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Superior electro-optic response 
in multiferroic bismuth ferrite 
nanoparticle doped nematic liquid 
crystal device
Prasenjit Nayek1 & Guoqiang Li1,2

A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/
BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device 
was addressed in the large signal regime by an amplitude modulated square wave signal at the 
frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total 
optical response time (rise time +  decay time) for a 5 μ m-thick cell is 2.5 ms for ~7 Vrms. This might 
be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. 
The possible reason behind the fast response time could be the visco-elastic constant and restoring 
force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized 
optical microscopic textural observation shows that the macroscopic dislocation-free excellent 
contrast have significant impact on improving the image quality and performance of the devices.

A fast response time is a challenging task for liquid crystals (LCs) electro-optic devices. Apart from 
display applications1, LCs play dominant role in biomedical optical devices like switchable electro-optic 
diffractive lenses for ophthalmic applications2–5, phase-only spatial light modulators (SLMs) for advanced 
microscopy6, creation of complex diffraction patterns for optical trapping7,8, and high-energy near-infrared 
laser applications9, tunable filters6, and integrated optics10, etc. For all the above mentioned applications, 
one of the basic requirement is faster response time. Faster response time is also vital for next genera-
tion three-dimensional (3D) LC display devices (LCDs) in order to reduce motion blur, obtain a field 
sequential color and overcome crosstalk11–14. For LCDs, the targeted 3 ms response time is optimal for 
reducing motion blurs and color break up. Different techniques for improving the response time have 
been attempted, e.g., using low viscosity materials15, pixel design, electrode shape, driving scheme16, thin 
cell gap17, anchoring energy18, overdrive schemes19,20, guest-host materials21, new switching modes22,23, 
and incorporating nematic LCs into the polymer matrices24,25, but improvements are limited. Although 
Borshch et al.26 demonstrated a response time of about 30 ns for both the field-on and field-off switching 
by the electric field induced modification of the order parameters, its implementation is not simple. It 
requires high voltage (up to 1 kV with nanosecond rise and fall fronts) and it needs two additional prisms, 
which may not be convenient for practical applications. Recently, blue phase mode LCDs show faster 
response times but still need to overcome hysteresis, high operating voltages, and narrow temperature 
ranges for wide spread applications27. Another important technique for achieving the faster response time 
is through control of the long range orientational order of the LC28–31. Dislocation defect-free orientation 
control is one of the fundamental demands for the preparation of such LC based devices. Nanoparticle–
LC mixtures are fascinating for topological defect induction and self-assembled long range orientation 
order structure through elastic distortions in the LC host32–37. Theoretical predictions have been made 
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that nanoparticle liquid-crystal mediated long range interactions could be controlled by changing the 
anchoring energy and the particle diameter38. Kobayashi et al. contributed a lot for different metal NPs 
(palladium, silver) doped in LC and explained the results39–41. Ferroelectric LC doped with silica NPs 
which do not have either ferrroelectricity or ferrromagneticity has been studied42. Recently ferroelec-
tric nanoparticle (FNP)-NLC mixers demonstrated strong electro-optic response in low refractive index 
material43. In LC switching, FNPs have made a significant impact on E-O performance and demonstrated 
reduction of Freédericksz threshold voltage, decrease in the switching time (τ on), and increase in the 
restoring switching time (τ off)44. Ferroelectric thio-hypo-diphosphate (Sn2P2S6) doped in NLC host was 
studied by Ouskova et al.45 and observed a strong influence of the dielectric absorption spectrum of the 
molecular rotation around the short axis. BiFeO3 is a unique material that simultaneously exhibits ferro-
electric (Curie temperature (TC) =  830 °C) and long-range antiferromagnetic G-type (Neel temperature 
(TN) =  370 °C) ordering46,47 which have superior electric and magnetic properties48. BFO NP-NLC system 
may play a better role due to its strong room temperature ferroelectric polarization which occurs along 
the pseudocubic (111) direction with a magnitude of 90–95 μ C/cm2 which is remarkable with respect 
to other ferroelectric material49. It has potential possibility to perturb LC ordering by polarization and/
or magnetization and the subsequent effect on LC performances. In this work we have synthesized the 
BFO nanoparticles and studied the E-O properties of BFO NP–NLC (E7) mixtures and demonstrated 
excellent results. We have achieved some promising response time which could be exploited in adaptive 
optical devices, display devices and other photonic devices where faster E-O performance is needed.

