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Abstract

Previous studies suggest that opioid receptors in the ventral tegmental area (VTA), but not the 

nucleus accumbens (NAc), play a role in relapse to drug-seeking behavior. However, 

environmental stimuli that elicit relapse also release the endogenous opioid β-endorphin in the 

NAc. Using a within–session extinction/reinstatement paradigm in rats that self-administer 

cocaine, we found that NAc infusions of the mu opioid receptor (MOR) agonist DAMGO 

moderately reinstated responding on the cocaine-paired lever at low doses (1.0–3.0 ng/side), 

whereas the delta opioid receptor (DOR) agonist DPDPE induced greater responding at higher 

doses (300–3000 ng/side) that also enhanced inactive lever responding. Using doses of either 

agonist that induced responding on only the cocaine-paired lever, we found that DAMGO-induced 

responding was blocked selectively by pretreatment with the MOR antagonist CTAP, while 

DPDPE-induced responding was selectively blocked by the DOR antagonist naltrindole. Cocaine-

primed reinstatement was blocked by intra-NAc CTAP but not naltrindole, indicating a role for 

endogenous MOR-acting peptides in cocaine-induced reinstatement of cocaine-seeking behavior. 

In this regard, intra-NAc infusions of β-endorphin (100–1000 ng/side) induced marked cocaine-

seeking behavior, an effect blocked by intra-NAc pretreatment with the MOR but not DOR 

antagonist. Conversely, cocaine seeking elicited by the enkephalinase inhibitor thiorphan (1–10 

μg/side) was blocked by naltrindole but not CTAP. MOR stimulation in more dorsal caudate-

putamen sites was ineffective, while DPDPE infusions induced cocaine seeking. Together, these 

findings establish distinct roles for MOR and DOR in cocaine relapse, and suggest that NAc MOR 

could be an important therapeutic target to neutralize the effects of endogenous β-endorphin 

release on cocaine relapse.
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Introduction

Drug addiction involves dysregulation in brain reward circuitry leading to compulsive drug 

use (Dackis and O’Brien, 2001; Kalivas and Volkow, 2005; Koob and Le Moal, 2001). In 

addition to drug reward, the mesolimbic dopamine system plays an integral role in relapse to 

drug-seeking behavior, since stimuli that elicit drug seeking also activate dopamine neurons 

in the ventral tegmental area (VTA) leading to dopamine release in forebrain regions such as 

the nucleus accumbens (NAc) (Phillips et al, 2003; Pruessner et al, 2004; Self and Nestler, 

1998; Shalev et al, 2002; Spealman et al, 1999; Stewart, 2000). Opioid receptors also play a 

role in relapse to cocaine seeking in animal models, since systemic treatment with 

naltrexone inhibits cocaine seeking elicited by exposure to cocaine-associated cues 

(Burattini et al, 2008). Similarly, cocaine-primed cocaine seeking is blocked by systemic 

administration of the partial mu opioid receptor (MOR) agonist buprenorphine, the delta 

opioid receptor (DOR) antagonist naltrindole, or the nonspecific opioid antagonist 

naltrexone (Comer et al, 1993; Gerrits et al, 2005).

Stewart and colleagues found that opioid receptors in the VTA play a role in reinstatement 

of cocaine and heroin seeking, since intra-VTA morphine treatments trigger drug seeking in 

an extinction/reinstatement paradigm (Stewart, 1984), an animal model of relapse. This 

effect is thought to involve local disinhibition of dopamine neurons in the VTA leading to 

dopamine release in the NAc (Ford et al, 2006; Johnson and North, 1992; Leone et al, 

1991). In contrast, previous studies suggest that opioid receptors localized in the NAc do not 

play a role in drug seeking, since intra-NAc morphine treatments fail to reinstate cocaine- or 

heroin-seeking (Stewart and Vezina, 1988; Tang et al, 2005), and blockade of NAc MOR 

with the selective MOR antagonist CTAP failed to significantly alter cocaine-primed 

reinstatement of cocaine seeking (Tang et al, 2005). However, endogenous opioid peptides 

such as β-endorphin are released in the NAc by cocaine and stressful situations (Roth-Deri et 

al, 2004; Roth-Deri et al, 2003; Zangen and Shalev, 2003), events that trigger reinstatement 

of cocaine seeking, and intra-NAc morphine infusions induce a conditioned place preference 

(van der Kooy et al, 1982).

Opioid receptors are highly expressed by NAc neurons (Mansour et al, 1995; Mansour et al, 

1987), and local opioid infusions in the NAc modulate behavior in a biphasic manner. Thus, 

microgram doses of DAMGO (MOR agonist) or morphine infused in the NAc initially 

suppress locomotion but subsequently induce hyper-locomotion (Cunningham and Kelley, 

1992; Meyer et al, 1994). Lower doses of DAMGO decrease the latency for hyper-

locomotion to occur (Meyer et al, 1994). Since doses of agonists used in these locomotor 

studies are similar to those used in prior reinstatement studies, it is possible that the 

behavioral suppressive effects masked the potential of NAc opioid receptor stimulation to 

trigger reinstatement of drug-seeking behavior. Moreover, NAc infusions of opioid agonists 

induce feeding behavior but also with a prolonged latency to initiate feeding (Bakshi and 

Kelley, 1993; Kelley et al, 2005). Similarly, intra-NAc infusions of DAMGO increase the 

motivation for food on a progressive ratio reinforcement schedule, and where response 

breakpoints are obtained after some delay (Zhang et al, 2003). Therefore, it is possible that 
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these delayed motivational effects reflect the initial suppressive effects of high dose MOR 

agonist infusions.

In this study, we investigated the role of NAc opioid receptors in reinstatement of cocaine-

seeking behavior using MOR- and DOR-selective ligands and endogenous opioid peptides. 

