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Abstract

We investigate the personalisation and prediction accuracy of mathematical models for

white blood cell (WBC) count dynamics during consolidation treatment using intermediate or

high-dose cytarabine (Ara-C) in acute myeloid leukaemia (AML). Ara-C is the clinically most

relevant cytotoxic agent for AML treatment. We extend a mathematical model of myelosup-

pression and a pharmacokinetic model of Ara-C with different hypotheses of Ara-C’s phar-

macodynamic effects. We cross-validate the 12 model variations using dense WBC count

measurements from 23 AML patients. Surprisingly, the prediction accuracy remains satis-

factory in each of the models despite different modelling hypotheses. Therefore, we com-

pare average clinical and calculated WBC recovery times for different Ara-C schedules as a

successful methodology for model discrimination. As a result, a new hypothesis of a second-

ary pharmacodynamic effect on the proliferation rate seems plausible. Furthermore, we

demonstrate the impact of treatment timing on subsequent nadir values based on personal-

ised predictions as a possibility for influencing/controlling myelosuppression.

Introduction

Acute myeloid leukaemia (AML) is a malignant clonal disorder of myeloid stem and progeni-

tor cells. In untreated AML, immature neoplastic myeloid blasts rapidly proliferate and

suppress the generation and maturation of blood cells in the bone marrow. While being a

curable disease using chemotherapy including anthracyclines and/or cytarabine (Ara-C), this

approach leads to prolonged myelosuppression with extremely low white blood cell (WBC)

counts (leukopenia), i.e. values below 1 G/L, associated with a high risk of infection and treat-

ment-related mortality [1].

Consolidation treatment, repetitive (up to 4) cycles of intermediate-/high-dose Ara-C (1

− 3 g/m2) [2], is given once patients achieve complete remission (CR) and is considered the

most important part of chemotherapy in preventing relapses. The treatment of 3 g/m2 Ara-C

infusion lasting 3 hours every 12 hours on days 1, 3 and 5 for patients aged 60 years and
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younger was established by Mayer et al. [3] and remains the current standard of treatment to

this day.

If predictions from personalised mathematical models including all relevant biomarkers

were reliable and accurate, they could be used for providing better care to AML patients receiv-

ing Ara-C consolidation treatment, e.g. in an automatised measurement–decision support

loop [4, 5]. Precisely identifying the period of Ara-C-induced profound leukopenia and modi-

fication of treatment schedules based on such predictions might enable prevention of severe

infectious complications, sepsis, and thus delay to undergo subsequent treatment cycles.

Therefore, by realising timely adherence to consolidation therapy cycles and by avoiding

delays in treatment schedule, the density of chemotherapy cycles may be increased and thus

deeper remissions and lower relapse rates may be achieved. This may ultimately translate into

improved overall survival rates.

There are many different levels on which haematopoiesis [6–8], granulopoiesis [9–11],

myelosuppression [12] and dynamics of leukemic cells [8] can be modelled [13, 14]. A compre-

hensive overview and summary of the various models is given in the recently published

reviews [15, 16]. We analysed models that capture only the most important dynamics for non-

leukemic cells and “agglomerate” different physiological effects into simplified expressions.

Higher levels of detail in more sophisticated models, covering many physiologial properties

and thus providing a deeper understanding of biological phenomena, come at the price of

needing more observed biomarkers and model parameters. Depending on the medical ques-

tion, the required outcome and the available biomarker information, more complex models

can be reformulated into minimalistic models that concentrate on the fundamental physiologi-

cal mechanisms without a qualitative loss of the outcome [17, 18]. In our setting, the current

lack of clinical measurements of endogenous granulocyte-colony stimulating factor (G-CSF)

concentrations and leukemic cell counts (as no relapse events occurred) leads to identifiability

issues with the related dynamics. Due to these issues and our main focus on myelosuppression

and WBC recovery, we concentrated on agglomerating effects of Ara-C on proliferation and

maturation rates and did not consider models including G-CSF or leukemic cell dynamics.

Mathematical models for myelosuppression due to various chemotherapy agents have been

proposed [12, 19–23] and applied successfully to predict the dynamics of neutrophils [4, 24].

However, this is not the fact for high-dose Ara-C, the most important component in consoli-

dation therapy [2, 25]. Pharmacology of Ara-C is particularly difficult, as its exact mechanisms

of action both on normal and leukemic cells are not fully understood. The main effect of Ara-

C on normal and leukemic proliferating cells is the inclusion of intracellular Ara-C triphos-

phate (Ara-CTP) into DNA and RNA, which impairs cell replication [26]. Yet, the synthesis

of intracellular Ara-CTP is saturable such that the clinical success of intermediate-/high-dose

Ara-C is not well explained [3, 27, 28]. Additional effects are the subject of ongoing research

[28, 29].

