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Motif co-regulation and co-operativity are
common mechanisms in transcriptional,
post-transcriptional and post-translational
regulation
Kim Van Roey1,2 and Norman E. Davey3*

Abstract

A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence
motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins.
Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has
facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif
acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules
allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of
multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial,
conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review,
we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of
motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows
simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic
biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs
that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules,
from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory
elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory
programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.

Keywords: Motifs, Cis-regulatory elements, RNA motifs, Short linear motifs, SLiMs, Co-regulation, Co-operativity,
Regulation, Modularity

Background
The life of a gene product, from transcription to degrad-
ation, is controlled by a series of regulatory decisions.
How does the cell decide when to make a transcript? Does
a transcript get translated, stored, decayed or transported
to a specific subcellular location? After translation, where
is a protein localised, and what complexes should it join?
Ultimately, when is a protein degraded? The outcome of
this decision-making process is cell state dependent and,
consequently, requires the integration of vast amounts of

information that is encoded in the local abundance and
functional state of a multitude of biomolecules acting as
cell state sensors and transmitters. Recent advances in our
understanding of cell regulation have suggested that a
substantial portion of the interactions that facilitate con-
ditional and dynamic cellular decision-making in higher
Eukaryotes are mediated by compact and degenerate
interaction modules known as motifs (short linear motifs
(SLiMs) in proteins, RNA motifs in RNA and regulatory
elements in DNA) [1–5]. The term motif denotes a re-
peated figure or design and, in motif biology, the occur-
rence of a given class of motif in a set of unrelated
biomolecules led to the appropriation of the term to refer
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to a recurrent pattern of nucleotides or amino acids that
corresponds to an autonomous functional module.
The higher eukaryotic cell has an extensive repertoire of

DNA, RNA and peptide motifs that function as dynamic
binding modules in complex formation, recruiters of basal
regulatory pathways, or receivers of cell state information
through association with or modification by their inter-
action partner [6–8]. These motifs control many aspects
of transcriptional (recruiting the basal transcription ma-
chinery and transcriptional regulators to the numerous
promoters, enhancers, silencers and insulators [6, 9–12]),
post-transcriptional (controlling protein production by
modulating pre-mRNA splicing; mRNA stability, storage
and localisation; and microRNA (miRNA) recruitment
[7, 13–17]) and post-translational regulation (controlling a
protein’s stability, localisation, modification state and com-
plex association [1, 8, 18, 19]) (Table 1). The regulatory re-
gions of most genes, (pre-)mRNAs and proteins have
extensively exploited the available motif repertoire [8, 20,
21] and each biomolecule contains a distinct set of motifs
that encode unique regulatory programs tuned to govern
the life cycle of the biomolecule [22]. These motifs
often occur with high densities as the compact footprint
of sequence motifs allows multiple functional modules to
be encoded in a short polypeptide or polynucleotide seg-
ment [2, 4, 5, 23, 24].
Experimental and bioinformatics studies are beginning

to offer an insight into the mechanisms driving motif ac-
quisition [4, 25–34]. Many instances are undoubtedly the
product of duplication or recombination [25, 31, 35–37].
Conversely, substantial indirect evidence from the com-
parison of motif presence in different species suggests that
motifs can be gained and lost relatively rapidly in homolo-
gous regions [26, 27, 31, 34, 38–41]. This observed evolu-
tionary plasticity, in association with their degenerate
nature and the limited number of affinity- and specificity-
determining residues in a motif, led to the hypothesis that
novel motif instances are often acquired through ex nihilo
motif evolution by point mutations, insertions or deletions
[27, 31, 32, 42]. However, catching evolution in the act is
difficult. For SLiMs, a serine to glycine mutation in
Leucine-rich repeat protein SHOC-2 (SHOC2), which re-
sults in a novel myristoylation motif and causes aberrant
SHOC2 localisation, provides the sole experimentally
characterised example of ex nihilo motif birth on the pro-
tein level [42]. The mutation is found in several pa-
tients with Noonan-like syndrome and for some, the
sequence variation is present in neither parents. Thus,
the birth of this novel motif is often the result of a
germline mutation. A similar mechanism of ex nihilo
motif acquisition has been hypothesised for nucleotide
motifs [31–33]. Indeed, the probability of a motif oc-
curring by chance at a given position is equivalent for
the motifs of the three major classes of biomolecule.

Consequently, though the three major types of motif
are physicochemically distinct they share a similar
evolutionary plasticity that has resulted in the ubi-
quity that gave them their shared name.
The human proteome contains thousands of motif-