We found that NAc infusions of MOR and DOR agonists effectively reinstate cocaine 

seeking through selective actions at their respective receptors. Stimulation of NAc opioid 

receptors by the endogenous peptides β-endorphin and enkephalins also induced cocaine-

seeking behavior. The results clearly establish that either MOR or DOR stimulation in the 

NAc is sufficient to elicit cocaine-seeking behavior, and that MOR receptors play an 

important role in cocaine-primed relapse. These findings also suggest that persistent 

neuroadaptations in NAc opioid receptors following chronic cocaine use could contribute to 

drug-seeking behavior in prolonged abstinence.

Materials and Methods

Animals and housing conditions

Male Sprague-Dawley rats weighing 225–275g (Charles River Laboratories, Kingston, NY) 

were individually housed in wire cages with food and water available ad libitum, except 

during lever press training. Experiments were conducted during the light cycle of a 12:12-h 

light:dark cycle (lights on at 0700 hours) in accordance with guidelines established by the 

National Institute of Health and the Institutional Animal Care and Use Committee at the 

University of Texas Southwestern Medical Center.

Sucrose Lever Press Training and Surgery

Lever press training, self-administration, and reinstatement testing were performed in 

operant test chambers (Med-Associates, East Fairfield, VT). Chambers were equipped with 

two response levers and an infusion pump as described previously (Edwards et al, 2007). 

Animals were food-restricted to prevent weight gain and trained to lever-press for sucrose 

pellets on a fixed ratio 1 (FR1) reinforcement schedule until an acquisition criteria of 100 

sucrose pellets consumed for 3 consecutive test days was reached. Following lever-press 

training, animals were fed ad libitum for at least 1 day prior to surgery. Animals were 

anesthetized and implanted with a chronic indwelling catheter into the jugular vein that 

exited subcutaneously on the back. An intra-cranial, 26-guage bilateral guide cannula was 

aimed at the NAc (±1.5 mm lateral; 1.7 mm anterior to bregma; −5.7 ventral to dura with the 

level skull) or caudate putamen (±1.5 mm lateral; 1.7 mm anterior to bregma; −3.2 mm 

ventral to dura) (Paxinos and Watson, 1998). Dummy and infusion cannulae (33 gauge) 

were cut to extend 1 mm beyond the guide cannulae tip, and dummy cannulae remained in 

place until the day of intracranial drug infusion. Animals were allowed 5–7 days to recover 

prior to starting the experiment.

Cocaine self-administration and within-session reinstatement testing

Animals were tested in a within-session extinction/reinstatement paradigm as described 

previously (Bachtell et al, 2005). Briefly, animals self-administered cocaine (0.5 mg/kg in 

0.1 ml over 5 s, time-out 15 s) in daily 4-h sessions for 5–6 days/week until a criteria of 3 
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consecutive days of <10% variance in mean cocaine intake was reached (~3 weeks). During 

the 5 s injection a cue light above the lever was illuminated, while the house light was 

turned off for the entire injection and time-out period. Subsequently, animals were trained in 

the within-session extinction paradigm that consisted of 1-h cocaine availability followed by 

3-h extinction conditions where only response-contingent injection cues were available. 

Animals extinguished responding to criteria of ≤ 5 responses at either the drug-paired or 

inactive lever for the final h of the session for at least 3 consecutive sessions, while 

maintaining a minimum of 15 self-administered cocaine injections with ± 10% variability in 

the first h of the session. Mean cocaine self-administration on the test day was 25 ± 0.74 

(NAc) and 26 ± 0.95 (CPu) injections/h. Test days were conducted with an intra-NAc 

infusion of MOR and DOR agonists alone (0.5 μl/side over 2 min) or in combination as 

sequential antagonist/agonist infusions (1.0 μl/side total volume) immediately prior to the 

final h of the test session. For cocaine priming experiments, animals received NAc or CPu 

antagonist infusions followed immediately by iv priming with saline (0.4 ml) or cocaine (2.0 

mg/kg in 0.4 ml). Following each test day, animals returned to within-session extinction 

training until stable self-administration and extinction criteria were reached for at least 2 

consecutive sessions prior to the next test. Animals received a maximum of 8 intracranial 

test infusions.

Locomotor testing

Some animals trained in the within-session reinstatement paradigm were given 1 week off 

from cocaine self-administration and tested for locomotor responses to agonist infusions in 

the NAc or CPu using peak doses for reinstatement that were selective for the drug-paired 

lever. The locomotor testing apparatus consisted of a circular-shaped plexiglass arena with 

12 cm wide metal floors (Med-Associates) with four pairs of photocells located at 90-degree 

intervals around the 1.95 m perimeter to record locomotor activity. Animals were habituated 

for 2 h in the dark followed by an intra-NAc or intra-CPu drug infusion and returned to the 

locomotor chambers for 2 h of subsequent testing. Testing of each drug was randomized and 

done on consecutive days. Animals received 5 injections in locomotor tests.

Histological Confirmation of injection sites

Animals were anesthetized with chloral hydrate, and cresyl violet (0.3 μl) was infused into 

the NAc or CPu through the guide cannula. Animals were immediately decapitated and 

brains removed. 0.8 mm thick slices were collected throughout the forebrain and analyzed 

under a dissecting microscope for the location of the infusion sites according to the 

coordinates of Paxinos and Watson (Paxinos and Watson, 1998).