Here, we surveyed different published and new hypotheses of the pharmacodynamic (PD)

effects of Ara-C on WBC dynamics during AML consolidation therapy. We used models for

myelosuppression and Ara-C pharmacokinetics (PK) from the literature to quantify prediction

accuracies. All model variations are based on the myelosuppression model developed by Fri-

berg et al. [12] and are tailored to the special case of Ara-C via a parameterised two-compart-

ment PK model. The general modelling goals were to include possible secondary effects of

Ara-C and to obtain a good balance between modelling detail, prediction accuracy, and the

number of patient-specific parameters. As a successful methodology, we considered predic-

tions of WBC recovery times trec (defined as the time when the WBC count recovers above 1

G/L) for different Ara-C schedules and compared them to published average WBC recovery

times.
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Our work is another contribution towards the ultimate goal of mathematically optimising

and individualising consolidation therapy for AML patients. Here, we are focusing on one

important aspect of AML therapy: Ara-C-derived myelosuppression.

Remark on terminology and potentially confusing synonyms

The manuscript is categorised in the intersection of mathematics, control theory, systems

biology, pharmacology, and medicine. Words like “model” or “parameter” have different

meanings in these scientific communities, and similar concepts have different names like “cali-

bration”, “estimation”, or “personalisation”. For convenience, we list some synonyms that we

did (not) use in S1 Table.

Methods

The section starts with a detailed description of the different model variations. Next, three ini-

tial value approaches are introduced which are used during parameter estimation. Afterwards

we describe our clinical data and specify how we personalised the mathematical models. The

sections Prediction & Cross-Validation and Schedule Timing contain the description of several

simulation studies which were performed to discriminate between the different model varia-

tions and to analyse the treatment timing in consecutive CCs on the nadir value. The mathe-

matical approaches to parameter estimation, uncertainty quantification, statistical analysis and

the nonlinear mixed-effects modelling approach can be found in the S1 Appendix.

Mathematical Models

Fig 1 illustrates the basic assumptions from which we derived twelve model variations of the

original Friberg model which we denote by M1–M12 from now on. They differ concerning the

number of transition compartments (M1–M3), initial conditions for the differential equations

(M3–M5), and model assumptions for the possible effects of Ara-C on proliferation and matu-

ration rates (M5–M12). In this designation, the original Friberg model is denoted by M2. The

ordering of the first three models was chosen with respect to the decending number of transi-

tion compartments. Quartino et al. [30] proposed a model with six instead of three transition

compartments and is thus denoted as M1. After intermediate evaluations of accuracies we

concentrated on the most promising choice of scaling, transition compartments, and initial

conditions, and included different modelling assumptions in the models M6–M12 which are

alternatives to M5, our reference myelosuppression model extended to Ara-C. Most models

refer to previous approaches in the literature and are included for a comprehensive compari-

son and evaluation of our new hypotheses.

M1–M5: The basic PK/PD model, number of compartments and initial conditions. In

2002 Friberg et al. published a PK/PD model describing myelosuppression induced by differ-

ent chemotherapeutic agents (docetaxel, paclitaxel, and etoposide) [12]. The well studied

model showed a good trade-off between capturing the important aspects of the dynamics, con-

taining a moderate number of identifiable model parameters, and being applicable for differ-

ent cytostatic drugs. It has become the gold-standard model in pharmacometrics [16] with

different PK and population-based modifications to topotecan [31], to daunorubicin [32], to a

combination therapy of Ara-C (low-dose), etoposide and daunorubicin in the induction treat-

ment for AML [20], to a physiologically based PK model for the induction therapy of AML

patients with daunorubicin and Ara-C (low-dose) [33], to a combination therapy of carbopla-

tin, etoposide and thiotepa [34], to paclitaxel [22], to an individual-based approach [35], and

to drug specific optimisations [21].
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WBCs derive from differentiated, matured haematopoietic stem cells that have passed

through several intermediate stages during maturation. The chain of maturation is reflected in

the mathematical model as a clustering of cells in several consecutive compartments with iden-

tical properties. Each compartment is described as a differential state. The 4 + ntr differential

states of our mathematical models M1–M12 are the amounts x1 and x2 of Ara-C in two PK

compartments, respectively, the amounts xpr of proliferating cells, xtr;1; . . . ; xtr;ntr of differentiat-

ing cells in ntr transient compartments, and xma of mature, circulating WBCs.