binding proteins. The current census of nucleotide
motif-binding proteins stands at ~1400 DNA-binding
proteins [43] and ~850 RNA-binding proteins [44]. The
number of SLiM-binding proteins remains to be eluci-
dated, however, given the distribution of known SLiM-
binding and -modifying domains in the human proteome,
it is likely to be in a similar range [8, 45]. This would sug-
gest that upwards of 20 % of the human proteome might
consist of motif-binding proteins. Furthermore, ~2000
human RNA motif-recognising miRNAs have been
annotated [46]. Hundreds of distinct classes of motifs
recognised by motif-binding biomolecules have been char-
acterised to date [6–8]. The simplicity of motif acquisition
has driven the proliferation of motifs of widespread utility
and, for several motif classes, experimentally characterised
motif instances are present in tens of biomolecules
[6, 8, 47]. For a handful of classes, hundreds, or even
thousands, of motif instances are known [11, 48, 49]. On
the protein level, the high motif density of well-
characterised biomolecules [23], the extensive regions of
intrinsic disorder [50] (where SLiMs are the predominant
functional module type [1, 51]) and the numerous SLiM-
binding domains [45] suggest extensive motif use in com-
plex organisms. Recently, Tompa et al. hypothesised
that the human proteome may contain up to a mil-
lion SLiMs [22], however, the actual number of motifs
is unknown. The reason is simple, SLiM discovery is
difficult: computational approaches have high false
positive rates and experimental techniques must
overcome the transience of SLiM-mediated interactions,
extensive SLiM co-operativity, redundancy and weak phe-
notypes [52]. However, recent advances in experimental
discovery techniques, particularly high-throughput discov-
ery methods, will hopefully rectify this in the coming
decade [53].
In this review, while focusing on SLiMs, we aim to high-

light the similarities in the use of motif co-regulation and
co-operativity in transcriptional, post-transcriptional and
post-translational regulation. We discuss how the evolu-
tionary plasticity of sequence motifs facilitated their prolif-
eration and supported the evolution of extensive networks
of co-regulation. We examine how the ability to readily
add a functional module without disturbing a pre-existing
regulatory interface promotes high functional density and
how motifs can functionally modulate each other to create
decision-making interfaces capable of integrating cell state
information. Finally, we consider how multiple motif-
containing interfaces in the same biomolecule collaborate
to create unique regulatory programs.
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Table 1 Representative examples of protein, RNA and DNA motifs

Motif type Example motif Consensus sequencea Function

Protein short linear motifs

Ligand - promote complex
formation

SH3 ligand PxxPx[KR] Complex formation with SH3 domains [195]

Nuclear receptor box LxxLL Complex formation with Nuclear receptors [196]

LD motif [LV][DE]x[LM][LM]xxL Complex formation with FAT domains [197]

LxCxE motif [IL]xCxE Complex formation with Rb [198]

RGD motif RGD Complex formation with Integrin family members [199]

Localisation - recruit targeting and
transport pathways to control
protein localisation

Nuclear Export Signal
(NES)

ΦxxΦxxxΦxxΦxΦ Translocation from the nucleus to the cytoplasm [200]

KDEL ER retrieval
signal

[KH]DEL-COOH Translocation from the Golgi to the endoplasmatic
reticulum (ER) [201]

Ciliary targeting signal RVxP Transport to the plasma membrane of the cilia [202]

Peroxisomal targeting
signal

[KRH]xxΦ$ or [KRH]Φ$ Import into the peroxisomal lumen [203]

Tyrosine endocytic
signal

YxxΦ Directs endocytosis of membrane proteins [204]

Enzyme recruitment - recruit
enzymes to the protein/complex
to modify/demodify a site distinct
from the bound motif

Cyclin docking motif [RK]xLx{0,1}[LF] Recruitment of the Cyclin-Cdk holoenzyme [205]

PP1 docking motif RVxF Recruitment of the PP1 phosphotase holoenzyme [206]

Tankyrase docking
motif

Rxx[PGAV][DEIP]G Recruitment of the Tankyrase poly-
(ADP-ribose) polymerase [207]

USP7 docking motif PxxS Recruitment of the USP7 deubiquitylating enzyme [208]

NEDD4 docking motif PPxY Recruitment of the NEDD4 ubiquitylating enzyme [209]

Stability - recruit E3 ubiquitin
ligases and promote substrate
polyubiquitylation to control
protein stability

APC/C D box degron RxxLxxΦ APC/C E3 ubiquitin ligase [210]

PIP degron Φ[ST]D[FY][FY]xxx[KR] Recruitment of the Cdt2 CRL4 E3 ubiquitin ligase [211]

Fbw7 degron pTPxxp[ST] Recruitment of the Fbw7 SCF E3 ubiquitin ligase [212]

Oxygen dependent
VHL degron

[IL]AoPx{6,8}ΦxΦ Recruitment of von Hippel-Lindau protein (pVHL)
containing E3 ubiquitin ligase [213]

MDM2 degron FxxxWxxΦ Recruitment of the MDM2 ubiquitin
ligase [214]

Modification - act as sites of
moiety attachment/removal,
isomerisation or cleavage

PIKK phosphorylation
site

([ST])Q Phosphorylation by PIKK family kinases [215]

Pin1 isomerisation site p[ST](P) Isomerisation by the Pin1 phosphorylation-dependent
prolyl isomerase [216]

N-Glycosylation site Nx([ST]) Glycosylation by Oligosaccharyltransferase [217]

Caspase-3 and −7
cleavage motif

[DE]xxD|[AGS] Cleavage by Caspase family proteases [218]

Myristoylation site NH2-M(G)xxx[AGSTCN] Myristoylation by Myristoyl-CoA:protein
N-myristoyltransferase [219]

RNA motifs

Stability Adenosine and
uridine (AU)-rich
elements (ARE)

AUUUA Recruits positive and negative regulators of mRNA
stability [13]

Splicing 5′ splice junction AG/GURAGU Recruits splice site recognising U1 snRNA component
of the spliceosome [14]

Modification Polyadenylation signal AUUAAA Recruits cleavage and polyadenylation specificity
factor (CPSF) to cleave and polyadenylate 3′-UTRs [15]