Drugs

Drugs used were DAMGO (D-Ala2,N-Me-Phe4,glycinol5)-enkephalin), DPDPE ((D-

Pen2,D-Pen5)-Enkephalin), CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2), β-

endorphin, met-enkephalin, and thiorphan (Bachem Bioscience Inc., King of Prussia, PA), 

and naloxone and naltrindole (Sigma-Aldrich, Atlanta, GA). Ligands were dissolved in 0.9% 

sterile saline except thiorphan which was dissolved in 1:4 DMSO:saline. Cocaine 

hydrochloride was obtained from the National Institute on Drug Abuse (Research Triangle 

Park) and dissolved in 0.9% sterile saline.
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Statistical Analysis

Since not all animals completed an experiment, data were analyzed using a 2 factor mixed 

regression analysis (SAS 9.1.3) of treatment × lever, followed by main effects analysis of 

each lever separately. Post-Hoc tests utilized 1- or 2-tailed Dunnett’s tests where appropriate 

for comparison with controls and Tukey’s honestly significant difference (HSD) test for 

pair-wise comparison where appropriate. Locomotor data were analyzed by 1-way repeated 

measures ANOVA on treatment for each h tested. Post-Hoc tests utilized Dunnett’s 1-tailed 

test for comparison with controls.

Results

MOR and DOR involvement in reinstatement

We first determined whether NAc infusions of the MOR-selective agonist DAMGO and the 

DOR-selective agonist DPDPE could reinstate non-reinforced drug-paired lever responding 

following extinction of cocaine seeking. Intra-NAc infusions of DAMGO produced an 

inverted-U shaped dose-response curve (Figure 1a) for non-reinforced responding on the 

drug-paired but not inactive lever (dose × lever: F6,161 = 2.37, p = 0.032) with a main effect 

of both dose (F6,161 = 3.52, p = 0.003) and lever (F1,161 = 46.01, p < 0.001). DAMGO 

induced moderate peak rates of responding at very low doses (1–3 ng/side) when compared 

to vehicle infusions without increasing inactive lever responding, whereas higher doses (10 

ng/side) led to reduced responding (drug-paired lever: F6,66 = 3.33, p = 0.006; inactive 

lever: F6,66 = 1.13, p = NS). Similarly, intra-NAc infusions of DPDPE produced an inverted 

U-shaped dose-response curve (Figure 1b), but induced greater responding and at higher 

doses of 300–3000 ng/side (dose: F6,113 = 12.09, p < 0.001; lever: F1,113 = 28.16, p < 

0.001). Unlike DAMGO, DPDPE induced substantial and significant lever pressing of both 

drug-paired and inactive levers compared to vehicle (drug-paired lever: F6,40 = 11.37, p < 

0.001; inactive lever: F6,40 = 3.34, p = 0.009). Inactive lever responding significantly 

increased only at the peak dose for drug-paired lever responding (1000 ng/side).

Antagonist inhibition of agonist-mediated reinstatement

To determine whether DAMGO-stimulated reinstatement of cocaine seeking was mediated 

by MOR stimulation in the NAc, we tested the ability of the MOR-selective antagonist 

CTAP to block DAMGO-primed reinstatement using the lowest effective dose from the 

previous experiment (1 ng/side). Intra-NAc pretreatment of CTAP dose-dependently 

blocked DAMGO-primed reinstatement (Figure 2a; dose × lever: F6,172 = 7.82, p < 0.001), 

with a main effect of dose (F6,172 = 7.78, p < 0.001) and lever (F1,172 = 123.36, p < 0.001). 

Non-reinforced responding at the drug-paired lever was blocked with maximally effective 

doses as low as 0.1 ng/side of CTAP (drug-paired lever: F6,67 = 8.59, p < 0.001; inactive 

lever: F6,67 = 1.19, p = NS). Similarly, we tested the DOR-selective antagonist naltrindole 

against the lowest effective dose for DPDPE-induced reinstatement that did not increase 

inactive lever responding (300 ng). Figure 2b shows that intra-NAc treatment of naltrindole 

reduced DPDPE-primed reinstatement in a dose dependent manner achieving control levels 

at 1000 ng/side (dose × lever: F4,139 = 2.85, p = 0.026; dose: F4,139 = 11.35, p < 0.001; lever 

F1,139 = 55.54, p < 0.001). Drug-paired lever responding was significantly attenuated 

starting at 300 ng/side with maximal suppression at 1000 ng/side (F4,58 = 11.63, p < 0.001). 
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Naltrindole produced some mild suppression of responding on the inactive lever (inactive 

lever: F4,58 = 2.48, p = 0.05).

Drug specificity and antagonist inhibition of cocaine mediated reinstatement

To determine whether DAMGO and DPDPE-induced cocaine seeking was specific to MOR 

or DOR blockade, MOR and DOR agonists and antagonists were tested in a cross-blockade 

experimental design. Animals were given intra-NAc infusions of DAMGO (1 ng/side or 

DPDPE (300 ng/side) following pretreatment with maximally effective doses of CTAP (30 

ng/side), naltrindole (1000 ng/side), or vehicle. Figure 3a shows that DAMGO-induced 

reinstatement of drug-paired lever responding was selectively blocked by CTAP but not 

naltrindole when compared to vehicle (treatment × lever: F2,82 = 5.09, p = 0.008; treatment: 

F2,82 = 4.84, p = 0.01; lever: F1,82 = 68.65, p < 0.001). CTAP significantly attenuated drug-

paired lever responding (F2,29 = 5.61, p = 0.009) with no effect on inactive lever responding 

(F2,29 = 0.40, p = NS). Conversely, Figure 3b shows that DPDPE-induced reinstatement was 

selectively blocked by naltrindole but not CTAP (treatment: F2,40 = 8.83, p < 0.001; lever: 

F1,40 = 39.01, p < 0.001), with attenuation mainly on the drug-paired lever (F2,13 = 5.65, p = 

0.017) and a trend for reduction in lower responding on the inactive lever (F2,13 = 2.87, p = 

0.092). Together, these results indicate that selective stimulation of either MOR or DOR in 

the NAc is sufficient to independently trigger cocaine-seeking behavior.