The differential equations that correspond to Fig 1 are

_x1ðtÞ ¼ � ðk10 þ k12Þ x1ðtÞ þ k21 x2ðtÞ þ
uðtÞ BSA
duration

ð1Þ

Fig 1. Schematic model from which all mathematical models were derived. We assumed clustering of cells and

cytarabine (Ara-C) concentrations in compartments with identical properties. White blood cell (WBC) differentiation

is represented by a proliferating compartment xpr, a number ntr of transit compartments xtr with different levels of

maturation, and a compartment xma with mature, circulating WBCs. Cells mature with a maturation rate G. Mature

cells xma die by apoptosis with a death rate of kma. The pharmacodynamic effect of Ara-C is described as a log-linear

function E targeting the proliferating cells in the bone marrow. It depends on the concentration x1 of Ara-C in an

assumed central compartment including the circulating blood. The proliferation rate F of xpr models the replication

speed of proliferating progenitor cells. Modelling assumptions were incorporated by choosing different functions F
and G (compare Table 1). The estimated model parameters used for personalisation were B, slope, ktr, γ, and initial

conditions.

https://doi.org/10.1371/journal.pone.0204540.g001
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_x2ðtÞ ¼ k12 x1ðtÞ � k21 x2ðtÞ ð2Þ

_xprðtÞ ¼ � Gðktr; x1Þ xprðtÞ þ Fðx; ktr; g;B; slopeÞ xprðtÞ ð3Þ

_x tr;1ðtÞ ¼ Gðktr; x1Þ xprðtÞ � Gðktr; x1Þ xtr;1ðtÞ ð4Þ

_x tr;2ðtÞ ¼ Gðktr; x1Þ ðxtr;1ðtÞ � xtr;2ðtÞÞ

. . .
ð5Þ

_xtr;ntrðtÞ ¼ Gðktr; x1Þ ðxtr;ntr� 1ðtÞ � xtr;ntrðtÞÞ ð6Þ

_xmaðtÞ ¼ Gðktr; x1Þ xtr;ntrðtÞ � kmaxmaðtÞ ð7Þ

with constants k10, k12, k21, BSA, duration, cV, kma, Ara-C administration u(t) and parameters

ktr, γ, B and slope specified in the following model description and listed in S3 Table. Functions

F and G are chosen differently in the models M1–M12, compare Table 1.

For fixed transition rate ktr, the number of compartments can be used to model the delay

between the proliferating and circulating cells (mean maturation time [36]). As there is no

common consensus on the precise number of differentiation stages [7, 37] we compared ntr =

6, as proposed by Nock [34], ntr = 3, as proposed by Friberg et al. [12] and ntr = 1, proposed by

us in which we comprise the whole maturation process into one transition compartment for

models M5-M12. The fusion of the differentiation steps into one compartment is justified by

the mean maturation time (MMT) from proliferating stem cells to circulating mature WBCs,

which we compared with published values and presented in the section Results. Cells mature

with a maturation rate constant G = ktr summarising the fraction of cells performing self-

renewal and differentiation into one parameter. This is a simplified assumption made by

Friberg et al. guaranteeing homeostasis [17] and identifiability of the estimated parameters.

During the modelling process we analysed a model considering separate parameters for the

fraction of self-renewal and for differentiation in each compartment. The model has a similarly

high accuracy but more challenging identifiability properties. Our findings are summarised in

S5 Table.

Mature cells xma die by apoptosis with a death rate constant kma. As Monte Carlo simula-

tions were not very sensitive, we fixed kma to a constant value as previously proposed [19]. The

time dependent dosage of Ara-C is denoted by u(t) and is specified by the individual treatment

plan and the body surface area (BSA).

Each compartment represents the number of cells per liter. Liter is referred to the periph-

eral blood, so that the WBC counts from the last compartment coincide with the measured

WBC counts from the clinical data. The model also determines the cell numbers of the

upstream compartments. These numbers are provided per liter (peripheral blood) as well. If

we are interested in the correct number of cells per liter in one of the compartments located in

the bone marrow, we need a conversion factor from blood volume to bone marrow volume.

We will not discuss this issue further and refer to [38]. Therein, the authors state that the func-

tional haematopoietic marrow volume of about 1.75 L can increase sixfold depending on infec-

tion or haemorrhage.