Localisation Muscleblind binding
motifs

YGCUKY Targets mRNAs to membranes [16]

miRNA recruitment miR-125b miRNA
response element

CUCAGGG Regulates expression of mutiple proteins [17]
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Motif co-regulation
Data from genome sequencing projects has failed to reveal
the anticipated correlation between biological complexity
and proteome size [54]. This led to the hypothesis that the
emergence of increasingly complex organisms was facili-
tated by an increase in regulation rather than protein
number [55–58]. But what supports the increased com-
plexity of regulation in the higher eukaryotic cell?
One key feature of eukaryotic regulation is the exten-

sive reuse of specialised regulatory pathways. The ease
of motif acquisition, facilitated by their evolutionary
plasticity, makes them the ideal module to simplify ac-
cess to systems of widespread utility, and evolution ap-
pears to have exploited this extensively. Accordingly,
many motifs encode the ability to recruit components of
these regulatory systems (Table 1). The intrinsic evolu-
tionary properties of motifs have facilitated the evolution
of large networks of biomolecules that bind to a single
motif-binding hub acting as recognition element for the
regulatory machinery (for instance, gene promoters con-
taining hypoxia response elements (HREs) recruit the
HIF-1 complex to induce expression of genes involved
in the response to limited oxygen conditions [59]; co-
regulation of the translation and stability of mRNAs
encoding proteins involved in iron metabolism by iron-
responsive elements (IREs) in the untranslated regions
(UTRs) that bind iron regulatory proteins depending on
iron availability [60]; concerted degradation of cell cycle
regulatory proteins in a cell cycle phase-dependent man-
ner through recognition of specific degron motifs by the
Anaphase-Promoting Complex/Cyclosome (APC/C) ubi-
quitin ligase [61]). As a result, instances of the same
motif class are regularly present in multiple distinct bio-
molecules [8, 30, 48, 62] (a motif class defines the set of
motifs that recognise a single motif-binding pocket on a
specific biomolecule). Interestingly, these networks are
evolutionarily dynamic and differ between even closely

related species [27, 41, 63]; however, it appears that once
a functionally valuable motif-accessible system is in
place, additional biomolecules come under the control
of these systems, thereby extending the regulatory net-
works (Fig. 1a) [48]. Most of the more abundant motifs
link biomolecules to the molecular machinery that per-
forms important basal house keeping functions. Basal
functions can be required by thousands of biomolecules
and consequently many of the motifs that facilitate these
functions are ubiquitous (for example, the motifs that
recruit the basal transcription, splice site recognition
and protein translocation machinery [48, 49, 62]) (Fig. 1b).
An important subset of the regulatory machinery is the
conditionally, temporally or spatially restricted motif-
binding molecules that transmit cell state information to
the motif-containing biomolecule (Fig. 1c and d). The cell
contains numerous motif-accessible pathways that allow
biomolecules to integrate cell state information in their in-
terfaces to respond appropriately and in a coordinated
manner to changes in their environment (for example,
fluctuations in calcium levels [64–66] (Fig. 1f), transitions
of cell cycle phase [41, 67–69] or detection of DNA dam-
age [70, 71]). On the protein level, motif-binding pockets
can also recruit several distinct motif-containing regulatory
proteins to a complex. In these cases, the motif facilitates
the construction of functionally distinct assemblies around
a constant complex core, for example, the recruitment of
PIP box motif-containing proteins to the DNA sliding
clamp by Proliferating cell nuclear antigen (PCNA) [72, 73]
(Fig. 1e), the recruitment of SxIP motif-containing proteins
to microtubule plus-end binding proteins [74], or the re-
cruitment of LxCxE motif-containing proteins to E2F-
regulated promoters by Retinoblastoma-associated protein
(Rb) [75].
Thus, the evolutionary properties of motifs simplify

access to many, widely relevant functionalities and facili-
tate the construction of diverse functional assemblies

Table 1 Representative examples of protein, RNA and DNA motifs (Continued)

DNA regulatory elements

Basal machinery recruitment TATA box TATAAAA Recruitment of the basal transcription machinery to
the core gene promoter required for initiation of
transcription [9]

Promoters/Enhancers CCAAT/enhancer
binding protein
(C/EBP) site

CCAAT Promotion of gene expression [10]

Silencers/Insulators CCCTC-binding factor
(CTCF)
binding site

CCGCGNGGNGGCAG Diverse functions including acting as a transcriptional
repressor and insulator [11]

Endonucleases EcoRI restriction site G|AATTC Sequence specific cleavage of DNA [12]
aPatterns are representative and roughly define the specificity of the motif binding partner. Pattern syntax for proteins: letters denote a specific amino acid; “x”
denotes any amino acid; square brackets denote a subset of allowed amino acids; curly brackets denote length variability; round brackets indicate a position
targeted for post-translational modification after motif recognition; “p” denotes a phosphorylation site required for binding; “o” denotes a hydroxylation site
required for binding; “|” denotes a cleavage site; “Φ” (phi) denotes a aliphatic residue; “NH2-” indicates the amino-terminus of the protein; “-COOH” indicates the
carboxyl-terminus of the protein. Pattern syntax for DNA and RNA: “/” denotes a splice site. “K” denotes a guanine or a uracil; “Y” denotes an adenine or a cytosine;
“R” denotes an adenine or a guanine; “N” denotes any base; “|” denotes a cleavage site
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around a constant complex core. The higher eukaryotic
cell contains innumerable co-regulated networks of bio-
molecules that are connected by motifs. Experimental
analyses of these networks should consider that the modu-
lation of a single motif could have effects across the
network.