Given that cocaine injections are known to increase endogenous opioid release in the NAc, 

we tested whether MOR or DOR in the NAc play a role in cocaine-primed reinstatement of 

cocaine-seeking behavior. Animals were given NAc pretreatments with vehicle, CTAP, or 

naltrindole immediately prior to an iv cocaine injection (2 mg/kg) in the reinstatement 

paradigm. Since the peak dose of CTAP (30 ng against 1 ng DAMGO) had no effect on 

cocaine-primed reinstatement (data not shown), we tested a higher dose of CTAP (3 μg/side) 

more commonly used in intracranial studies (Soderman and Unterwald, 2008; Tang et al, 

2005), along with the 1 μg/side dose of naltrindole. CTAP’s affinity for MOR (2.36 ± 0.46 

nM) is 15.7 times lower than that of naltrindole for DOR (0.15 ± 0.01 nM) (Bonner et al, 

2000; Clayson et al, 2001; Pelton et al, 1986; Portoghese et al, 1988), indicating that 

relatively higher amounts of CTAP than naltrindole may be required to inhibit endogenous 

opioid activity at MOR than DOR. Furthermore, the doses of CTAP and naltrindole used 

were roughly molar equivalents (5.4 μM and 4.8 μM, respectively). Intra-NAc pretreatment 

with CTAP significantly reduced cocaine-primed reinstatement compared to vehicle 

pretreatment (Figure 3c), whereas pretreatment with naltrindole did not (treatment × lever: 

F2,82 = 4.17, p = 0.019; treatment: F2,82 = 5.12, p = 0.008; lever: F1,82 = 62.51, p = 0.001). 

CTAP significantly attenuated drug-paired lever responding in response to an iv cocaine 

prime without affecting inactive lever responding (drug-paired lever: F2,17 = 7.08, p = 

0.006; inactive lever: F2,17 = 0.38, p = NS). These findings indicate that endogenous opioid 

release in the NAc contributes to cocaine-primed reinstatement of cocaine seeking through 

activation of MOR but not DOR.

Endogenous opioid peptides reinstate cocaine seeking in the NAc

The next set of experiments determined the ability of endogenous opioids to reinstate 

cocaine seeking using intra-NAc infusions of β-endorphin and met-enkephalin. Intra-NAc 
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infusions of β-endorphin dose-dependently reinstated responding on the cocaine-paired lever 

with effective doses ranging from 100–1000 ng/side (Figure 4a; dose × lever: F4,103 = 4.07, 

p = 0.004; dose: F4,103 = 12.11, p < 0.001; lever: F1,103 = 51.27, p < 0.001). β-endorphin 

infusions significantly increased drug-paired lever responding (F4,42 = 8.82, p < 0.001) with 

a minor increase in inactive lever responding at the highest dose (inactive lever: F4,42 = 

7.32, p < 0.001). In contrast, intra-NAc infusions of met-enkephalin failed to reinstate 

cocaine seeking up to doses as high as 10 μg/side (Figure 4b; F5,102 = 0.44, p = NS). Since 

previous studies used enkephalin derivatives, suggesting that enkephalins are degraded too 

rapidly to produce effects in behavioral tests (Kalivas et al, 1985; Phillips et al, 1983), we 

used the enkephalinase inhibitor thiorphan to determine if the accumulation of endogenously 

released enkephalins would reinstate cocaine seeking. Intra-NAc thiorphan infusions 

effectively reinstated responding to levels similar to β-endorphin (Figure 4c; dose: F4,92 = 

6.77, p < 0.001; lever: F1,92 = 63.27, p < 0.001). Thiorphan induced prominent responding 

on the drug-paired lever (F4,36 = 4.55, p = 0.004) with minor increases in responding on the 

inactive lever at the peak dose of 3.0 μg that approached significance (F4,36 = 2.48, p = 

0.061). These findings indicate that either MOR-preferring (β-endorphin) or DOR-preferring 

(enkephalins) endogenous opioid peptides in the NAc are capable of eliciting cocaine-

seeking behavior.

Receptor specificity of endogenous opioid-induced reinstatement of cocaine seeking

While β-endorphin and enkephalins preferentially interact with MOR and DOR respectively, 

they also interact with other opioid receptors. We tested the ability of 3 μg CTAP, 1 μg 

naltrindole, and the less specific opioid antagonist naloxone to block β-endorphin- and 

thiorphan-induced reinstatement. Animals were given NAc infusions of maximally effective 

doses of β-endorphin (1 μg/side) or thiorphan (3 μg/side) immediately following vehicle, 

CTAP (3 μg/side), naltrindole (1 μg/side), or naloxone (10 μg/side) pretreatments. Figure 5a 

shows that β-endorphin-induced reinstatement of cocaine seeking was selectively attenuated 

by CTAP or naloxone, but not naltrindole (treatment × lever: F3,74 = 4.83, p = 0.004; 

treatment: F3,74 = 10.45, p < 0.001; lever: F1,74 = 66.94, p < 0.001), specifically reducing 

responding on the drug-paired lever (F3,27 = 12.63, p < 0.001) and not inactive lever (F3,27 = 

0.94, p = NS). Conversely, Figure 5b shows that reinstatement elicited by the enkephalinase 

inhibitor thiorphan was blocked selectively by naltrindole or naloxone, but not significantly 

by CTAP (treatment: F3,69 = 5.55, p = 0.002; lever: F1,69 = 15.19, p < 0.001). Naltrindole 

and naloxone reduced thiorphan-induced responding on the drug-paired and not inactive 

lever (drug-paired lever: F3,26 = 4.45, p = 0.012; inactive lever: F3,26 = 2.23, p = NS). Thus, 

the endogenous opioid peptide β-endorphin reinstates cocaine seeking through selective 

activation of NAc MOR, while elevations in endogenous enkephalin levels trigger cocaine 

seeking primarily through DOR activation, consistent with their preference for these 

receptors.

