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Abstract: Fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) is a highly conserved enzyme that is
involved in glycolysis and gluconeogenesis. In this study, we cloned the fructose-1,6-bisphosphate al-
dolase gene from Euphausia superba (EsFBA). The full-length cDNA sequence of EsFBA is
1098 bp long and encodes a 365-amino-acid protein. The fructose-1,6-bisphosphate aldolase gene was
expressed in Escherichia coli (E. coli). A highly purified protein was obtained using HisTrap HP affinity
chromatography and size-exclusion chromatography. The predicted three-dimensional structure
of EsFBA showed a 65.66% homology with human aldolase, whereas it had the highest homology
(84.38%) with the FBA of Penaeus vannamei. Recombinant EsFBA had the highest activity at 45 ◦C and
pH 7.0 in phosphate buffer. By examining the activity of metal ions and EDTA, we found that the
effect of metal ions and EDTA on EsFBA’s enzyme activity was not significant, while the presence
of borohydride severely reduced the enzymatic activity; thus, EsFBA was confirmed to be a class I
aldolase. Furthermore, targeted mutations at positions 34, 147, 188, and 230 confirmed that they are
key amino acid residues for EsFBA.

Keywords: fructose-1,6-bisphosphate aldolase; Euphausia superba; heterologous expression; molecular
simulation; point mutation

1. Introduction

Fructose-1,6-bisphosphate aldolase (FBA, EC4.1.2.13) is a key enzyme in energy
metabolism and is ubiquitously found. Glycolysis is a universal and fundamental bio-
chemical pathway in carbohydrate metabolism. Fructose-1,6-bisphosphate aldolase (FBA)
catalyzes the first step of glycolysis, which involves the cleavage of the six-carbon sugar
backbone (fructose-1,6-bisphosphate) to generate two three-carbon intermediates [1–4].
Based on its catalytic mechanism and evolutionary origin, FBA can be divided into
two types: class I aldolases and class II aldolases [5]. Class I FBAs are usually found
in higher eukaryotes (animals and plants), where they use active-site lysine residues to
stabilize the reaction intermediates through the formation of the Schiff base [6]. Its en-
zymatic activity can be inhibited by borohydride (usually NaBH4). Eukaryotic FBAs are
homotetramers in which the subunits adopt the folding of parallel (βα)8-(TIM)-barrel [7–9].
Class II aldolases, found primarily in microorganisms as homodimers, require divalent
metal cations (typically Zn2+) as cofactors to stabilize the carbonate intermediates formed
by the substrate within the active site [10]. Thus, the activity of class II is competitively
inhibited by the metal ion chelator EDTA [11]. Class I and class II aldolases have the same
overall fold and catalyze the same overall reaction, but they do not share any significant
sequence homology or common catalytic residues. Both types of aldolases can catalyze the
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cleavage of fructose-1,6-bisphosphate (FBP) to dihydroxyacetone phosphate (DHAP) and
glyceraldehyde-3-phosphate (G3P) (Figure 1), which could provide ATP and substrates
for the anabolism of biological substances [12–14]. In addition, a third class of aldolases
has been reported, which are designated as class IA and are present in archaea (e.g., Ther-
momycetes, Fireball). These have a similar mechanism of action as class I aldolases and have
been reported to exist as homo-octamers, decamers, or even higher oligomers [15,16].
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duce important sugar derivatives, such as iminosugars, cyclitols, and complex natural 
products. Li [18] used FBA and three other enzymes to generate rare ketose molecules 
from various aldehyde substrates through a one-pot four-enzyme synthesis. FBA was 
shown to play an important role in combating hypoxia in sea turtles, and FBA increased 
the glycolytic output and alleviated hypoxia by increasing the level of FBA during hy-
poxia [19]. The upregulation of FBA gene expression in the muscle of Penaeus prawn in-
fected with the white spot syndrome virus (WSSV) indicated that the FBA gene plays a 
role in the WSSV resistance of Penaeus prawn and is a disease-resistant gene; moreover, 
the physical interaction between aldolase and RNA polymerase II was thought to play a 
role in the regulation of hypoxic metabolism [20]. 