Motif co-operativity
Motifs are autonomous functional binding modules that
can independently engage in an interaction. Many motifs

can function in isolation, however, in many cases, a
binding or modification event at one motif will affect
binding to or modification of another motif, i.e. motifs
generally act co-operatively. Multiple distinct motif-
mediated binding and/or modification events can affect
each other either positively or negatively to various de-
grees, i.e. they can induce, promote, inhibit or com-
pletely abrogate each other. The cell extensively exploits
motif co-operativity and to date, many experimentally
validated cases of co-operative binding of motifs have

A

B C D E

F

Fig. 1 Motif-dependent co-regulation of proteins. a Schema showing the expansion of a regulatory network. The original ancestral network will
likely contain a limited number of targets. Proteins can be added to the network as they acquire the necessary motifs through ex nihilo evolution of
novel motifs. Different species will have different regulatory networks [26, 28–30, 122, 123]. b Representative motif used to perform basal functionality.
Importin-alpha bound to a nuclear localisation signal (NLS)-containing peptide from Myc [124] and representative examples of NLS motifs [125–130],
showing the shared residues complementary to the binding pocket (side chains shown in structure) that result in the consensus sequence.
c Representative motif involved in conditional transmission of cell state information to the motif-containing protein. Cyclin-A2 bound to a Cyclin
docking motif in Cellular tumor antigen p53 [131] and representative examples of Cyclin docking motifs [131–135]. d Representative motif involved in
conditional transmission of cell state information to the motif-containing protein. PKB beta bound to a PKB phosphorylation site peptide from
Glycogen synthase kinase-3 beta [136] and representative examples of PKB phosphorylation sites [137–141]. The modified residue is shown in orange.
e Representative motif used to recruit variable components to an invariant complex core. The PIP box-binding pocket of PCNA bound to a PIP box
from p21 [142] and representative examples of PIP boxes [142–147]. f Examples of conditional motif-driven regulatory networks in which motifs
underlie the co-regulation of multiple biomolecules in a coordinated manner to respond to changes in Ca2+ levels. Increased Ca2+ levels can result in
motif-dependent phosphorylation (p+), dephosphorylation (p-) or competitive binding events (calcium/calmodulin-dependent protein kinase (CaMK)
recognises Rxx[ST] [64], Calcineurin (CN) phosphatase recruits substrates through PxIxIT or LxVP docking motifs [65], and Calmodulin (CaM) recognises
hydrophobic helical IQ motifs [66])
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been described [19]. Co-operative binding can serve to
increase the specificity of an interaction, to increase the
affinity of an interaction, and/or to integrate cell state
information, as will be described in the following para-
graphs [1, 4].
A common strategy in motif interactions is the co-

operative binding of multiple motifs and motif-binding
domains, which in isolation are somewhat promiscuous,
to mediate highly specific interactions. Motif-binding do-
mains or motifs can co-operate at an intermolecular level,
through multimerisation of the motif-binding or motif-
containing partners [76] (Fig. 2a), or at an intramolecular
level, for example many motif-binding domains (e.g. zinc
fingers for DNA motifs, RNA recognition motifs (RRM)
for RNA motifs, and SH2, SH3 and PDZ domains for
SLiMs) occur as tandem arrays to increase binding specifi-
city [77–79] (Fig. 2b). In proteins, multiple pockets on the
same globular domain can also function co-operatively
[80] (Fig. 2c). These mechanisms, in addition to temporal

and spatial separation of biomolecules [81], permit high-
fidelity recognition of biologically relevant binding
partners despite the large number of sequences that are
complementary to the specificity of a single motif-binding
module [4]. The same mechanisms also allow the intrin-
sically weak affinities of a single motif (a particular feature
of SLiMs, which mediate interactions with affinities that
are generally in the 1–10 μM range) to be increased by
binding multivalently with high avidity. The binding
strength of these interactions can increase by orders of
magnitude while the system retains much of the dynamism
of the constituent parts [82, 83]. For instance, robust local-
isation of Amphiphysin 1 to the periphery of assembling
clathrin lattices depends on two distinct motifs that bind to
two independent sites on the N-terminal beta-propeller do-
main of clathrin, which increases the affinity and specificity
of the interaction [84]. Similarly, higher order use of co-
operative avidity-driven binding mechanisms also allows
motifs to recruit, organise and stabilise large dynamic