Regional specificity for MOR- but not DOR-induced reinstatement of cocaine-seeking 
behavior

To determine whether MOR and DOR stimulation of cocaine seeking was specific to the 

NAc, or due to potential spread up the cannulae shaft, we infused effective doses of all 

agonists 2.5 mm dorsal to the NAc site in the caudate putamen (CPu), a region shown to 
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have similar expression patterns of opioid receptors as the NAc. While none of the MOR-

acting agonists or the enkephalinase inhibitor induced reinstatement in the CPu (Figure 6a), 

CPu infusions of DPDPE were sufficient to stimulate responding (treatment × lever: F4,97 = 

2.41, p = 0.05; treatment: F4,97 = 6.51, p < 0.001; lever: F1,97 = 40.91, p < 0.001), with 

increases in responding on both the drug-paired lever (F4,38 = 4.61, p = 0.004) and inactive 

lever (F4,38 = 3.43, p = 0.017). It should be noted, however, that the 300 ng/side dose of 

DPDPE elicited twice as much responding in the NAc than in the CPu. In addition, intra-

CPu pretreatment with CTAP at a dose that blocked cocaine-primed reinstatement in the 

NAc failed to alter cocaine seeking when infused into the CPu (Figure 6b) compared to 

vehicle-pretreated animals (treatment × lever: F1,14 = 0.08, p = NS; treatment: F1,14 = 0.09, 

p = NS; lever: F1,14 = 10.21, p < 0.01). Together, these data indicate that MOR involvement 

in reinstatement of cocaine seeking is specific to the NAc, while DOR in both sites are 

capable of triggering this behavior.

Opioid agonist induction of locomotor behavior in cocaine-trained animals

Following 1 week withdrawal from cocaine self-administration and reinstatement testing, 

the locomotor response to intracranial infusions of DAMGO, DPDPE, β-endorphin and 

thiorphan was tested using doses that produced peak and primarily drug-paired lever 

responding when infused in the NAc. Figure 7a and 7b show that all treatments increased 

locomotion for 1 h after infusion into the NAc when compared to vehicle infusions (F4,46 = 

8.429, p < 0.001), while only β-endorphin increased locomotion for at least 2 h after infusion 

(F4,41 = 8.258, p < 0.001). Thus, the lower doses of DAMGO and DPDPE that triggered 

cocaine seeking produced psychomotor effects without the delay typically observed with 

higher doses in previous studies. Figures 7c and 7d show that very similar locomotor 

responses were produced by infusions of DPDPE and β-endorphin in the CPu (F4,16 = 5.427, 

p = 0.006), with a trend for thiorphan to increase locomotor activity during the first hour (p 

= 0.059). In contrast, intra-CPu infusions of DAMGO failed to significantly increase 

locomotion. Together, these findings suggest that while psychomotor activation may 

accompany reinstatement of cocaine seeking with NAc infusions, similar locomotor 

responses with CPu infusions are dissociated from cocaine seeking in many cases.

Injection Sites

Figure 8 illustrates the localization of all infusion sites in the NAc and CPu used in this 

study. Fourteen animals were eliminated from NAc studies, and 3 animals were eliminated 

from CPu studies, due to misplacement of one or both cannulae.

Discussion

This study found that selective stimulation of either MOR or DOR in the NAc is sufficient 

to reinstate cocaine-seeking behavior in rats following extinction of cocaine self-

administration. Thus, NAc infusions of either the MOR-selective agonist DAMGO or the 

DOR-selective agonist DPDPE effectively elicited cocaine-seeking responses on the drug-

paired lever that delivered cocaine injections during prior self-administration. The threshold 

dose for reinstating cocaine seeking was 300 times lower with DAMGO (1 ng/side) than 

with DPDPE (300 ng/side), while DPDPE induced greater peak rates of responding and was 
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associated with generalized but lower rates of responding on the inactive lever. This latter 

effect with DPDPE could be related to psychomotor activation rather than motivation for 

cocaine, or an inability to appropriately discriminate the drug-paired from inactive levers 

with increased DOR stimulation, although a lower dose of DPDPE selectively induced 

responding on the drug-paired lever. Both of these metabolically stable opioid peptide 

agonists produced an inverted U-shaped dose-response curve indicating that higher doses 

were ineffective, potentially explaining the failure to detect morphine-induced reinstatement 

of drug seeking at microgram doses used in previous studies (Stewart et al, 1988; Tang et al, 

2005).

In contrast, intra-NAc infusions of the endogenous opioid peptide β-endorphin induced 

cocaine seeking with a monophasic dose-response curve up to 1 μg/side, possibly reflecting 

the sensitivity of this peptide to metabolic degradation. Importantly, the reinstating effects of 

both DAMGO and β-endorphin were blocked by the MOR-selective antagonist CTAP, and 

not by the DOR-selective antagonist naltrindole. The ability of DAMGO and β-endorphin to 

reinstate cocaine seeking was localized to the NAc, since the failure of more dorsal CPu 

infusions to reinstate responding negates the possibility of diffusion along the cannulae shaft 

or into the cerebral ventricles. These data firmly establish that MOR in the NAc mediate 

relapse to cocaine-seeking behavior. While stimulation of MOR in dorsomedial CPu is 

ineffective, dorsolateral CPu sites could be involved in cocaine seeking given that 

inactivation of this site reduces cocaine-seeking behavior (See et al, 2007).