We used a standard two-compartment PK model of high-dose Ara-C, which is adminis-

tered in the consolidation phase, with zero-order input and linear elimination based on
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published drug concentration-time data [39]. The elimination rate constant k10, the transfer

rate constants k12, k21 and the distribution volume of the central compartment VC were esti-

mated in a previous step and defined as constants for all further computations. A detailed dis-

cussion of the PK model is presented in the next section.

The PD effect, e.g. the negative effect of Ara-C on the proliferating cells, linking the PK

model, especially the Ara-C concentration, to the myelosuppression model was modelled by a

log-linear function E = slope ln(1+ cV x1), using the parameter slope for patient-specific cali-

bration and chemotherapeutical effects and the constant cV for unit consistency (see S3 Table).

We also implemented a linear PD function with discouraging results. Additionally, we tested a

(sigmoid) Emaxmodel without achieving better model accuracies. The three different PD func-

tions are the commonly used mechanistic models describing pharmacodynamic effects in PK/

PD modelling [40].

The function F(x, ktr, γ, B, slope) is a general description of the proliferation rate of xpr

and incorporates the PD effect E on the proliferating cells, as discussed in Minami et al. [41],

Derendorf et al. [42] and applied, e.g. in Hing et al. [43]. The basic structure of the function F

Table 1. Overview of all investigated mathematical models M1–M12.

Model ntr Initial condition Proliferation rate F(x,ktr, γ, B, slope) G(ktr,x1) Parameters

M1 6 I1 (1 − E)ktr(B/xma)γ ktr

Myelosuppression model with ntr = 6 transition compartments, proposed in [19]. B, ktr, γ, slope

M2 3 I1 (1 − E)ktr(B/xma)γ ktr

Original Friberg model [12] with ntr = 3 transition compartments. B, ktr, γ, slope

M3 1 I1 (1 − E)ktr(B/xma)γ ktr

As M1, with ntr = 1 transition compartments. B, ktr, γ, slope

M4 1 I2 (1 − E)ktr(B/xma)γ ktr B0

As M3, but with initial condition approach I2 resulting in 1 additional parameter. B, ktr, γ, slope

M5 1 I3 (1 − E)ktr(B/xma)γ ktr xpr(t0), xtr(t0), B0

As M3, but with initial condition approach I2 resulting in 3 additional parameters. B, ktr, γ, slope

M6 1 I3 ktr(B/xma)
γ − E ktr xpr(t0), xtr(t0), B0

As M5, but assuming a direct killing effect of Ara-C on the proliferating cells. B, ktr, γ, slope

M7 1 I3 (1 − E)ktr/S(x1)(B/xma)
γ ktr/S(x1) xpr(t0), xtr(t0), B0

As M5, but replacing ktr by ktr/S(x1) throughout. B, ktr, γ, slope

M8 1 I3 (1 − E)ktr/S(x1)(B/xma)
γ ktr xpr(t0), xtr(t0), B0

As M5, but replacing F by F/S(x1). B, ktr, γ, slope

M9 1 I3 (1 − E)ktr/S(x1)(B/xma)
γS(x1) ktr xpr(t0), xtr(t0), B0

As M8, but also multiplying γ with S(x1). B, ktr, γ, slope

M10 1 I3 (1 − E)ktr(B/xma)γS(x1) ktr xpr(t0), xtr(t0), B0

As M5, but multiplying γ with S(x1), possibly via macrophage activation. B, ktr, γ, slope

M11 1 I3 (1 − E)ktr(Bbm/(0.01 � xpr+ 0.99 � xtr))
γ ktr xpr(t0), xtr(t0), B0

As M5, but feedback depends on bone marrow precursor WBC instead of WBC. B, ktr, γ, slope

M12 1 I3 (1 − E)ktr(Bbm/(0.01 � xpr+ 0.99 � xtr))
γS(x1) ktr xpr(t0), xtr(t0), B0

Combining both modelling assumptions of M10 and M11. B, ktr, γ, slope

For each mathematical model the number of transition compartments ntr, the initial condition strategy, and the two functions F for proliferation rate and G for

maturation rate are specified, compare sectionMethods and Fig 1, respectively. The models M1–M5 have been used mainly to determine the best number of transition

compartments and initial condition strategy, which have been kept fixed from M5 onward. Different modelling assumptions are incorporated via different functions F
and G in the models M5–M12. An important role has the function S(x1) ≔ 1+ ln(1+ cV x1), compare sectionMethods. Most important for this paper are the reference

model M5 and the extended models M10 and M12 as the most promising PK/PD models in the context of Ara-C.