Euphausia superba is a small marine planktonic crustacean that lives in Antarctic wa-
ters and is known as the largest renewable animal protein pool for humans because of its 
large resources and high protein quality [21]. E. superba are extremely abundant and found 
throughout the Southern Ocean around Antarctica, with an annual biological catch of 100 
million tons; therefore, it plays a key role in the Antarctic food web and is an important 
resource for fisheries [22,23]. E. superba contains many bioactive components, such as pro-
teins, fatty acids, vitamins, minerals, and enzymes, and has become a hot topic of research 
in recent years [24–26]. E. superba can live in extreme environments and possesses qualities 
such as frost resistance and oxidation resistance [27–29]. In particular, the FBA from E. 
superba has great potential in the field of catalysis [30]. Because E. superba itself is prone to 
autoproteolysis, and it is difficult to isolate and extract the enzyme [31,32], scientists have 
attempted to develop E. superba-derived enzymes through genetic technology; FBA has 
not been studied in E. superba. Most studies on FBA have focused on heterologous expres-
sion in prokaryotes, mainly for vaccine development and diagnosis [33–35], whereas little 
research has been completed on eukaryotic FBA. In the past few years, scientists have 
been trying to achieve heterologous expression of key enzymes from E. superba, but no 
progress has been made. Therefore, studying FBA is not only conducive to understanding 
the evolutionary position of E. superba in the biosphere, but also provides a theoretical 

Figure 1. Chemical catalyzed by fructose-1,6-bisphosphate aldolase (FBA). FBA catalyzes the
cleavage of fructose 1,6-diphosphate (FBP) to dihydroxyacetone phosphate (DHAP) and glycerol
3-phosphate (G3P).

As the most well-known DHAP-dependent aldolase [17], FBA has been used to
produce important sugar derivatives, such as iminosugars, cyclitols, and complex natural
products. Li [18] used FBA and three other enzymes to generate rare ketose molecules
from various aldehyde substrates through a one-pot four-enzyme synthesis. FBA was
shown to play an important role in combating hypoxia in sea turtles, and FBA increased the
glycolytic output and alleviated hypoxia by increasing the level of FBA during hypoxia [19].
The upregulation of FBA gene expression in the muscle of Penaeus prawn infected with
the white spot syndrome virus (WSSV) indicated that the FBA gene plays a role in the
WSSV resistance of Penaeus prawn and is a disease-resistant gene; moreover, the physical
interaction between aldolase and RNA polymerase II was thought to play a role in the
regulation of hypoxic metabolism [20].

Euphausia superba is a small marine planktonic crustacean that lives in Antarctic
waters and is known as the largest renewable animal protein pool for humans because
of its large resources and high protein quality [21]. E. superba are extremely abundant
and found throughout the Southern Ocean around Antarctica, with an annual biological
catch of 100 million tons; therefore, it plays a key role in the Antarctic food web and is
an important resource for fisheries [22,23]. E. superba contains many bioactive compo-
nents, such as proteins, fatty acids, vitamins, minerals, and enzymes, and has become
a hot topic of research in recent years [24–26]. E. superba can live in extreme environments
and possesses qualities such as frost resistance and oxidation resistance [27–29]. In par-
ticular, the FBA from E. superba has great potential in the field of catalysis [30]. Because
E. superba itself is prone to autoproteolysis, and it is difficult to isolate and extract the
enzyme [31,32], scientists have attempted to develop E. superba-derived enzymes through
genetic technology; FBA has not been studied in E. superba. Most studies on FBA have
focused on heterologous expression in prokaryotes, mainly for vaccine development and
diagnosis [33–35], whereas little research has been completed on eukaryotic FBA. In the
past few years, scientists have been trying to achieve heterologous expression of key en-
zymes from E. superba, but no progress has been made. Therefore, studying FBA is not only
conducive to understanding the evolutionary position of E. superba in the biosphere, but
also provides a theoretical basis for the further application of fructose-1,6-bisphosphate
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aldolase. To our knowledge, this is the first report on the heterologous expression of FBA
from E. superba (EsFBA).