In addition, infusions of CTAP into the NAc, but not the CPu, attenuated cocaine-primed 

reinstatement, possibly relating to the ability of cocaine to increase endogenous β-endorphin 

release in the NAc (Olive et al, 2001; Roth-Deri et al, 2003). Higher doses of CTAP (3 μg) 

were required to attenuate cocaine-primed reinstatement than DAMGO-primed 

reinstatement (30 ng), possibly reflecting higher concentrations of cocaine-induced β-

endorphin release relative to the very low doses of DAMGO that were effective (1–3 ng/

side). The high dose of CTAP that attenuated cocaine-primed reinstatement also blocked β-

endorphin-primed reinstatement that required a higher dose range (0.1 – 1 μg) than found 

with DAMGO.

Cocaine-induced β-endorphin release in the NAc is blocked by dopamine receptor 

antagonist infusions in the arcuate nucleus of the hypothalamus (Doron et al, 2006), the 

primary source for β-endorphin innervation of the NAc. β-endorphin release in the NAc also 

is induced by exposure to footshock stress, or the unmet expectation of cocaine reward 

under extinction conditions (Roth-Deri et al, 2003; Zangen et al, 2003), situations that elicit 

cocaine-seeking behavior. Thus, taken together with our findings, β-endorphin stimulation 

of MOR in the NAc could contribute to cocaine seeking elicited by cocaine priming, 

exposure to cocaine-associated environments, and stressful events. In contrast, a previous 

study found that NAc pretreatment with CTAP does not block cocaine-primed reinstatement 

using longer acting intraperitoneal cocaine priming injections (Tang et al, 2005), whereas 

effective blockade was found using shorter acting intravenous cocaine priming in our study. 

Another difference could involve the use of the within- versus between-session extinction/

reinstatement paradigms.
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Contrary to DAMGO and β-endorphin, cocaine seeking induced by DPDPE was blocked by 

pretreatment with DOR- but not the MOR-selective antagonist in the NAc. NAc infusions of 

the enkephalinase inhibitor thiorphan (to elevate endogenous enkephalins) also reinstated 

cocaine seeking, and the effect was blocked by DOR antagonist pretreatment, although 

marginal (non significant) attenuation was found with the MOR antagonist potentially 

relating to enkephalin activity at MOR. DOR stimulation in more dorsal CPu sites with 

DPDPE also induced a moderate degree of cocaine seeking, but with greater efficacy in the 

NAc. Moreover, the reinstating effect of DPDPE in the CPu was accompanied by significant 

inactive lever responding, an effect not found with this DPDPE dose in the NAc, and 

potentially relating to psychomotor activation as discussed above. In this regard, infusions of 

the enkephalinase inhibitor thiorphan in the CPu failed to reinstate cocaine seeking, and had 

no effect on inactive lever responding in either striatal site. Together, the double dissociation 

with MOR- and DOR-selective ligands clearly indicates that mu and delta opioid receptors 

in the NAc mediate cocaine seeking through distinct and independent mechanisms.

Interestingly, blockade of DOR in the NAc failed to attenuate cocaine-primed reinstatement 

of cocaine seeking. Whether cocaine increases extracellular enkephalins in the NAc is 

unknown, but cocaine acutely increases preproenkephalin expression throughout the 

striatum (Hurd and Herkenham, 1992), although this acute effect is diminished with chronic 

cocaine administration (Arroyo et al, 2000; Mantsch et al, 2004). One study found that 

systemic administration of naltrindole decreases cocaine self-administration but only at 

doses that also suppressed locomotor behavior (de Vries et al, 1995). Another study showed 

reduced lever pressing for cocaine irrespective of reinforcement schedule (Reid et al, 1995), 

and intra-NAc infusions of an irreversible DOR alkylating analog of naltrindole (Portoghese 

et al, 1990) decreased responding for cocaine on a more demanding progressive ratio 

schedule of reinforcement (Ward and Roberts, 2007), suggesting generalized effects on 

motor performance. In contrast, icv administration of the naltrindole analog strongly reduced 

heroin self-administration while only modestly decreasing cocaine self-administration on a 

less demanding fixed ratio reinforcement schedule (Martin et al, 2000), suggesting that 

endogenous DOR activity plays little role in cocaine’s effects. Similarly, our results are 

consistent with the notion that endogenous release of enkephalins in the NAc does not 

contribute to cocaine-primed reinstatement of cocaine seeking, but further tests are needed 

to determine whether cocaine seeking induced by stress or cocaine-associated cues involves 

endogenous enkephalinergic activity at NAc DOR.

Intra-NAc infusions of MOR and DOR agonists at doses that effectively reinstated cocaine 

seeking also increased horizontal locomotion, with β-endorphin infusions producing 

prolonged effects over 2-h of testing. Infusions of all treatments into the dorsomedial CPu 

also increased locomotion to similar levels, with the exception of the MOR agonist 

DAMGO, whereas only the DOR agonist DPDPE triggered cocaine seeking in this region. 

While these data support the notion that DPDPE-induced reinstatement may be related to 

psychomotor activation, the dissociation of locomotor activity and cocaine seeking with 

infusions of β-endorphin and thiorphan in the CPu suggest that the reinstating effects of 

these treatments in the NAc are not related to generalized psychomotor activation. 

Moreover, while it could be argued that DAMGO-induced reinstatement is related to 
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psychomotor activation, the lack of increases in inactive lever responding with DAMGO 

infusions suggests that reinstatement reflects motivational rather than motor effects. In 

contrast to reinstatement of cocaine seeking, NAc infusions of higher doses of DAMGO 

(0.25 – 2.5 μg) induce a delayed increase in locomotion and preference for sucrose and high 

fat foods often after a period of behavioral suppression (Cunningham et al, 1992;Meyer et 

al, 1994; Zhang and Kelley, 1997; Kelley et al, 2005), whereas we found that very low 

doses induce locomotion and cocaine seeking without delay. These findings suggest that 

lower doses of DAMGO could be employed to elicit appetitive behavior without delay in 

future studies.