A B C

D E F G

A B C

D E F G

Fig. 2 Examples of co-operative interactions mediated by DNA, RNA and protein motifs. a DNA motif specificity through multivalent interactions with
motif-binding domains in multimeric complexes. Structure of Retinoic acid receptor alpha (RARA) (green) and Retinoic acid receptor RXR-alpha (RXRA) (red)
heterodimer bound to a retinoic acid response element (5′-AGGTCAAAGGTCA-3′) (blue) [107]. Each protein binds to a 6-mer “half-site” (5′-AGGTCA-3′)
giving the complex specificity for a 12-mer motif. b RNA motif specificity through multivalent interactions with tandem arrays of motif-binding domains.
Structure of the tandem Zinc Fingers of Zinc finger protein 36, C3H1 type-like 2 (ZFP36L2) (green) bound to an RNA class II AU-rich element (ARE)
(5′-UUAUUUAUU-3′) (blue). Each Zinc Finger recognises 4 nucleotides of RNA, allowing the tandem domains to recognise an 8-mer motif [78]. c Protein
motif specificity through multivalency. Structure of yeast APC/C-Cdh1 modulator 1 (Acm1) (blue) bound to APC/C activator protein Cdh1 (green) showing
the 3 binding pockets for the D box (RxxLxxL), KEN box (KEN) and ABBA motif (FxLYxE) on the WD40 repeat of Cdh1 [80]. d Example of competitive
motif-mediated binding involving two motifs. Binding of a single biomolecule/complex to a motif is sufficient to perform the biological function; however,
when a second biomolecule is present, the function facilitated by the first site is inhibited [19, 87, 148–150]. e Schematic example of co-operative
motif-mediated interactions involving two motifs. In the example, binding of a single interface is insufficient to elicit the functional outcome of binding.
Once the second motif-binding interface associates, the trimeric complex can bind with sufficient affinity/avidity to elicit the biological outcome.
f Modification on or near a regulatory motif can modulate the motif either positively [89, 151–154] or negatively [18, 19, 94]. g Motif accessibility is
required for binding partner recruitment and, consequently, is often utilised as a step of regulation [18, 19, 99, 100, 155]
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multimeric complexes such as those that assemble at DNA
regulatory element-rich gene promoters [24] or on SLiM-
rich scaffolding proteins [1, 85].
In addition to directing multi-partite interactions with

high specificity and avidity, motif co-operativity also
plays a fundamental role in cellular decision-making. A
single motif instance is not intrinsically conditional.
However, through regulation of the local abundance of
the motif-binding partner and/or through co-operative
or competitive use of multiple motifs, combinatorial
decision-making is possible [1]. A binding or modifica-
tion event at one motif can modulate the occupancy
state of another motif, thus changing the functionality of
the second motif. Accordingly, the co-operative nature
of their interactions provides motifs the means to inte-
grate cell state information from multiple inputs and
propagate regulatory decisions based on this informa-
tion. Binding motifs can influence each other in different
ways [18, 19]. Overlapping or adjacent motifs can pro-
mote mutually exclusive, competitive interactions, allow-
ing context-dependent assembly of functionally distinct
complexes [86] (Fig. 2d). For instance, in Rb, the docking
motif for the catalytic subunit of protein phosphatase 1
(PP1) and the cyclin docking motif that recruits cyclin-
Cdk complexes overlap. While binding to PP1 results in
dephosphorylation of Rb, keeping it active as a repressor
of E2F-dependent transcription, binding to cyclin-Cdk
results in phosphorylation and inactivation of Rb, thus
promoting cell cycle progression [87]. Alternatively,
adjacent motifs can co-operate positively, facilitating the
integration of signals encoded in the presence of their
different binding partners [88] (Fig. 2e). Such co-
operativity occurs during assembly of the T cell sig-
nalling complex on the Linker for activation of T-cells
family member 1 (LAT) scaffold protein, which contains
multiple SH2 domain-binding motifs that, upon phos-
phorylation, recruit a variety of signalling proteins
through their respective SH2 domains to build a func-
tional signalling complex [88]. Another key mechanism
for cell state dependent decision-making is mediated by
modulation of the intrinsic affinity and/or specificity of a
motif by modification of one or more overlapping or
neighbouring modification motifs [89, 90]. The binding
properties of a motif can be adjusted by the covalent at-
tachment of a moiety (Fig. 2f ), ranging from switching
on intrinsically inactive motifs that require a specific
modification in order to be active [91, 92] (for instance,
Plk1-catalysed phosphorylation of two serine residues in
the beta-TrCP-binding degron in Claspin is required for
its interaction with beta-TrCP and the associated ubiqui-
tin ligase complex, resulting in ubiquitylation and subse-
quent proteasomal degradation of Claspin, a process
involved in termination of the DNA replication check-
point [93]), disrupting an interaction [94, 95] (such as

binding of the USP7-docking motif in Mdm4 to the deu-
biquitylating enzyme USP7, which is inhibited by phos-
phorylation of a serine residue adjacent to the motif by
ATM kinase to promote Mdm4 destabilisation during
DNA damage response [96]) or changing the specificity
of a binding region from one binding partner to another
[97] (for example, phosphorylation of a tyrosine residue
in a PTB domain-binding motif in the Integrin beta-3
tail negatively regulates integrin activation by switching
the specificity of the binding region from Talin to Dok1
[98]). The binding properties of a motif or a motif-
binding domain can also be modulated indirectly by
allosteric effects, resulting from modification or effector
association/dissociation at a site that is distinct from the
actual interaction interface [99–101] (Fig. 2g). A well
characterised example of allosteric regulation of SLiM-
mediated interactions involves ligand-induced activation
of the Wiskott-Aldrich syndrome protein (WAS), where
binding of Cdc42 relieves a motif-mediated auto-
inhibitory interaction in WAS, resulting in activation of
the protein [102].
On a molecular level, some motifs will function inde-