2. Results and Discussion
2.1. Cloning and Bioinformatics Analysis

FBA in the EsFBA gene was validated by subcloning using krill cDNA as a template.
The full-length EsFBA cDNA was 1098 bp long, containing 365 AA, with a molecular
weight (Mw) of 39,820.37 Da. The theoretical pI was 7.59. The 365 AA include 43 positively
charged residues (Asp + Glu) and 44 negatively charged residues (Arg + Lys). The instabil-
ity index was 24.83 (<40), indicating that the EsFBA protein was stable. The aliphatic index
was 81.56, indicating that the protein is soluble in lipids. We used ProtScale to perform
a hydrophobic analysis of the protein and learned that it possesses more hydrophilic
residues than hydrophobic residues, thus presuming that EsFBA is a hydrophilic pro-
tein. There was no O-glycosylation site; however, an N-glycosylation site was present at
73-NVSG. SWISS-MODEL was used to predict the 3D structure of the EsFBA (Figure 2A).
Human A-type FBA was used as a template (Figure 2B). EsFBA is 65.38% homologous to the
template, and the predicted structure of the EsFBA 3D model consists of 10 main β-stranded
nuclei surrounded by 13 α-helices. The tetrameric structure is shown in Figure 2C,D.
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Figure 2. EsFBA 3D structure prediction diagram. (A) 3D structure prediction map of Euphausia
superba FBA; (B) human A-type FBA 3D structure template; (C) 3D structure prediction map of the
FBA tetramer in Euphausia superba; (D) template diagram of the human FBA-A 3D structure.
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The sequences obtained from sequencing were compared using NCBI Blast, and partial
sequences with high similarity to FBA of E. superba were obtained. The highest similarity
was found in Penaeus vannamei, followed by Penaeus monodon, zebrafish, Pike tritomata, and
Drosophila melanogaster. The amino acid sequences encoded by the EsFBA were compared
with each species for a multiple-sequence homology using DNAMAN8.0 (Figure 3).
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The phylogenetic tree was made using MEGA-X for the above sequences (Figure S1).
The results showed that the closest relatives to Euphausia superba were Penaeus vannamei
with an 84.38% amino acid sequence similarity. It was 65.66% similar to Homo sapiens
aldolase A, 59.34% similar to Homo sapiens aldolase B, and 65.38% similar to Homo sapiens
aldolase C. From the phylogenetic tree and amino acid sequence similarity, it is clear that
EsFBA belongs to the FBA family of genes, and the evolutionary relationship of this gene is
generally consistent with the evolutionary status of the traditional species.

2.2. Protein Expression and Purification

The codon-optimized target gene fragment was 1131 bp in length, and the molecular
weight (Mw) of the protein was 41,105.70. The synthesis of the optimized gene resulted in
an amplification product (Figure S2A). The recombinant plasmid pET28-sfGFP-EsFBA was
constructed and expressed in E. coli BL21 (DE3), as described in the methods Section 3.4.
After isopropyl β-D-1-thiogalactopyranoside (IPTG) induction, HisTrap HP purification,
and SDS-PAGE, a single band with a relative molecular mass of 45 kDa (Figure 4) was
obtained. Compared with the predicted protein molecular weight of 41 kDa, this slight
increase in molecular weight is due to the expression tag.

2.3. Expression Optimization of Recombinant Vectors

According to the results of the response surface analysis, the highest enzymatic activity
of the EsFBA was observed at an induction temperature of 16 ◦C, an induction time of
16 h, and a final concentration of 0.55 mM of IPTG. The significance test analysis of the
regression equation showed that the model was extremely significant (p < 0.001), and the
missing items were not significant (p = 0.159 > 0.05). The data showed that the regression
equation was a satisfactory fit, and the experimental error of the model was not significant;
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therefore, the regression equation can be used as a basis for predicting and analyzing the
EsFBA enzyme activity [36]. The multiple quadratic regression model obtained was EsFBA
activity = 1454.57 + 67.28A + 50.52B + 5.59C + 21.38AB− 23.96AC− 54.58BC− 352.09A2−
249.28B2 − 268.25C2 (A: induction temperature; B: induction time; C: IPTG concentration).
The F-values of the three influencing factors showed that the magnitude of the effect of
each factor on the EsFBA enzyme activity was in the order A > B > C. All plots of the
response surface were open downwards, with convex surfaces, and all had extreme values
(Figure S3). The interaction of AB had a greater effect on the response value, the steepness
of the entire surface was more pronounced, and the shape of the contours was close to
elliptical, indicating that the interaction of the two factors was more significant.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 4. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis analyses of recombinant 
EsFBA on a 10% gel. M: marker; Lane 1: protein purified from 500 mM imidazole; Lane 2: protein 
purified from 500 mM imidazole; Lane 3: supernatant. 