Although MOR and DOR are coupled to similar intracellular signaling pathways, their 

distinct involvement in modulating drug-seeking behavior can be attributed to differences in 

their sub-anatomical distribution. MOR are largely expressed extrasynaptically on dendrites 

and dendritic shafts of GABAergic and cholinergic cells within striatal patches (Svingos et 

al, 1997; Wang and Pickel, 1998) where they modulate excitatory and GABAergic input to 

NAc neurons (Gracy et al, 1997). Presynaptic MOR can also modulate the release of GABA 

onto NAc neurons (Svingos et al, 1997). DOR can either directly or indirectly modulate 

dopamine release through expression on dopamine terminals or on GABAergic terminals 

apposed to dopamine terminals. DOR also can modulate postsynaptic responses in spiny 

neurons that receive dopamine input (Svingos et al, 1999). MOR co-localize predominantly 

with preprotachykinin positive neurons in patch compartments that constitute the direct 

striatal output, and more rarely with preproenkephalin positive neurons of the striatal matrix 

that constitute the indirect output (Furuta et al, 2002). The differential expression patterns of 

MOR and DOR lend them different mechanisms of action, with DOR more frequently 

modulating inhibitory and dopaminergic input to the NAc and MOR primarily modulating 

NAc GABAergic neurons themselves (Svingos et al, 1999; Svingos et al, 1997; Wang et al, 

1998).

Cocaine-primed reinstatement of cocaine seeking requires glutamatergic neurotransmission 

in the NAc core (Cornish and Kalivas, 2000; McFarland et al, 2003) and dopaminergic 

neurotransmission in the NAc shell (Anderson et al, 2003), although direct dopamine 

receptor stimulation in the medial NAc core elicits greater cocaine seeking than the shell or 

lateral core region (Bachtell et al, 2005, Schmidt et al, 2006). While we did not compare 

core with shell subregions in this study, the ability of the MOR antagonist CTAP to block 

cocaine-primed cocaine seeking suggests that β-endorphin is released in the vicinity of the 

medial NAc. Given that the locomotor activating effects of intra-NAc MOR- and DOR-

selective agonists are not attenuated by dopamine depletion or chronic dopamine receptor 

blockade (Stinus et al, 1986; Churchill and Kalivas, 1992), it is likely that cocaine seeking 

elicited by MOR and DOR stimulation is mediated independent of dopamine release in the 

NAc. Furthermore, dopamine depletion leads to supersensitivity to MOR but not DOR 

agonist infusions in locomotor tests (Churchill and Kalivas, 1992).

Chronic cocaine administration modulates opioid receptor expression in the NAc (for review 

see (Boutrel, 2008; Kreek, 2001), suggesting that changes in these receptors could alter the 

propensity for relapse during cocaine withdrawal. Free β-endorphin levels are decreased in 

the NAc and other brain regions within 1 day withdrawal from cocaine self-administration, 
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potentially reflecting depletion of endogenous stores (Sweep et al, 1989). Similarly, opioid 

receptor binding decreases immediately after and prior to the next scheduled cocaine self-

administration session (Gerrits et al, 1999), possibly reflecting the release of endogenous 

opioids during cocaine self-administration. Chronic cocaine administered in a daily binge 

pattern transiently increases MOR but not DOR density and MOR-stimulated [35S]GTPγS 

binding in the NAc (Schroeder et al, 2003; Unterwald et al, 1992). However, the ability of 

DOR, but not MOR, stimulation to inhibit adenylyl cyclase activity is impaired in the NAc 

following chronic cocaine (Unterwald et al, 1993), and this impairment persists for at least 1 

day of cocaine withdrawal (Perrine et al, 2008), coinciding with increased internalization of 

DOR in NAc neurons (Ambrose-Lanci et al, 2008). While these changes could modify the 

ability of MOR and DOR to trigger cocaine relapse in early cocaine withdrawal, we reported 

that MOR, and not DOR, levels in the NAc core progressively increase from 1 to 6 weeks of 

withdrawal from chronic cocaine self-administration (Self et al, 2004), and the effect is 

accompanied by increases in the precursor for β-endorphin, pro-opiomelanocortin, in the 

arcuate nucleus of the hypothalamus (Smagula et al, 2005). These findings suggest that 

progressive increases in MOR signaling in the NAc contribute to time-dependent increases 

in cocaine seeking behavior in cocaine withdrawal when animals are exposed to cocaine-

paired environments or stressful conditions (Grimm et al, 2001; Sorge and Stewart, 2005; 

Tran-Nguyen et al, 1998).

Human studies also support a relationship between increased MOR and cocaine craving in 

abstinence. Thus, MOR binding measured by positron emission tomography is increased in 

striatal and cortical regions in abstinent cocaine addicts and positively correlates with 

measures of cocaine craving (Gorelick et al, 2005; Zubieta et al, 1996). In subsequent 

studies, the up-regulation in MOR binding was found to persist for up to 12 weeks of 

abstinence and positively correlate with the amount of prior cocaine use (Gorelick et al, 

2005). Moreover, the up-regulation of MOR in abstinence served as an independent 

predictor of time to relapse in cocaine addicts, and positively correlated with amount of 

cocaine use during the first month of relapse (Gorelick et al, 2008). While limitations in 

detection precluded examination of MOR exclusively in the NAc, our animal data suggest 

that such long-lasting increases in MOR could functionally increase the propensity for 

cocaine relapse (Self et al, 2004).

