samples in the majority class to generate a training set with the same
number of sensitive and resistant cell lines. SMOTEgenerates synthetic
cell lines by selecting k nearest neighbors for a random sample in the
minority class and synthesis of an artificial sample within neighbors in
feature space. All sampling methods are implemented by the Python
library imblearn52.

Pre-processing for scRNA-seq data
Quality control and preprocessing of the scRNA-seq data were per-
formedusing the Pythonpackage SCANPY53. Specifically, cells with less
than 200 detected genes (indicative of no cell in the droplet), and
genes detected in less than three cells were filtered out using the
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function “filter_cells” and “filter_genes”. Cells with a percentage of
expressed mitochondrial genes higher than 10% were removed.
Countsmatrices were normalized by dividing by the total UMI count in
each cell, multiplied by a factor of 10,000 using the function “nor-
malize_total”, and log one plus transformed using the function “log1p”.
Expression values are then scaled using “preprocessing.MinMaxScaler”
in the package sklearn54.

scDEAL workflow design
The whole framework of scDEAL can be treated as two parts: super-
vised learning to build a model to predict the response label classifi-
cation at the bulk level and using this model for label prediction at the
single-cell level. We first split 64%, 16%, and 20% of bulk RNA-seq data
as the training set, validation set, and testing set, respectively. These
subsets were used to train the initial model in Steps 1 and 2, detailed
below. The trained bulk model and the complete scRNA-seq data fol-
lowed Steps 3-5 to predict drug response at the single-cell level. Since
there is no ground-truth label for single-cell data in this case, there is
no need to split each scRNA-seq data into training, validation, and
testing subsets. The split was performed by the function “train_-
test_split” in the package sklearn.

Step 1. Bulk featureextraction. Thefirst stepof transfer learning is the
gene feature extractor. Gene feature extractors are applied to extract
variable gene features, reduce data dimensionality, and denoise data.
Furthermore, it is a fined-tuned preliminary training step for deter-
mining the initial model weights in predictor (P) in step 3.

We applied a DAE to learn a low-dimensional representation from
the bulk expression matrix Xb, where each row of the matrix repre-
sents a cell line and each column of the matrix is a gene. The basic
architecture of a DAE is composed of three parts:
(i) a noise operation (B), which generates a noisy bulk expression

matrix Xb
0 by inducing random noises to Xb based on a binomial

distribution:

X 0
b =B Xb, pb

� �
, ð1Þ

where pb is the probability of zero value assignment in each row;
(ii) an encoder (Eb), which subtracts Xb

0 to a lower-dimensional
subspace with a ReLU activation function; and

(iii) a decoder (Db), which reconstructs an approximation matrix X00
b

from the low-dimensional representations.

The DAE is optimized by the reconstruction loss function (Mean
Square Error, MSE) between the input Xb and X00

b, aiming to make the
reconstructed matrix similar to Xb. The model can be trained as:

min lossrecon Eb, Db, Xb

� �
=min MSE Xb, X

00
b

� �� � ð2Þ

X 00
b =Db Eb Xb

0� �� � ð3Þ
Step 2. Bulk drug response prediction. We train an encoder model
(predictor, P) based on a fully connected multi-layer perceptron
(MLP)55 on bulk RNA-seq data to estimate the correlation of drug
response and bulk gene expressions. Parameters inside P are opti-
mized with the classification loss (i.e., cross-entropy) between the
predictive drug responses classification per cell line Yb and the binary
drug response label Y0

b extracted from the bulk database.

min lossclass P, Yb, Y
0
b

� �
=min Cross Entropy Yb,Y

0
b

� �� �
ð4Þ

Yb =PðEbðXbÞÞ ð5Þ

Step 3. Single-cell feature extraction. A similar DAE model is also
trained to extract low-dimensional features from the query scRNA-seq
data Xs. Its loss function can be defined as:

min lossrecon Es, Ds, Xs

� �
=min MSE Xs,X

00
s

� �� �
, ð6Þ

X 00
s =Ds Es Xs

0� �� �
, ð7Þ

X 0
s =B Xs, ps

� �
, ð8Þ

where Xs
0 is the noisy single-cell expression matrix after inducing

randomnoiseswithps. Es andDs are the encoder anddecoder, andX00
s is

the reconstructed scRNA-seq matrix resulting from Ds.