2.3. Expression Optimization of Recombinant Vectors 
According to the results of the response surface analysis, the highest enzymatic ac-

tivity of the EsFBA was observed at an induction temperature of 16 °C, an induction time 
of 16 h, and a final concentration of 0.55 mM of IPTG. The significance test analysis of the 
regression equation showed that the model was extremely significant (p < 0.001), and the 
missing items were not significant (p = 0.159 > 0.05). The data showed that the regression 
equation was a satisfactory fit, and the experimental error of the model was not signifi-
cant; therefore, the regression equation can be used as a basis for predicting and analyzing 
the EsFBA enzyme activity [36]. The multiple quadratic regression model obtained was 
EsFBA activity = 1454.57 + 67.28A + 50.52B + 5.59C + 21.38AB − 23.96AC − 54.58BC − 
352.09A2 − 249.28B2 − 268.25C2 (A: induction temperature; B: induction time; C: IPTG 
concentration). The F-values of the three influencing factors showed that the magnitude 
of the effect of each factor on the EsFBA enzyme activity was in the order A > B > C. All 
plots of the response surface were open downwards, with convex surfaces, and all had 
extreme values (Figure S3). The interaction of AB had a greater effect on the response 
value, the steepness of the entire surface was more pronounced, and the shape of the con-
tours was close to elliptical, indicating that the interaction of the two factors was more 
significant. 

2.4. Activity Analysis 
The fructose-1,6-bisphosphate aldolase detection kit was used to determine the en-

zyme activity of the EsFBA. The purification multiple (specific activity after purifica-
tion/specific activity before purification) and the recovery rate (total activity after purifi-
cation/total activity before purification) of the purified enzyme were obtained (Table 1), 

Figure 4. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis analyses of recombinant EsFBA
on a 10% gel. M: marker; Lane 1: protein purified from 500 mM imidazole; Lane 2: protein purified
from 500 mM imidazole; Lane 3: supernatant.

2.4. Activity Analysis

The fructose-1,6-bisphosphate aldolase detection kit was used to determine the enzyme
activity of the EsFBA. The purification multiple (specific activity after purification/specific
activity before purification) and the recovery rate (total activity after purification/total
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activity before purification) of the purified enzyme were obtained (Table 1), that is, the
EsFBA protein was purified 20.4-fold by HisTrap HP affinity chromatography. The specific
activity of the purified enzyme was 193.5 U/mg.

Table 1. Purification of recombinant EsFBA.

Total
Activity (U)

Protein
Concentration

(mg/mL)

Specific
Activity
(U/mg)

Purification
Fold Yield (%)

Crude
enzyme 799.8 8.1 9.5 1 100

Ni2+-NTA 280.4 0.7 193.5 20.4 35.1

The enzymatic activity of the EsFBA in this study was 18.1-fold higher than that of As-
caris suum (10.7 U/mg) [37], 15-fold higher than that of Staphylococcus aureus
(12.9 U/mg) [38], 1.5-fold higher than that of blue-green algae [39], and 8.5-fold higher than
that of sea turtles (22.8 U/mg) [19]; the high activity of the EsFBA may be related to the
extremely low temperatures and long periods of diving time of E. superba.