https://doi.org/10.1371/journal.pone.0204540.t001

Modelling white blood cell dynamics in acute myeloid leukaemia

PLOS ONE | https://doi.org/10.1371/journal.pone.0204540 July 1, 2019 6 / 26

https://doi.org/10.1371/journal.pone.0204540.t001
https://doi.org/10.1371/journal.pone.0204540


derived in [12], is (1 − E)ktr(B/xma)
γ in which the mature cells influence the proliferation rate

ktr of xpr with a feedback term (B/xma)
γ that leads to higher rates if the number of circulating

cells xma is below the baseline WBC count B, and vice versa. It is motivated from studies show-

ing that the proliferation rate can be affected by endogenous growth factors and cytokines [44]

and that circulating neutrophil counts and the growth factor G-CSF levels are inversely related

[45]. Including this term allows a temporary overshoot of WBC compared with the baseline

value B. The proliferation exponent γ indicates the strength or speed of this feedback. The esti-

mation parameters were B, slope, ktr, and γ plus a varying number of additional parameters

depending on the initial condition approach, see Table 1. The different initial condition

approaches are introduced in the next sections. The WBCs completely recover after cytotoxic

therapy (see Fig 2a in [46]) and each cycle is scheduled such that the WBCs should be in

homeostasis before treatment start. However, our clinical data indicate that not for all patients

the WBCs are yet completely recovered from myelosuppression or they already recovered and

overshoot their steady state value before the start of the next treatment cycle due to an overpro-

duction of WBCs. This carry over effect was already mentioned by Kloft et al. [31] but was not

considered by them. Thus, we implemented three different strategies to treat initial conditions:

I1 assumes a steady state, I2 assumes a steady state only for the proliferating and transient

compartments, and I3 penalises deviations from the steady state. I2 and I3 are considered as

alternative initial conditions as our clinical data indicate that the steady state assumption after

induction phase and between the consolidation cycles may be violated.

We used I1 and ntr = 6 for M1, I1 and ntr = 3 for M2, I1 and ntr = 1 for M3, I2 and ntr = 1

for M4, and I3 and ntr = 1 for M5–M12. Model constants, patient-specific constants and units

of model parameters are summarised in S3 Table.

Apart from different PK models which were linked to the myelosuppression model, modifi-

cations of the structural model were also proposed [22, 23]. Both models have a more detailed

description of the stem cell compartment. The model from Henrich et al. covers a consecutive

decrease of the leukocyte’s nadir in the treatment cycles achieved by a prior additional com-

partment mimicking the slow replication of pluripotent stem cells in the bone marrow. Man-

gas-Sanjuan et al. models a cell-cycle occurring in the bone marrow compartment covering

quiescent cells which do not enter the proliferation process and are not sensitive to the phar-

macodynamic effect of the treatment.

Development of PK Model. We developed a two-compartment PK model for intrave-

neous high-dose Ara-C infusions and compared it with two previously published PK models

[20, 47]. 86 Ara-C concentration measurements (μg/mL =mg/L) from 11 patients were col-

lected from Fig 2 of Kern et al. [39] and presented in Fig 2.

As Fig 2 in [39] was our only source of data, no inter–individual variability analysis could

be performed. The patients received high-dose (3 g/m2) Ara-C infusions over 3 hours every 12

hours on days 1, 2, 8 and 9. The measurements we are using were collected at day 1 and 8 and

we assume BSA = 1.78m2. The resulting model with unknown parameters k10, k12, k21 and Vc
denoting the elimination rate, distribution rates and the volume of the central compartment, is

formulated as

_x1ðtÞ ¼ � ðk10 þ k12Þ x1ðtÞ þ k21 x2ðtÞ þ
uðtÞBSA

3
ð8Þ

_x2ðtÞ ¼ k12 x1ðtÞ � k21 x2ðtÞ: ð9Þ

We estimated the unknown parameters using a naive pooling approach with exponential

error model Zij ¼
x1ðtijÞ
Vc
eεij where εij � N ð0; 1Þ. The naive pooling approach was used as the
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collected Ara-C measurements could not be assigned to the corresponding patients. The error

model is transformed to logðZijÞ ¼ log
x1ðtijÞ
Vc

� �
þ εij and the following parameter estimation

problem

min
k10;k12 ;k21 ;Vc;x

1

2

Xm

i¼1

Xni

j¼1

ð logðZijÞ � logðx1ðtijÞ=VcÞ Þ
2

ð10Þ

s:t: _xðtÞ ¼ f ðxðtÞ; uðtÞ; k10; k12; k21;V1Þ; xðt0Þ ¼ ð0:; 0:Þ
T ð11Þ

is solved with a Gauss-Newton algorithm implemented in CasADi [48] with single shooting

(CVODES). The estimated parameters and their relative standard deviations are presented in

Table 2 together with the parameter values from Solans et al. [47] and Krogh et al. [20].