In this regard, treatment with the opioid receptor antagonist naltrexone in combination with 

behavioral therapy decreased cocaine use over time (Schmitz et al, 2001). When 3-fold 

higher doses of naltrexone were utilized in combination with psychosocial treatment, the 

severity of cocaine use decreased (Pettinati et al, 2008). In response to an acute cocaine 

dose, addicts reported decreased “good effects” and “crash” when treated with naltrexone 

(Kosten et al, 1992; Sofuoglu et al, 2003), although naltrexone reportedly does not decrease 

subjective reports of craving elicited by cocaine-associated cues (Modesto-Lowe et al, 

1997). Our findings suggest that blockade of MOR and DOR in the NAc contribute to the 

therapeutic potential of naltrexone in the treatment of cocaine addiction.
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Figure 1. 
Intra-NAc infusions of (a) the mu-opioid receptor selective agonist DAMGO or (b) the 

delta-opioid receptor selective agonist DPDPE increase non-reinforced drug-paired lever 

responding in a within-session reinstatement procedure. Data represent the mean ± SEM for 

doses of DAMGO (n = 9–27 animals/treatment) and DPDPE (n = 5–22 animals/treatment). 

Symbols indicate drug-paired lever (* p < 0.05, **p < 0.01, ***p < 0.001) or inactive lever 

(††p < 0.001) differs from vehicle-infused controls by Dunnett’s post-hoc tests.
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Figure 2. 
Intra-NAc pretreatment with (a) the mu-opioid receptor selective antagonist CTAP followed 

by 1 ng DAMGO and (b) the delta-opioid receptor selective antagonist naltrindol followed 

by 300 ng DPDPE dose-dependently attenuates reinstatement of cocaine seeking. Data 

represent the mean ± SEM for DAMGO/CTAP (n = 13–22 animals/treatment) and DPDPE/

naltrindole (n =18–20 animals/treatment) combinations. Symbols indicate drug-paired lever 

(**p < 0.01, ***p ≤ 0.001) or inactive lever (†p < 0.05) differs from agonist/vehicle-infused 

controls by Dunnett’s post-hoc tests.
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Figure 3. 
(a) Reinstatement induced by 1 ng DAMGO is blocked by intra-NAc pretreatment with 

CTAP and not naltrindole. (b) Reinstatement induced by 300 ng DPDPE is blocked by intra-

NAc pretreatment with naltrindole and not CTAP. (c) Reinstatement induced by intravenous 

cocaine priming (2 mg/kg) is blocked by intra-NAc pretreatment with CTAP and not 

naltrindole. Data represent the mean ± SEM agonist/antagonist combinations (n = 12–40 

animals/treatment). Symbols indicate drug-paired lever responses differ from agonist/
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vehicle-infused controls (* p < 0.05, **p < 0.01) or CTAP differs from naltrindole (†p < 

0.05) by Tukey’s HSD post-hoc tests.
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Figure 4. 
Intra-NAc infusion of (a) the endogenous opioid peptide β-endorphin dose-dependently 

reinstates drug-paired lever responding, (b) whereas met-enkephalin has no effect. (c) Intra-

NAc infusion of the enkephalinase inhibitor thiorphan significantly increases drug-paired 

lever responding. Data represent the mean ± SEM for doses of β-endorphin (n = 10–15 

animals/treatment), met-enkephalin (n = 7–11 animals/treatment), and thiorphan (n = 10–15 

animals/treatment). Symbols indicate drug-paired lever (*p < 0.05, ***p < 0.001) or inactive 

lever (†††p < 0.001) differs from vehicle-infused controls by Dunnett’s post-hoc tests.
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Figure 5. 
(a) Reinstatement induced by 1 μg β-endorphin is blocked by intra-NAc pretreatment with 

CTAP or naloxone, but not naltrindole. (b) Reinstatement induced by 3 μg thiorphan is 

blocked by intra-NAc pretreatment with naltrindole or naloxone, but not CTAP. Data 

represent the mean ± SEM for β-endorphin/antagonist (n = 9–17 animals/treatment) and 

thiorphan/antagonist (n = 8–14 animals/treatment) combinations. Symbols indicate drug-

paired lever responses differ from agonist/vehicle-infused controls (*p < 0.05, ***p < 0.001) 

or differs from naltrindole (†p < 0.05) by Tukey’s HSD post-hoc tests.
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Figure 6. 
(a) Effective NAc doses of DAMGO, β-endorphin and thiorphan are ineffective at 

reinstatement when infused in the CPu, while intra-CPu DPDPE induces significant drug-

paired and inactive lever responding. (b) Pretreatment with intra-CPu infusions of CTAP has 

no effect on reinstatement induced by intravenous cocaine priming (2 mg/kg). Data 

represent the mean ± SEM for doses of agonists (n = 7–18 animals/treatment) and cocaine/

antagonist (n = 6–8 animals/treatment) combinations. Symbols indicate drug-paired lever 
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responses (**p < 0.01) or inactive lever responses (†p < 0.05) differ from vehicle-infused 

controls by Dunnett’s post-hoc tests.
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Figure 7. 
Effects of reinstating doses of agonist treatments on horizontal locomotion in cocaine-

trained animals. (a) Timeline of locomotor behavior during habituation for 2 h and 

following intra-NAc infusion of opioid agonist. (b) All agonists increase locomotor behavior 

for 1 h when infused in the NAc while β-endorphin activity remains elevated during the 

second h of testing. (c) Timeline of locomotor behavior in response to intra-CPu infusion of 

opioid agonists. (d) Only DPDPE and β-endorphin increased locomotor responding in the 

CPu with a trend for thiorphan to increase locomotion. Data represent the mean ± SEM for 
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NAc (n = 7–13 animals/treatment) and CPu (n = 4–5 animals/treatment). Symbols indicate 

(*p < 0.05, ** p < 0.01, ***p < 0.001, †p = 0.059) differs from vehicle-infused controls by 

Dunnett’s post-hoc tests.
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Figure 8. 
Localization of infusion sites in the medial NAc core and CPu (+1.2 through +2.2 mm from 

Bregma, Paxinos and Watson, 1998).
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