2.5. Biochemical Characterization

The EsFBA enzyme activity increased as the reaction temperature increased from
10 ◦C to 45 ◦C, reaching a maximum activity at 45 ◦C (Figure 5a). The catalytic activity
decreased while the temperature was greater than 45 ◦C. FBA from E. superba has a higher
retained activity at higher temperatures compared to FBA from rabbit muscle (RAMA);
EsFBA retained 20% activity at 70 ◦C, while RAMA lost almost all of its activity.
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The pH of the reaction buffer is an important factor affecting the activity of the enzyme.
The catalytic activity of the enzyme increased with an increase in pH between pH 4.0 and
7.0 (Figure 5b), reaching a maximum at pH 7.0. As the pH increased further between 7.0
and 9.0, the catalytic activity of the enzyme decreased. The conformation of the enzyme
might change under different pH conditions, which could alter the binding or dissociation
of the substrate from the active site of the enzyme, thereby affecting the enzyme activity.

The enzyme was highly stable at 20 ◦C and maintained 93.3% of its original activity
after 2 h of incubation (Figure 5c). The enzyme activity was 70.6%, 65.4%, 7.1%, 1%, and
0.2% after 2 h of incubation at 30 ◦C, 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C, respectively. In the
pH stability test (Figure 5d), the enzyme activity could be maintained at 95% of its original
activity after 2 h of incubation at pH 7.0. As acidity and alkalinity increased, the enzyme
activity gradually decreased. At pH values of 4 and 9, the enzyme activity remained less
than 70% after 2 h of incubation, indicating that EsFBA is a neutral enzyme.

It was demonstrated that the effect of 5 mmol/L of metal ions on the EsFBA enzyme
activity was not significant. The relative enzyme activity after the influence of monovalent
ions, such as K+ and Na+, was 125% and 122% (Figure 6). Meanwhile the divalent ions
Cu2+, Mn2+, Mg2+, Ca2+, and Zn2+ had minimal effects on the enzyme activity: 111%,
107%, 96%, 120%, and 108%, respectively. More importantly, a 97% retention of the enzyme
activity occurred under the influence of 5 mM EDTA, while 5 mM NaBH4 almost completely
inhibited the EsFBA activity by 13%. The above results indicate that the addition of metal
ions and EDTA did not significantly increase the enzymatic activity; on the contrary, the
presence of borohydride significantly inhibited its enzymatic activity. It is possible that
EsFBA does not necessitate the presence of metal ions as co-substrates, but rather catalyzes
the reaction through Schiff base, indicating that EsFBA is a class I aldolase.
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2.6. Site-Directed Mutagenesis

The D34K mutant exhibited catalytic ability (191.9 U/mg) similar to that of the wild
type (193.5 U/mg) (Table 2). K147D showed 48% (93.2 U/mg) relative enzyme activity,
E188H showed 74% (143.7 U/mg) relative enzyme activity, and K230D showed roughly
half the activity (101.7 U/mg) of the wild type.

Table 2. Enzyme activity of wild type and mutant.

Enzyme Activity (U/mg) Relative Enzyme Activity

Wild type 193.5 ± 0.37 100%
D34K 191.9 ± 1.05 99%

K147D 93.2 ± 1.34 48%
E188H 143.7 ± 0.98 74%
K230D 101.7 ± 0.72 53%

The evaluation of hydrogen bonding by PyMol showed that Lys147 and Lys230 are
hydrogen-bonded to the substrate (Figure 7), which may be one of the reasons for the
much-reduced enzyme activity after mutation at both sites. Furthermore, we deduced the
active site of the substrate at the oxygen atom of its five-membered ring from the chemical
equation of the FBP decomposition and measured the distance between the nitrogen atom
of the mutant amino acid and the oxygen atom of the substrate action site (Figure 8). All
mutated amino acids showed some degree of distance increase compared with the wild
type, with D34K increasing from 4.9 to 6.4 Å, K147D increasing from 2.6 to 4.9 Å, E188H
increasing from 3.1 to 4.6 Å, and K230D increasing from 4.9 to 5.9 Å. We speculate that the
increase in the amino acid distance from the active site of the substrate also has an effect on
enzyme activity. More importantly, they are involved in FBA binding to the substrate and
Schiff base formation, which is perhaps the main reason for the reduced enzyme activity
affecting the mutants. These results were consistent with previous studies [40–42]. Thus,
based on results from the hydrogen-bond interaction analysis and changes in enzyme
activity, Lys147 and Lys230 are the key amino acids of EsFBA.
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3. Materials and Methods
3.1. Materials and Instruments