Step4.DTLmodel training. TheDTL training adapts the gene features
extracted frombulkand single level to enable the sensitivity prediction
for cells through the predictor P. We applied a DaNN12 model to derive
the feature extractor Es in the single-cell level. The DaNN model
introduces an extra loss named the Maximum Mean Discrepancy
(MMD) to estimate the similarity between output Eb and Es, which is
defined as:

lossMMD EbðXbÞ, EsðXsÞ
� �

= ∣
1
n

Xn
i = 1

ϕ xi
b

� �� 1
m

Xm
j = 1

ϕ xj
s

� �
∣H , ð9Þ

where Xb = xib
� �

i = 1,...,n and Xs = xjs
n o

j = 1,...,m
are data vectors for n cell

lines andm cells from the bulk and scRNA-seq data, respectively;ϕ(.) is
referred to the feature space that maps to the universal Reproducing
Kernel Hilbert Space (RKHS). The RKHS norm ∣:∣H measures the
distance between two vectorswith different dimensions. The similarity
between twogene features is added to the classification lossduring the
trainingprocessof thepredictorP to ensure that the feature spaceof Es
and EB have similar distributions. The DaNNmodel is trained to update
two gene extractors (EB and Es) and the predictor P, simultaneously,
which can be defined as:

min
Eb ,Es ,P

lossDaNN Xb, Xs, Eb, Es , P
� �

= lossclass P, Eb, Xb, Yb

� �

+α*lossMMD EbðXbÞ,EsðXsÞ
� �

+β*regulizer,
ð10Þ

regulizer =
X
CC

cosinesimilarity

c in CC
Xs

� �
, ð11Þ

where α is a weight of lossMMD(.), β is the weight of the regularizer, c is
cell, and CC is the cell cluster categories obtained from Louvain clus-
tering results (using the igraph R package v1.3.4). By minimizing loss-

DaNN(.), the trained Es and Pwill then be used for predicting drug responses
from the scRNA-seq data.

Step 5. Model transfer and single-cell drug response prediction.
Thewell-trained Es and P in Step 4will be assembled and transferred to
predict the single-cell drug responses using all cells in the scRNA-seq
data. The assembled Es and P will take scRNA-seq data Xs as input and
output the continuous probability scores Ys for each cell in Xs. The
binary label is determined by counting any cells with a continuous
probability score between 0–0.5 as resistant cells and 0.5–1 as
sensitive cells.

Benchmarking metrics for the scDEAL prediction
To evaluate the prediction of scDEAL, we applied seven metrics as
shown below.

Precision represents the ability of the model to correctly predict
positive numbers among all positive predictions. We implemented
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Precision tests using the “precision_score” function in the package
sklearn.

Precision=
True positive

True positive+ False positive
ð12Þ

Recall represents themodel’s ability to correctlypredictpositivity
from actual positive samples. We implemented Recall tests using the
“recall_score” function in the package sklearn.

Recall =
True positive

True positive+ False negative
ð13Þ

F1-score canbe interpreted as aweighted average of precision and
recall. F1-score reaches its highest value at 1 and lowest score at 0. The
equation for the F1-score is:

F1� score=
True positive

True positive+0:5* True positive+ False negativeð Þ
ð14Þ

We implemented F1-score tests using the “F1_score” function in
the package sklearn54.

AUROC score computes the area under the receiver operating
characteristic (ROC) curve. The ROC curve’s x-axis is the true positive
rate and the y-axis is the false positive rate derived from prediction
scores. The curve is generated by setting different thresholds to
binarize the numerical prediction scores. AUROC computes the area
under the precision-recall curve with the trapezoidal rule, which uses
linear interpolation. We implemented AUROC tests using the
“roc_auc_score” function in the sklearn package.

AP score summarizes a precision-recall curve (PRC) as the
weighted mean of precisions achieved at each threshold, with the
increase in recall from the previous threshold used as the weight. The
AP score is given by:

AP =
Xn
i= 1

ðRn � Rn�1ÞPn, ð15Þ

wherePn andRn are the precision and recall at a threshold norderedby
its value. We implemented AP tests using the “average_precision_-
score” function in the package sklearn.

AMI is an adjustment of the Mutual Information (MI) score to
account for chance. It accounts for the fact that the MI is generally
higher for two clusters with a larger number of clusters, regardless of
whether there is more information shared. We implemented ARI tests
using the “adjusted_mutual_info_score” function in the package sklearn.

ARI reaches its highest value at 1 and lowest score at 0. The
equation for ARI is:

ARI P*, Pð Þ=
P

i,j
Nij
2

� �
�

P
i

Ni
2

� �P
j

Nj
2

� �h i
N
2ð Þ

0:5*
P

i
Ni
2

� �
+
P

j
Nj

2

� �h i
�

P
i

Ni
2

� �P
j

Nj
2

� �h i
N
2ð Þ

, ð16Þ

where N is the number of points in a given data, Nij is the number of
points of class labelC*

j 2 P* assigned to clusterCi in partition P.Ni is the
number of points of cluster Ci in partition P. Nj is the number of points
of cluster Cj. We implemented ARI tests using the “adjusted_rand_-
score” function in the package sklearn.