The two-compartment PK model representing a central and peripheral compartment, see

Fig 1, adequately described the concentration-time data and coincides with the derived values

for clearance and the elimination rate constant k10 from Table 6 in [39]. We used our derived

two-compartment model with the given estimated parameter values in all calculations. We did

not use the PK models from Krogh et al. and Solans et al., because they were fitted to low-dose

treatment schedules. Although Ara-C is reported to have a linear pharmacokinetics [39], simu-

lations with these PK models did not coincide well with the concentration measurements from

high-dose treatment schedules published in [39] as shown in Fig 2.

Fig 2. Simulations of different pharmacokinetic models and Ara-C concentration measurements from Kern et al.
[39].

https://doi.org/10.1371/journal.pone.0204540.g002
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During the model development process we also tested a K-PD approach [49] which resulted

in non-identifiability of the elimination rate constant of the virtual compartment during the

individual parameter estimations.

As stated above the PK model was fixed in the modelling process. In one of the simulation

studies we analysed the effect of the PK variability on the different modelling hypotheses. We

present and discuss the results in S8 Fig.

M6: Modelling a direct killing effect of Ara-C on the proliferating cells. In the model

M6, we chose the proliferation rate as discussed in previous works [21, 33, 42] as F = ktr(B/

xma)
γ − E. The main difference to all other models is that the PD effect E is directly multiplied

with xpr and not with ktr(B/xma)
γxpr. Multiplying with xpr can be seen as a direct (killing)

impact of Ara-C on the amount of proliferating cells, whereas the more plausible mechanism-

based rationale is the induced reduction of the proliferation rate constant ktr used in all models

except in M6.

M7–M12: Extending the effects of Ara-C. The root mean squared error (RMSE) values

indicate that model M5 with one transition compartment and initial condition approach I3

(described in the next section) provides the highest accuracy after model personalisation com-

pared to M1–M4.

The indirect effect of Ara-C with an impaired proliferation (M5) is more plausible than

a direct killing effect (M6), because Ara-CTP is incorporated into DNA and RNA and

impairs cell replication [26]. Therefore, M5 became the reference model for all further anal-

ysis. We extended the proliferation rate F(�) and/or the transition rate G(�) in M5 to capture

potential secondary effects of Ara-C. To understand the implications of the extensions, we

observe that the proliferation rate F = (1 − E) ktr(B/xma)γ is negative when 1 < E. This is the

case for

cV x1 > e
slope� 1

� 1: ð12Þ

This corresponds to more proliferating cells being in the process of apoptosis than being in

the process of cell division. It is important that the feedback term (B/xma)γ increases the

absolute value of F for B > xma, and decreases it for B < xma. Therefore, an analysis of F
always has to consider all four cases related to the signs of 1 − E and of B − xma. Inspired by

Table 2. Comparison of our derived PK model with a published one- and two-compartment model.

Solans2018 [47] Krogh2012 [20] Ours

CL[L/h] 208.73 272.0 154.225

Vp [L] - 75.4 7.7825

Q [L/h] - 13.7 4.1761

Vc [L] 209.25 62.8 37.6571(21.30%)

k10[1/h] 1.0 4.3 4.0955(15.09%)

k12[1/h] - 0.2 0.1109(67.64%)

k21[1/h] - 0.2 0.5366(69.50%)

Final parameter estimates and relative standard errors (in brackets) are shown. Comparing our model with a

published two-compartment model for low-dose Ara-C [20], we estimated a smaller central volume leading to a

reduced clearance activity derived from an almost equivalently estimated elimination rate constant value. The

distribution rate constants differ by a factor of 2 to 2.5 and the peripheral volume by a factor of almost 10. The

parameter values and the visual assessment of the one-compartment model [47] in S8 Fig indicate, that the one- and

two-compartment models describe Ara-C concentrations with qualitatively different dynamics.

https://doi.org/10.1371/journal.pone.0204540.t002
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the log-linear behaviour of the PD effect E, we chose

Sðx1Þ≔ 1þ lnð1þ cV x1Þ:

This monotonously increasing function is applied to different expressions in M5.