E. superba samples were kindly provided by the Liao Yu Group, who captured the sam-
ples in Antarctic waters in October 2019 and cryopreserved them at −80 ◦C until use. All
chemicals were purchased from Sinopharm Reagent Co., Ltd. (Shanghai, China), Shanghai
Sangon Biology Co., Ltd. (Shanghai, China), Dalian Takara Co., Ltd. (Dalian, China), and
British OXOID Co., Ltd. (Basingstoke, UK) and used without further purification. Mettler
Toledo S20 pH meter (Mettler Toledo, Greifensee, Switzerland), HH-1 electric constant
temperature water bath (Changzhou Guohua, Changzhou, China), CR21GII high-speed
refrigerated centrifuge (Hitachi, Tokyo, Japan), AKTA Explorer FPLC System (GE, Milwau-
kee, WI, USA), gel electrophoresis system (Bio-Rad, Hercules, CA, USA), and ultrapure
water purification system (Millipore, Bedford, MA, USA) were used during the study.

3.2. Cloning and Bioinformatics Analysis

RNA was isolated from whole animals using the RNeasy system with on-column
DNase treatment (Qiagen, Beijing, China). Genomic DNA was removed from total RNA by
treatment with RNA-Free DNase (Thermo, Waltham, MA, USA). Reverse transcription reac-
tions were performed using the PrimeScript 1st Strand cDNA Synthesis Kit (TaKaRa,
kyoto, Japan). Then, the cDNA was used as a template to amplify the EsFBA gene,
which was obtained through transcriptome sequencing. The EsFBA gene sequence has
been submitted to NCBI, and the number is GenBank OP087496. Two primers, EsFBAF1
(5′-GCGTCGCTAGCCACGC-3′) and EsFBAR1(5′-TTCCTGAGCCTTCCATC-3′), were syn-
thesized. A polymerase chain reaction (PCR) was performed in a 25.0 µL reaction volume,
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containing 2.5 µL of 10 × PCR buffer, 2.5 µL of MgCl2, 2.0 µL of dNTP mix, 0.5 µL of Taq
DNA polymerase (Qiagen), 15.5 µL of ddH2O, and 0.5 µL of each primer (10 mM). The PCR
product was purified, subcloned into the pEasy-T vector (Qiagen), and transformed into the
competent E. coli DH5α. The positive clone was sequenced to verify the full-length EsFBA
cDNA. Based on the amino acid sequence, the molecular weight, isoelectric point, and
affinity were predicted using ExPASy; the glycosylation site was predicted using NetNGlyc
online; the 3D structure of the protein was predicted using SWISS-MODEL; and the BLAST
comparison was performed using NCBI. The amino acid sequences of translated EsFBA
were compared with DNAMAN, homology analysis was performed, and a phylogenetic
tree was constructed using MEGA. Molecular docking simulations of EsFBA and substrate
FBP were performed using Autodock software.

3.3. Construction of Recombinant Plasmid

We constructed a C-terminal 6× His-tagged sfGFP-EsFBA fusion protein expression
plasmid using E. coli pET-28a; sfGFP has high solubility, bright fluorescence, fast-folding
ability, high resistance to denaturants, and can be used as a fusion tag to promote the
folding of heterologous proteins in E. coli [43,44]. The DNA fragments encoding the EsFBA
tag and HRV 3C recognition site were amplified from the plasmid EsFBA by PCR using
the primers 3C-EsFBA-F and EsFBA-R (Table S1). The DNA fragments, including the
HRV 3C recognition site and sfGFP, were amplified from the plasmid sfGFP by PCR using
the primers sfGFP-F and sfGFP-3C-R. The DNA fragment encoding sfGFP-3C-EsFBA was
amplified from the above EsFBA and sfGFP PCR products using primers EsFBA-R/sfGFP-F
and cloned into pET28a-T vector employing Nco I and Xho I. The plasmid was named
pET28a-sfGFP-EsFBA.