Experiments
The LC used was the eutectic LC mixture, commercially known as E7 (Merck). The abbreviation E7 
stands for a LC mixture consisting of several types of cyanobiphenyls, mainly 5CB and in less quantity, 
triphenyl. E7exhibits a nematic phase in the temperature interval from − 10 °C up to the transition to 
the isotropic phase at TNI =  58 °C. E7 has a birefringence, Δ n =  0.2253 (at 20 °C and λ  =  589.3 nm), die-
lectric anisotropy, Δ ε  =  13.89 (positive anisotropy), and a rotational viscosity, γ  =  166 mPa s. Polyimide 
coated ITO substrates have complementary anti-parallel alignment to diminish performance degradation 
from non-uniformity. BiFeO3 nano-powder was synthesized by the conventional sol-gel route. Bismuth 
nitrate ((BiNO3)3.5H2O) and iron nitrate ((FeNO3)3.9H2O) were used as precursor materials. All pre-
cursor compounds were in analytical grade purity and used as received from Sigma Aldrich without 
further purification. Stoichiometric amount of 0.05 molar bismuth nitrate and iron nitrate were prepared 
by adding the proper amount of precursor to 25 ml diluted nitric acid solvent. These two solutions were 
mixed and stirred at room temperature for 30 minutes, then 10 mL of 0.1 molar aqueous citric acid 
solution was added as gelatin material to the foresaid mixture. The final mixture was stirred with a mag-
netic stirrer and kept at 80 °C to dry. The brown colored dried gel is then annealed at 650 °C (heating 
rate 5 °C/min.) for 3 hours. This annealed powder is used for various characterizations. Three different 
mixtures were prepared with BFO content 0.15 wt%, 0.58 wt%, and 1 wt% respectively mixed in host E7. 
Mixtures were sonicated for 40 minutes and then stirred at 70 °C for 4-5 hours. The ITO coated planar 
aligned (anti-parallel rubbed polyimide layer) cell, with an effective area of 5 mm2 and a cell gap of 
5 μ m was thermally treated at 70 °C for 10 minutes before the mixtures were injected into the cell. The 
BFO-NLC mixtures were injected into the cell. The filled cells were kept at 70 °C for one hour and then 
cooled down to room temperature. X-Ray diffraction spectrum was taken with Rigaku SmartLab high 
resolution diffractometer. The morphologies of the BFO NPs were characterized by Zeiss Ultra 55 plus 
field emission scanning electron microscope (FESEM). The textures were taken using a polarizing optical 
microscope (POM) Leitz Laborlux 12 Pol, which is fitted with a digital camera (Nikon). The electro-optic 
response was measured by placing the cells between a pair of crossed polarizers, and maintaining the 
rubbing direction of the cell at 45° angle to the transmission axes of the polarizers. The input voltage of 
the cell was applied by a function generator (Agilent 33220A). The amplitude modulated square wave 
(10 Vp), with a frequency of 100 Hz (carrier frequency 1 k Hz) was applied to the LC cell and the output 
was detected by a photodiode detector (818-BB-20 from Newport Corporation). The output signal from 
the detector is fed into the digital storage oscilloscope DS03202A (Agilent), which was interfaced with a 
computer. The wavelength of the He-Ne laser light was 544 nm. The transmission vs voltage was meas-
ured by power meter (NOVA II) and recorded digitally by data acquisition system (cDAQ-9172) using 
LabView software.

Results and Discussion
Figure 1 shows the X-ray diffraction pattern and XRD data that were collected using Cu Kα  radiation 
generated at 40 kV and 44 mA. The diffraction angle (2θ ) was varied, 20° ≤  2θ  ≤  80°, with a 0.02° step size 
(Δ 2θ ). The reflection peaks of the sample prepared can be indexed as a single-phase perovskite structure 
belonging to the space group R3c, which is in good agreement with the literature data of JCPDS Card No. 
86-151850. The calculated lattice parameters (a =  b =  5.5774 Å and c =  13.8616 Å) are in agreement with 
rhombohedral BFO nanoparticles according to the reported data (lattices in three dimensions generally 
have three lattice constants, referred to as a, b, and c)51. There are also traces for Bi2Fe4O9(JCPDS Card 
No. 74-1098) and Bi2O3(JCPDS Card No. 71-0465) particles. The average crystallite size was obtained 
from the Debye–Scherrer formula52:
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where d is the crystallite size, λ   is the wavelength (1.54056 Å) of Cu Kα  radiation, β  is the full width 
at half maxima (FWHM =  0.13016), θ  is the diffraction angle (15.857 degrees). The average crystallite 
size obtained from the Eq. (1) was 62.74 nm. The FESEM picture is depicted in Fig. 2 and it reveals the 
shape and size of the BFO NPs. Figure  3 shows the POM images of E7 and E7 +  BFO mixtures with 
different concentrations (wt%) across the regions with and without ITO. The texture shows that there are 
no significant defects and have very good contrast at 10 Vp indicating that it can be exploited for display 
devices as well53,54. The pictures were taken under the microscope by fixing the polarizer and analyzer 
whose transmission axes are at 90° to each other with the smallest division of the scale at 20 μ m. The cell 
gap of all the samples was 5 μ m. The rubbing direction was 45° with respect to the transmission axes of 
the polarizer and the analyzer. We placed the cell in such a way that half of the texture shows the ITO 
coated portion whereas the other half is the non ITO coated portion in order to compare the relative 
textural change under the electric field addressing with respect to the non-addressing portion. A function 