In M7 we replaced the transition rate ktr by ktr/S(x1) throughout M5. This results in an Ara-

C induced reduction of the transition rate.

In M8 we replaced the complete feedback function F in M5 by F/S(x1). This models an Ara-

C induced decreased auto-feedback of the proliferating cells. For high values of x1, i.e. when

(12) holds, this results in a decreased killing of proliferative cells. For values x1 > 0 below that

boundary, we get a decreased positive proliferation rate.

In M9 we replaced both the complete feedback function F by F/S(x1) and the proliferation

exponent γ by γ S(x1). Again, depending on x1 either the killing or the proliferation rate of xpr

are decreased by F/S(x1). In addition, the impact depends on whether the WBC count is below

or above the baseline: for xma < B we have an increased killing/proliferation rate (B/xma)
γ S(x1)

> (B/xma)
γ and vice versa.

In M10 we replaced the proliferation exponent γ in M5 by γS(x1). This is motivated by the

observation that the feedback term with exponent γ is related to the endogenous G-CSF [12].

In contrast to M9 the function F itself is not scaled. Like in M9, the γS(x1) scaling results in an

increase of killing/proliferation rates for WBC counts below the baseline, and a decrease else.

In M11 we replaced the quotient B/xma by a comparison between cells in the bone marrow

and their baseline value. Based on the statement in [7] and the references therein, we assumed

that about 1% of the WBC precursor cells in the bone marrow are in the proliferating compart-

ment xpr, and 99% in the transition compartment xtr. In M12 we combined the extensions

from M10 and M11.

The parameter vector contains also initial values, which we discuss next.

Initial conditions of the differential states

The initial values of the PK were chosen to be zero, x1(t0) = x2(t0) = 0, due to the fact that the

considered time horizons start before administration of chemotherapy. Further, it is known

that previous Ara-C treatments have no impact on the pharmacokinetics of subsequent treat-

ments [39] which is supported by simulation studies showing that the values of x1(t) and x2(t)
are below 10−6 after 16.35 days of the 1 Ara-C infusion. The remaining initial conditions were

chosen using one of the following three strategies.

Initial condition approach I1. The WBC count xma(t0) was set to the long term WBC

baseline (steady state) count B. With this particular choice all feedback terms simplify to

ktrðB=xmaðt0ÞÞ
g
¼ ktr:

Assuming x1 = 0, also E = 0, S(x1) = 1, and hence F = G = ktr for all models at time t0, which

simplifies the analysis. As initial conditions for the cell counts in the bone marrow we chose

the bone marrow baseline cell count Bbm ≔
B kma
ktr

,

xprðt0Þ ¼ Bbm ð13Þ

xtr;1ðt0Þ ¼ . . . ¼ xtr;ntrðt0Þ ¼ Bbm; ð14Þ

which guarantees that inserting (13) into (1) leads to a right hand side of zero.

The advantage of this approach is the identifiability of the estimation problem, as no addi-

tional degrees of freedom in the estimation problem need to be introduced for the initial
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conditions. However, simulations showed that both the assumption of xma(t0) = B and the

steady state assumption were typically violated at the beginning of a new consolidation cycle.

Initial condition approach I2. One additional parameter B0 was introduced and esti-

mated, as suggested by Nock [34]. It was used for the initialisation as

xmaðt0Þ ¼ B0; ð15Þ

together with (14). The time derivative (1) at time t0 is given by

_xprðt0Þ ¼ ktr
B
B0

� �g

� Gðktr; x1Þ

� �

Bbm; ð16Þ

_xtr;1ðt0Þ ¼ . . . ¼ _xtr;ntrðt0Þ ¼ 0 ð17Þ

_xmaðt0Þ ¼ Gðktr; x1Þ B kma=ktr � kmaB0; ð18Þ

which is not zero for B0 6¼ B. The advantage of this approach is that also increasing or decreas-

ing WBC counts at t0 can be captured, depending on the sign of (18).

Initial condition approach I3. The initial conditions xprðt0Þ; xtr;1ðt0Þ; . . . ; xtr;ntrðt0Þ, and,

as in I2, also xma(t0) = B0 were introduced as additional estimation parameters. As this leads to

unidentifiability of the estimation problem, a term penalising deviations from (13),

aðxprðt0Þ � BbmÞ
2
þ a

Xntr

i¼1

ðxtr;iðt0Þ � BbmÞ
2

with α = 1/2500 was added to the objective function of the least squares estimation problem.