3.4. Protein Expression and Purification

The plasmid pET28a-sfGFP-EsFBA was transformed into BL21(DE3) competent cells
and transfected on Luria Bertani (LB) broth plates containing 100 µg/mL kanamycin. Indi-
vidual colonies of BL21(DE3) cells were then cultured overnight on plates in
a 250 mL flask containing 50 mL LB broth (containing 100 µg/mL kanamycin) at 37 ◦C
and 200 rpm. Precultured cells were inoculated in 1 L flasks containing 100 mL LB and
100 µg/mL kanamycin and were grown at 37 ◦C and 200 rpm. Protein expression was
induced by the addition of IPTG at a final concentration of 0.2 mM for 18 h at 16 ◦C. Cells
were incubated at 200 rpm and 16 ◦C for 18 h. Cells were collected via centrifugation at
7654× g for 15 min, and the cell pellet was collected in PBS (135 mM NaCl, 2.7 mM KCl,
1.5 mM KH2PO4, and 8 mM K2HPO4; pH 8.0).

The cultures were washed twice in PBS and resuspended in 25 mL of PBS buffer
containing 1 mM PMSF and 10 mM imidazole. The solution was sonicated for 30 min
and centrifuged at 14,000 rpm for 0.5 h at 4 ◦C. The supernatant was subjected to HisTrap
HP affinity chromatography, and the target protein was separated from the supernatant.
The final purification was performed on the AKTA fast liquid chromatography system
(GE Healthcare) using a PBS loading buffer and PBS elution buffer containing 500 mM
imidazole at a flow rate of 1.0 mL/min. The first peak appeared as a penetration peak,
followed by a gradual gradient elution to collect the target protein. The obtained samples
were ultra-filtered at 30 kD, 4000 rpm, and imidazole was removed by the successive
addition of PBS. The samples were analyzed for purity using 10% SDS-PAGE.

3.5. Optimization of Induction Conditions

The induction conditions were optimized using a response surface analysis and
a three-factor three-level experimental design was carried out using Design Expert 10.0.
Three aspects of optimal conditions were explored, including induction–inducer concentra-
tion (0.1–1 mmol/L), induction duration (12–20 h), and induction temperature (12–20 ◦C).
Induction conditions for the highest enzyme activity were selected.
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3.6. Activity Assay

The protein concentration was determined using the BCA protein assay kit (Solarbio,
Beijing, China), and OD562 was monitored to calculate protein concentration. The enzyme
activity was detected by fructose-1,6-bisphosphate aldolase assay kit (Figure 9) (Solarbio).
FBA catalyzes the formation of FBP to glyceraldehyde 3-phosphate and dihydroxyacetone
phosphate. Under the action of propanose phosphate isomerase and α-glycerol phosphate
dehydrogenase, NADH and dihydroxyacetone phosphate are catalyzed to generate NAD+
and glycerol 3-phosphate. Since NADH has absorbance at 340 nm, the change in absorbance
value at 340 nm is the change of NADH into NAD+. Subsequently, the activity of FBA
can be reflected. Consumption of 1 nmol of NADH per mg of protein per minute was
defined as one unit of enzyme activity. Briefly, 900 µL reagent and 100 µL protein samples
were added to a colorimeter; absorbance was detected within 5 min at 340 nm and 25 ◦C.
Three parallel groups were set up for each experiment.
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Figure 9. Catalytic processes involving fructose-1,6-bisphosphate aldolase. FBA reversibly catalyzes
the cleavage of FBP to DHAP and G3P, where G3P is converted to DHAP via TPIase and DHAP is
converted to glycerol 3-phosphate by GPS. NADH is converted to NAD+ in the process.

3.7. Biochemical Characterization

Purified EsFBA was incubated at different temperatures (10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C,
45 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C) for 5 min at pH 7, followed by an activity assay using FBP
as a substrate to determine the optimal temperature. The enzyme solution was placed
in buffer solutions at different pH values (4.0, 5.0, 6.0, 7.0, 8.0, and 9.0) to determine the
optimal pH, with 50 mmol/L Na2HPO4 citric acid buffer (pH 5.0–8.0) and 50 mmol/L
glycine–NaOH buffer (pH 9.0, 50 mM). Purified EsFBA was placed in a metal bath at
each temperature. The change in enzyme activity was measured at each temperature over
120 min; the highest enzyme activity was taken as 100%. Purified EsFBA was placed in
a metal bath at 25 ◦C, and the enzyme activity at each pH was measured over 120 min, with
the highest enzyme activity at 100%, as a test of the pH stability of EsFBA.