Figure 1. X-ray diffraction pattern for the synthesized BFO. 

Figure 2. FESEM image of the synthesized BFO. 
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generator was used to apply the electric field in the form of a sine wave with amplitude of 10 Vp and a 
frequency of 1 kHz. The ITO coated portion of the cell changes color due to voltage induced reorientation 
of LCs. At 10 Vp, the ITO coated portion gets black which indicates the LCs are in homeotropic config-
uration. We have not observed any significant defect in the texture due to the nanoparticle aggregates 
and the contrast is good. The electro-optic responses of the pristine E7 NLC and the other mixtures 
are shown in Fig.  4(a) with the input voltage shown in Fig.  4(b). Figure  5 shows the On-Off response 
times (τoff, time calculated between 90% and 10% of the transmittance level) for E7, E7 +  0.15 wt% BFO, 
E7 +  0.58 wt% BFO and E7 +  1 wt% BFO are 4 ms, 1.6 ms, 1.9 ms, and 1.9 ms respectively, whereas the 
Off-On response times (τon, time calculated between 10% and 90% of the transmittance level) for E7, 
E7 +  0.15 wt% BFO, E7 +  0.58 wt% BFO and E7 +  1 wt% BFO are 1.1 ms, 0.9 ms, 2 ms, and 2.5 ms respec-
tively. It is evident from the inset picture of Fig.  4(a) that for E7, the field “On-Off ” response time 
is longer and the “Off-On” response time is shorter. For 0.15 wt% BFO doped system, the “Off-On” 
response time is the shortest. The total response time (τ On +  τ Off) for all the three mixtures gets faster by 

Figure 3. POM images of E7 and E7 +  BFO mixtures with different concentration (wt%) across the 
regions with and without ITO. (a), (b), and (c), pristine E7 at 0 V, 2 V and 10 Vp respectively; (d), (e), 
and (f), E7 +  0.15 wt% BFO-NP mixture at 0 V, 2 V and 10 Vp, respectively; (g), (h), and (i), E7 +  0.58 wt% 
BFO-NP mixture at 0 V, 2 V and 10 Vp, respectively; and (j), (k), and (l), E7 +  1 wt% BFO-NP mixture at 0 V, 
2 V and 10 Vp, respectively.
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Figure 4. (a) Transmission vs time for E7 and different mixtures. The inset picture shows the responses 
of E7 and the best performed mixture of 0.15 wt% NPs and E7; (b) The input voltage vs time that was used 
to measure the response time of E7 and the mixtures. A 10 Vp and 100 Hz amplitude modulated square wave 
signal (carrier frequency 1 k Hz) was used.

Figure 5. The rise time (τon), decay time (τoff), and total response time (τtotal =  τon +  τoff). During the 
Off-On and On-Off time convention for time difference T10% - T90% and T90% - T10% have followed and 
the total response time for the pristine and composite material. The total response time for all the three 
mixtures gets faster by 14%, 24% and 51% for 1 wt% BFO, 0.58 wt% BFO and 0.15 wt% BFO respectively 
compared to pristine NLC E7.
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~51% , ~24%, and ~14%, for E7 +  0.15 wt% BFO, E7 +  0.58 wt% BFO, and E7 +  1 wt% BFO respectively 
compared to the host E7. The pure NLC rise time (τon) can be defined as26:

τ γ ∆≅ /∈ ∈ , ( )E 2on 0
2

where γ is rotational viscosity, Δ ∈  is the dielectric anisotropy of the LC, E is the electric field, and ∈ 0 
is the dielectric permittivity in free space. The decay (or switching off) time (τoff) can be written as26:

d K 3off
2 2τ γ π≅ / , ( )

where d is the cell thickness and K is the elastic constant. Figure 6 depicts that the threshold voltage does 
not change significantly (within 1 V for all the cells), so we can reasonably assume the elastic constant 
doesn’t change significantly as the threshold voltage holds for equation55:

π ∆= / ∈∈ . ( )V K 4th 0

Equation (3) explicitly depends on the viscosity as the other parameters remain fixed. Apparently the 
determining factor for the improvement of the decay time should be the decrease in the viscosity, but the 
rise time should also decrease simultaneously for all the mixtures which is opposed to our experimental 
results. The experimental results show that, only for lower concentration of BFO (0.15 wt%), there is a 
decrease in both the rise time and the decay time. Whereas for the other mixtures, the rise time increases 
but the decay time decreases in comparison with the host E7. For low concentrations (0.15 wt%) of 
BFO, lower viscosity may play a partial role for the fastening of the rise time but not for higher con-
centrations of BFO. In lower concentration systems, a decrease in viscosity may cause the decrease 
in viscoelastic constant (γ/K) due to coupling of strong ferroelectric polarization of NPs to LCs over 
dipole-dipole coupling in LCs. The calculated (from Eq. (3)) viscoelastic constant for the four cases are 
as follows: (γ /K)E7 =  1.58 ms/μ m2, (γ /K)E7 + 0.15wt% BFO =  0.65 ms/μ m2, (γ /K)E7 + 0.58wt% BFO =  0.75 ms/μ m2, 
and (γ /K)E7 + 1wt% BFO =  0.75 ms/μ m2. When the concentration of the NPs increases, the viscoelastic coef-
ficient and rise time increases but the decay time has not increased as expected from above equations. 
In addition, the threshold voltage almost remains fixed. The threshold voltage should also decrease due 
to the ferroelectric effect, so there might be some other possible reason for those abnormalities. We are 
proposing this might be due to the origin of a restoring force by the locally oriented LC regions by the 
NPs when the field is turned “Off.” A schematic diagram is demonstrated in Fig. 7 for clarification, where 
the NPs are represented by reddish circles and the liquid crystals are represented by bluish ellipses. When 
no electric field is applied, the liquid crystals nearer to the NPs could orient under the influence of the 
NPs’ spontaneous polarization electric field with respect to the LCs far from the NPs56. If we consider a 
NP a dipole, then the local electric field due to this dipole can be written as:
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Figure 6. Transmission vs voltage (V-T) graph for all the devices. The transmission is taken when 
the polarizer and analyser are parallel to each other. Measured threshold voltage for E7, 0.15 wt% BFO, 
E7 +  0.58 wt% BFO, E7 +  1 wt% BFO are 0.77 V, 0.85 V, 0.9 V and 0.9 V respectively.
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where p is the dipole moment, ȓ is the position vector, θ is the polar angle, and ε is the dielectric per-
mittivity of the medium. With reference to the format E rE Er θ= ( + )θˆ ˆ , the amplitude of the electrical 
field can be written as


E E E
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If we consider the radius of the NP is a and the dipole moment of the sphere is Pa4
3

3π , where P is the 
polarization of the NP, then
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We have neglected the higher order correction term for the anisotropy of LC. Also there might have 
some anchoring force between the NPs and the LCs. This interaction may create some local randomly 
oriented regions57. Due to this random nature of the locally oriented structures, the external electric field 
will expend some energy to perturb those constrained regions along the electric field. For this reason, 

Figure 7. The schematic diagram of the local ordering surrounding the nanoparticles (a) without 
electric field, (b) with electric field. (The brown arrows indicate the direction of the applied electric field). 
We have focused only on the sites near the NPs. Circles with black arrows are for the NPs. Direction of 
polarization of the ferroelectric NPs has been shown by the arrow.
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the threshold voltage was not decreased for the mixtures. The LCs outside the influence of the locally 
aligned region also orient along the electric field. Under sufficient electric field, the LCs close to the 
local regions as well as other NLCs orient along the electric field. When the electric field goes from the 
“On” to “Off ” state, the local regions tend to return to their previously aligned positions, so there will 
be a stronger restoring force which can fasten the response of the device. It is important to note that the 
“Off-On” response time does not change significantly for 0.15 wt% BFO doped device, but the “On-Off ” 
response time improves excellently due to this additional restoring force imparted by the MNPs-induced 
local regions.

Conclusion
In conclusion, we have studied a unique system where faster response time results from the combined 
effects of the viscosity and the restoring force imparted by the locally ordered LCs which are induced 
by the MNPs. This restoring force helps to reduce the decay time of the device. It reveals that for low 
concentration of MNPs, doping is essential for achieving macroscopic dislocation-free fast-response 
electro-optic devices. For higher concentration of the MNPs, this restoring force slowed down the 
response due to higher viscosity.
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