Differentially expressed gene score
To select the differentially expressed genes, we performed Wilcoxon
signed-rank tests using the “rank_genes_groups” function. By default,

the top 50 genes (BH adjusted p-values <0.05) ranked by the z-score
are selected to calculate the sensitive or resistant gene score. The
sensitive or resistant gene score of each cell is calculated by sub-
tracting the average DEG expression with the average expression of a
randomly sampled reference set of genes in that cell. The raw gene
score is then min-max scaled. The DEG score was evaluated with the
“score_genes” function built in SCANPY53.

Data sampling and repetition for stability tests
The stability test is performed by retraining the DTL model ten times
with different random seeds and randomly sampled subsets of cells.
To preserve the original sensitive and resistant cell ratio in the dataset,
we choose to perform the stratified sampling of the sensitive and
resistant cells in the dataset. The sampling is performed using the
“resample” function in the sklearn package54. The number of output
(n_samples parameter) is set to be 80% of the input, and the sampled
data will not be sampled again with the setting “replace = False”.

Critical gene identification with Integrated Gradients
We applied IG score56 to characterize critical input genes features in
the scDEAL model. An IG score represents the integral of gradients
with respect to each gene expression as inputs along the path from
zero expression as a baseline to the input expression level (Supple-
mentary Fig. S5). The integral is approximated using the Riemann rule
described as follows:

IGi xð Þ: : = xi � x0
i

� �
×
Z 1

α =0

∂F x0 +α × x � x0ð Þð Þ
∂xi

d ð17Þ

It calculated the importance of the i-th gene expression of the
input cell x. α is the scaling coefficient; x0

i is the baseline expression
level gene i, which is 0 in our case; and ∂F(x) / ∂xi represents the
gradient of F(x) along the i -th dimension.

We apply the “IntegratedGradients” class in the Python Captum
library57 to calculate IG values. The inputs are our expression matrix,
trained model, and output labels. The outputs of the function are IG
matrices of the same shape as the input expression matrix. Rows
represent genes and columns represent cells. Values in amatrix are the
corresponding IG values.

As scDEAL is a binary classificationdeep learningmodel, it has two
nodes in the output layer to predict sensitive and resistant prob-
abilities. Based on the sensitivity or resistance for each gene con-
tribute, we can obtain two separate IG matrices for each input data
corresponding to the sensitive and resistant output. The IGmatrix can
be found in the model output file “attr_integrated_gradient.h5ad”. The
IG matrix is stored with an “AnnData” object and can be read by the
function “sc.read_h5ad”.

To select genes that have significantly higher IG values within the
sensitive (or resistant) cell cluster, we utilized the Wilcoxon test using
the function “sc.tl.rank_genes_groups” between sensitive (or resistant)
cells in SCANPY. We considered the genes with Bonferroni adjusted p-
values <0.05, log-fold changes >0.1, and the percentage of cells with IG
scores in either group higher than 0.2 as CGs.

Functional enrichment
Functional enrichment test was performed via DAVID online service.
The GOTERM_BP_DIRECT database was used for GO pathways enrich-
ment test. Results were filtered by the default p-value <0.1 on DAVID.

Trajectory inference for Oral Squamous Cell Carcinomas
The trajectory inference for the scRNA-seq data was preprocessed
using Monocle346. The read count matrix was projected to a
2-dimensional UMAP space using the “reduce_dimension” function.We
then used the function “learn_graph” to construct a graph topology
from the reduced dimension space based on the reversed graph
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embedding algorithm. Afterwards, we calculated pseudotime values
for cells based on their projection on the graph learned in the
“learn_graph” function using the “order_cells” function.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
GDSC is publicly available through the website (https://www.
cancerrxgene.org/). Drug response annotation, including half max-
imal inhibitory concentration (IC50) and area under the dose-response
curve (AUC), are available through the page https://www.
cancerrxgene.org/downloads/bulk_download. Gene expression data
(RMA-normalized basal expression profiles) for cell lines can be
accessed on GDSC (https://www.cancerrxgene.org/gdsc1000/
GDSC1000_WebResources/Home.html). The CCLE cell line expres-
sion profile and PRISM cell line viability assay are available from
https://depmap.org/portal/. The six scRNA-seq data used in this study
are available in the GEO database without access restrictions under
accession code GSE117872, GSE112274, GSE140440, GSE149383, and
GSE110894. Detailed descriptions of scRNA-seq data used in this study
can be found in Supplementary Table 1. Source data from each figure
are provided in this paper.

Code availability
The source code of scDEAL is freely available on (https://github.com/
OSU-BMBL/scDEAL). The code is also available on Zenodo58.
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