pendently, whereas others will be contained in multi-
motif co-operative interfaces. This raises the question
whether there exist pairings of motifs that can cooperate
and others that cannot? Or is the requirements of the
system the only limit on the observed co-operative motif
pairings? The mechanisms driving the evolution of motif
co-operativity is an open question and only a handful of
examples of a co-operative motif being added to a pre-
existant motif interface have been fully characterized
[25, 39]. However, given the simplicity of motif acquisi-
tion, most motif pairings will have been tested by evolu-
tion. It is likely that unobserved pairings are of limited
biological utility and consequently are not retained. It is
clear that many commonly observed co-operative motif
pairings reflect the available motif-binding pockets in
the binding partner, for example, docking motifs and
modification sites for the same PTM enzyme will often
occur in the same protein, increasing the efficiency and
specificity of modification [78, 80, 103–107]. Further-
more, intuitively, motifs with related functionality will be
more likely to co-operate (i.e. cell cycle kinase modifica-
tion motifs often regulate adjacent cell cycle-related
interaction motifs such as the mitotic degron motifs
[108–111]). Depending on the spatial organisation and
flexibility of the motif-binding partner, constraints may
be placed on the minimum or maximum inter-motif dis-
tance and the ordering of the motifs; such constraints
have been observed for the APC/C and the Cdk/Cyclin/
Cks1 complex [80, 112–114].
In summary, the unique evolutionary and binding at-

tributes of motifs in DNA, RNA and proteins facilitate
two highly exploited mechanisms: (i) the co-operative
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use of multiple independent low-affinity and low-
specificity binding sites to allow highly specific assembly
of dynamic, meta-stable complexes, and (ii) the co-
operative integration of information in conditional
decision-making interfaces. Consequently, the function
of many motifs cannot be fully determined if the analysis
is restricted to discrete instances.

Motif-driven regulatory programs
Evolution rarely creates completely new molecular func-
tions, and more readily works with existing tools to pro-
duce novelty—as François Jacob stated, “Evolution is a
tinkerer, not an inventor” [115]. On the molecular level, this
is clearly evident as the modular nature of biomolecules
permits evolution to reuse useful modules in novel combi-
nations to produce distinct biological outcomes [116].
The cell has a vast repertoire of DNA, RNA and protein

motifs that carry out a wide range of functions (Table 1).
Addition of these motifs can have a marked effect on a
biomolecule; for example, on the protein level, addition of
modules can modify the subcellular localisation, stability,
modification state and interactome of a protein, hence af-
fecting its activity and function (Fig. 3a–b). The small
footprint of motifs permits the addition of a module to
add novel functionality without disrupting the ancestral
functionality [25, 39]. Consequently, biomolecules can
contain multiple motifs [117, 118] (Table 2). As discussed

in the previous section, each motif can co-operate with
additional motifs and together these simple components
can exhibit complex behaviour due to their conditional
connectivity. The set of motifs in a biomolecule encodes a
regulatory program that defines the logic of its decision-
making circuitry: controlling under what conditions and
to what degree transcription proceeds; the processing, lo-
cation, stability and translation of RNA; and the localisa-
tion, stability, modification state and interactome of a
protein. The regulatory program also defines how the bio-
molecule integrates the available information encoded in
its own local abundance, the local abundance of its bind-
ing partners, binding site occupancy and modification
state, to produce a functional outcome. Different sets of
modules, or the same set of modules with distinct condi-
tional connectivity, can respond differently to the same
changes in cell state, allowing each biomolecule to build
unique regulatory programs (Fig. 3c–d).
Ultimately, tens to hundreds of modules in DNA,

RNA and proteins, many of them motifs, regulate the
life cycle of every gene product on the transcriptional,
post-transcriptional and post-translational levels from
transcription to degradation (Table 2, Fig. 4) [119].

Conclusions
Biomolecules are robustly regulated from their transcrip-
tion to their destruction to generate high fidelity control

A B

C

D

Fig. 3 Distinct regulatory programs and protein modularity. a The higher eukaryotic cell has a large repertoire of protein modules, represented
here by different shapes with different colours, that are reused by evolution to encode many aspects of protein functionality, including its
subcellular localisation (pentagons), stability (triangles), modification state (circles) and interactome (rectangles). The ex nihilo acquisition of a
targeting SLiM can result in protein relocalisation. For instance, while a protein without an NLS motif (top) is expressed ubiquitously throughout
the cytoplasm (blue zone), acquisition of an NLS motif (bottom, red pentagon) results in specific localisation of the protein in the nucleus (blue
zone). b The ex nihilo acquisition of a degradation motif can result in changes to the temporal, spatial or conditional local abundance of a
protein. For instance, while the abundance of a protein without a cell cycle-specific degron (top) is independent of the different phases of the cell
cycle, acquisition of a cell cycle-specific degron (bottom, green triangle), for example a D box motif, allows the abundance of the protein to be
adjusted for a specific phase of the cell cycle. c Example of co-regulation of a protein by the same motif (boxed blue pentagon). The three different
proteins will be regulated in a similar manner under specific conditions through recruitment of the same binding partner by the shared motif, for
instance cell cycle-dependent degradation of cell cycle regulators such as Acm1 [156], Cyclin A [157] and Securin [158], which are targeted to the
APC/C for ubiquitylation through their D box motifs. d Proteins with instances of the same globular domain (boxed brown rectangle) can have hugely
different life cycles depending on the set of motifs present in the protein. While the proteins have a similar activity due to the shared globular domain,
their distinct motif content subjects them to specific regulatory programs and diversely controls their life cycle, as is the case for the different members
of the CDC25 family of phosphatases [117] and the Cyclin-dependent kinase inhibitor family [118]
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Table 2 Representative examples of motifs modulating the abundance and function of Cyclin-dependent kinase inhibitor 1 (p21)