The effect of metal ions (Ca2+, K+, Na+, Mn2+, Cu2+, Mg2+, and Zn2+), EDTA, and
NaBH4 with the final concentration of 5 mM was determined at pH 7.0 and 25 ◦C. The
above solution was mixed with purified EsFBA in the appropriate proportions and left
to stand for 2 h at 25 ◦C. The residual activity of EsFBA was assayed at 25 ◦C and pH 7.
EsFBA, without the addition of metal ions and chemical reagents, was used as a control,
and its activity was considered 100%.
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3.8. Site-Directed Mutagenesis

Numerous studies have shown that amino acid residues inside neutral sites are highly
conserved throughout evolution; Glu187, a conserved amino acid located in the active site
of fructose-1,6-bisphosphate aldolases [45], plays a variety of roles in the catalytic cycle of
aldolases. The residue responsible for the nucleophilic attack of the ketone substrate during
Schiff base formation is located inside the active site of Lys229 [41]; Asp33 is involved
in the extraction of protons from the C4 hydroxyl group [46], and studies suggest that
this residue plays a key role in the catalytic mechanism. Lys146 is absolutely conserved
in class I aldolases and is associated with the catalytic role of protein modifications [47].
Mutation of the above amino acid residues could verify the key amino acid sites of EsFBA
and also confirm EsFBA’s relationship with other class I FBAs. Thus, we prepared four
single mutants (D34K, K147D, E188H, and K230D) and investigated the catalytic ability of
the enzyme.

3.9. Molecular Modeling

The tertiary structure of EsFBA was built by I-TASSER, which uses a hierarchical
approach to protein structure prediction. The predicted structure was constructed using
FBA (PDB code: 1FBA) as a template. The best model was further assessed using the
PROCHECK plot in order to analyze the quality and consistency of the generated model.
The structures of the D34K, K147D, E188H, and K230D mutants were simulated based on
the predicted crystal structure of FBA using Insight II 2000/Discover 3 with Extensible
Systematic Force Field. We obtained a unique structure for each mutant starting from sev-
eral initial conformations. These structures were employed as rigid receptors for substrate
docking. The Autodock 4 program was used to perform the docking of FBP into the active
site of FBA mutants. The amino acid residues Lys108, Lys230, Gly302, and Ala304 were set
as flexible residues. The ligand FBP for docking was generated by Dundee PRODRG server.
Docked conformations were analyzed and ranked automatically by Autodock 4 using
a free-energy scoring function. These results were then visualized using PyMol. Then,
we used the Q5 site-directed mutagenesis kit, which contains 12.5 µL of master mix, 1 µL
10 µM of forward primer, 1 µL 10 µM of reverse primer, 1 µL of template DNA, and 9 µL of
nuclease-free water. After PCR and KLD reaction, we performed receptor-cell ligation and
transformation to obtain the mutant strain.

4. Conclusions

In this study, the FBA gene from E. superba was cloned. The full-length cDNA sequence
of EsFBA is 1098 bp, encoding a protein of 365 amino acids. By comparing multiple
sequences and building a phylogenetic tree, we found that the EsFBA had the highest
homology (84.38%) with the FBA of P. vannamei. We expressed the EsFBA in E. coli and
obtained pure protein. The optimum temperature of the recombinant EsFBA was 45 ◦C,
and the optimum pH was 7. While 5 mM of metal ions and EDTA had little effect on
the EsFBA enzymatic activity, the borohydride inhibited it, demonstrating that EsFBA is
a class I aldolase. Furthermore, point mutations allowed us to verify important sites of
EsFBA activity, with mutants showing a reduced catalytic activity compared to the wild
type. Compared with aldolase from rabbit muscle, EsFBA retained relatively high activity
at a high temperature, and, compared with other species, the activity of the FBA from
E. superba was more than ten times higher. Therefore, EsFBA could be used as a potential
new enzyme for development and utilization. This study provides a theoretical basis for
the use of E. superba.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/ijms231810478/s1.
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