Motif Motif sequence Binding domain/partner Function

Protein short linear motifs

Cyclin docking motif [187] 19RRLF22 Cyclin fold of G1/S-specific cyclin-E1 Inhibition of Cyclin E-Cdk2 catalytic activity and sub-
strate recruitment

Cyclin docking motif [188] 155RRLIF159 Cyclin fold of G1/S-specific cyclin-E1 Docking to the Cyclin E subunit of the Cyclin E-Cdk2
kinase complex, which results in phosphorylation of p21
at S130 by Cdk2 and subsequent destabilisation of p21

PCNA-binding PIP box [86, 186] 144QTSMTDFYHS153 Proliferating cell nuclear antigen Inhibition of the DNA polymerase delta processivity
factor PCNA, resulting in G1 and G2 cell cycle arrest

Nuclear localisation signal (NLS) [189] 142RRQTSMTDFYHSKRRLI158 Armadillo domain of Importin-alpha Translocation of p21 from the cytosol to the nucleus
where it exerts it’s effects on cell proliferation

APC/C-binding D Box degron [185] 86RDELGGGR93 WD40 repeat of Cell division cycle protein
20 homolog

Ubiquitylation of p21, thereby targeting the protein for
proteasomal degradation during prometaphase

PIP degron motif [183] 145TSMTDFYHSKRRL157 WD40 repeat of Denticleless protein homolog PCNA- and ubiquitin-dependent proteasomal degradation
of p21 in S phase and after UV irradiation

Cdk2 phosphosite [193] 130(S)P131 Kinase domain of Cyclin-dependent kinase 2 Targets p21 for ubiquitylation and subsequent
proteasomal degradation

PKB phosphosite [190] 140RKRRQ(T)145 Kinase domain of Protein kinase B (PKB) Results in cytoplasmic localisation of p21, prevents
complex formation with PCNA, and decreases the
inhibitory effect on Cyclin-Cdk complexes

NDR phosphosite [192] 141KRRQT(S)146 Kinase domain of nuclear-Dbf2-related (NDR)
kinases

Destabilisation of p21 protein to control G1/S progression

RNA motifs

miRNA [119] miRNA seed region (AAAGUGC)
complementary sites within the 3′-UTR

miRNA miR-17,20a, 20b, 93, 106a, and 106b Down-regulation of p21 expression

HuD binding site [177, 220] 688UUGUCUU695 RRM domain of ELAV-like protein 4 Increased stability of p21 mRNA

HuR binding site [178, 220] AU-rich elements within nt 751–850 RRM domain of ELAV-like protein 1 Increased stability of p21 mRNA

RNPC1 binding site [179, 220] AU-rich elements within nt 621–750 RRM domain of RNA-binding protein 38 Increased stability of p21 mRNA

Msi-1-binding site [180] 1819GUAGU1823 (on a loop portion of a
stem–loop–stem structure)

RRM domain of RNA-binding protein Musashi
homolog 1

Inhibition of p21 mRNA translation to regulate
progenitor maintenance

GC-rich sequence [148] within nt 37–59 RRM domain of CUGBP Elav-like family member 1 Increased translation of p21 mRNA

GC-rich stem–loop structure [148] within nt 37–59 Calreticulin Blocks translation of p21 mRNA via stabilisation of a
stem-loop structure within the 5′ region

CU-rich sequence [181] CCANNCC within the 3′-UTR KH domain of Heterogeneous nuclear
ribonucleoprotein K

Repression of p21 mRNA translation

DNA regulatory elements

p53-responsive element [159, 160] GAACATGTCCCAACATGTT at −2233 and
GAAGAAGACTGGGCATGTCT at −1351

Cellular tumor antigen p53 p53-mediated up-regulation of p21 gene transcription
in response to stress signals such as DNA damage

E-box motif [161] CAGCTG at −420, −163, −20 and −5 Helix-Loop-Helix of Transcription factor AP-4 AP-4-dependent repression of p21 gene transcription in
response to mitogenic signals
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Table 2 Representative examples of motifs modulating the abundance and function of Cyclin-dependent kinase inhibitor 1 (p21) (Continued)

Retinoid X response element (RXRE) [162] AGGTCAGGGGTGT at −1198 and
GAGGCAAAGGTGA at −1221

zf-C4 zinc finger of Retinoic acid receptor RXR-alpha RXR ligand-dependent induction of p21 gene expression
by RXR-alpha

Retinoid acid response element (RARE) [163] AGGTGAAGTCCAGGGGA at −1212 zf-C4 zinc finger of Retinoic acid receptor alpha
(RAR-alpha)

Retinoic acid-dependent induction of p21 gene expression
by RAR-alpha

Vitamin D response element (VDRE) [164] AGGGAGATTGGTTCA at −770 zf-C4 zinc finger of Vitamin D3 receptor 1,25-dihydroxyvitamin D3-dependent induction of p21
gene expression by Vitamin D3 receptor

CDX binding site [167] Three TTTAT within −471 to −434 Homeobox domain of Homeobox protein CDX-2 Activation of p21 gene transcription by CDX-2

T-element [168] AGGTGTGA close to the transcription
start site (TSS)

T-box of T-box transcription factor TBX2 Repression of the p21 gene promoter by TBX2

STAT binding element [165, 166] TTCCCGGAA at −647, TTCTGAGAAA
at −2541 and CTTCTTGGAAAT at −4183

STAT fold of Signal transducer and activator
of transcription (STAT) proteins STAT1/STAT3/STAT5

STAT-dependent activation of p21 gene expression in
response to several cytokines

NF-IL6 site [169] GTACTTAAGAAATATTGAA at
approximately −1900

bZIP domain of CCAAT/enhancer-binding protein
beta

Induction of p21 gene expression by CCAAT/enhancer-
binding protein beta

Sp1 binding site [170–173] 6 GC-rich Sp1-binding sites between −120
and TSS

C2H2 zinc finger of Transcription factor Sp1/Sp3 Sp1/Sp3-dependent induction of p21 gene expression

AP2 binding site [174] GCGGTGGGC at −103 Transcription factor AP-2-alpha Induction of p21 transcription and growth arrest by AP-
2-alpha

E2F binding site [175] CTCCGCGC at −155 and CGCGC at −103,
−89 and −36

Winged-Helix of Transcription factor E2F1 Activation of the p21 gene at the G1/S boundary by E2F1

Forkhead binding site [176] TGTGTGC at +200 3′ of TSS Forkhead domain of Forkhead box protein P3 Induction of p21 transcription by Forkhead box protein P3
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of cell physiology. An emerging concept in biology is
that compact functional modules recognised by DNA-
binding, RNA-binding and SLiM-binding biomolecules
control much of the conditional decision-making in a
cell [18, 120, 121]. The three major classes of biomole-
cules, DNA, RNA and proteins, extensively utilise short
sequence motifs to determine the various aspects of
their regulatory functionality and to conditionally recruit
effectors based on the current cell state. Proliferation of
these motifs facilitates biomolecule co-regulation and in-
creases the complexity of cell regulation by expanding
existing networks, thereby increasing the density of net-
work wiring without any requirement to add new mole-
cules to the proteome.
The discovery of the complete set of motifs is vital to

our understanding of cell regulation. However, motifs
co-operate and compete to encode the logic of decision-
making and together, co-regulation and co-operativity
produce intricate biological outcomes from simple mo-
tifs, generating the complicated regulation that underlies
higher eukaryotic cell physiology. Consequently, to truly
appreciate the regulatory program of a biomolecule, we
cannot solely determine the repertoire of motifs, we

must also establish the conditional connectivity between
motifs. Thus, the regulatory segments of genes, the 5′-
UTRs, 3′-UTRs and introns of (pre-)mRNAs, and the
intrinsically disordered regions of proteins should be
seen as functionally analogous regions, and the DNA
regulatory elements, RNA motifs and SLiMs contained
within these regions should be considered the corner-
stones of regulation in complex organisms, for without
them, the observed level of regulatory complexity would
not be achievable.
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Fig. 4 Modular architecture of p21 gene, pre-mRNA and protein, showing known functional modules (see Table 2). a The p21 gene contains: two p53-
responsive elements [159, 160]; four E-box motifs for binding Transcription factor AP-4 [161]; retinoid X response [162], retinoid acid response [163] and
Vitamin D response [164] elements; three STAT-binding elements that recruit STAT1, STAT3 and STAT5 dimers [165, 166]; three CDX-binding sites that bind
homeobox protein CDX-2 [167]; a T-element that binds the T-box transcription factor TBX2 [168]; a binding site for CCAAT/enhancer-binding protein beta
[169]; six Sp1-binding sites [170–173]; a site for binding Transcription factor AP-2-alpha [174]; sites for Transcription factor E2F1 [175]; a Forkhead-binding site
for Forkhead box protein P3 [176]. b The p21 (pre-)mRNA contains: AU-rich elements in the 3′-UTR for binding ELAV-like protein 4 [177], ELAV-like protein 1
[178], and RNA-binding protein 38 [179]; a binding site for RNA-binding protein Musashi homolog 1 [180]; GC-rich sequence binding CUGBP Elav-like family
member 1 and calreticulin (CRT) [148]; CU-rich sequence in the 3′-UTR for binding heterogeneous nuclear ribonucleoprotein K [181]; splice donor and
acceptor site for recruitment of the spliceosome machinery for intron removal. ORF: open reading frame. c The p21 protein contains: the intrinsically
disordered Cyclin-dependent Kinase Inhibitor (CKI) region [182]; a PIP degron recruiting Denticleless protein homolog [183, 184]; a D box for docking to
the Cell division cycle protein 20 homolog subunit of the APC/C [185]; a PIP box for docking to the DNA polymerase delta processivity factor PCNA
[142, 186]; one N-terminal and one C-terminal RxL Cyclin docking motif for binding to the Cyclin E subunit of the Cyclin E-Cdk2 kinase complex [187, 188];
an NLS for recruitment to the nuclear import machinery [189]; a modification motif for phosphorylation at T145 by PKB [190, 191]; a modification motif
for phosphorylation at S146 by nuclear-Dbf2-related (NDR) kinases [192]; a modification motif for phosphorylation at S130 by Cyclin E-Cdk2 kinase
complex [193, 194]
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