The regularisation parameter α was chosen with respect to the tradeoff between identifiability

of xpr(t0) and xtr,i(t0) and the violation degree of the steady state assumption. Larger values of α
resulted in similar parameter estimates compared to the initial condition approach I1, as more

attention was drawn to the penalising terms guaranteeing a solution close to the steady state

assumption after parameter estimation. Smaller values of α weakened the steady state assump-

tion but also increased the uncertainty of parameter estimates for xpr(t0) and xtr,i(t0) resulting

in large standard deviations. A good tradeoff was achieved with α = 1/2500. For more informa-

tion about the regularisation approach see [50] and the references therein. Note that B−B0 was

not penalised. This approach is the most flexible with respect to the possibly transient initial

dynamics resulting, e.g. from previous treatments.

Clinical data (high density WBC counts) & personalisation

AML patients who had received induction therapy (commonly defined as anthracycline- and

Ara-C-based 7+3 regimen [2]) resulting in complete remission and who did not receive granu-

locyte-colony stimulating factors (G-CSF) during the post-remission consolidation therapy

were eligible for data analysis. We focused on patients who did not receive growth factor sup-

port, as such effects were not yet accounted for in our mathematical models. Almost daily

WBC counts from 42 consolidation Ara-C cycles (CCs) of 23 AML patients (median 62 years,

14 male, mostly de novo AML (19/23), mostly AML FAB-M2 (9/19), mostly intermediate cyto-

genetic risk (12/20)) from 2008 to 2015 were analysed from clinical charts provided by the

Department of Hematology and Oncology, Magdeburg University Hospital, Magdeburg, Ger-

many. The data were retrospectively collected and pseudonymised from records of the clinical

routine, and interventions were not performed for this work. For this reason no patients’

agreements were required. This study was approved by the Ethics Committee of the Medical
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Faculty of the University of Magdeburg (Optimal control of clinically relevant cancer chemo-

therapy schedules in patients with acute leukaemia—with special emphasis on neutropenia,

MARTINA; approval number 124/15). All clinical procedures were performed in accordance

with the general ethical principles outlined in the Declaration of Helsinki. The CCs were parti-

tioned in one, two, and three consecutive CCs from nine, nine, and five patients, respectively.

Four different schedules D135, d135, D123, or D12, in which the numbers correspond to treat-

ment days 1, 2, 3, and 5, respectively, d to intermediate-dose Ara-C (i.e. 1 g/m2 per BSA twice a

day over three hours) and D to high-dose Ara-C (i.e. 3 g/m2 twice a day), were administered

23, 15, two, and two times. Patient PD123 (62 years, male) received two cycles of D123. Patient

PD12 (64 years, female) received two cycles of D12. The 21 other patients received 1-3 D135

cycles (median 57 years, 8 male, 4 female) or d135 cycles (median 68 years, 5 male, 4 female).

The cycle- and patientwise longitudinal WBC count measurements are published as NON-

MEM compatible comma separated values files in the supporting information (S1 and S2

Files). Both datasets contain the columns ID TIME DV CMT AMT RATE DUR MDV and

EVID. ID serves as an identifier for the appropriate cycle, respectively patient. In the cyclewise

dataset each of the 42 CCs has its individual ID meaning that each cycle is treated indepen-

dently although several cycles belong to the same patient. In the patientwise dataset all cycles

belonging to the same patient are assigned to one ID. TIME [day] either specifies the measure-

ment times of WBC counts or the starting times of the Ara-C administrations. DV [G/L] is the

dependent variable, in our case individual WBC count measurements. The column CMT spec-

ifies the compartment in which a dosing or observation event occurs. AMT [mg], RATE and

DUR [day] define the Ara-C schedules. As every administration is an infusion lasting 3 hours,

the entries of DUR and RATE are 0.125 [day] and -2. AMT defines the BSA-adjusted amount

[mg] of Ara-C. The column MDV allows the user to inform NONMEM whether or not the

value in the DV field is missing, but in our case the datasets do not contain missing measure-

ments. The column EVID explicitly declares to NONMEM the type of the current record.

EVID = 0 defines the record as an observation event and EVID = 1 defines the record as a dose

event. For more information about NONMEM datasets we refer the interested readers to [51].

We used all 42 CCs to personalise our mathematical models M1–M12 performing point

estimations (individual approach). The point estimates were used to analyse the different

modelling assumptions. Additionally we personalised the most relevant models M3, M10

(with I1), the model from Henrich et al. [22], the model from Mangas-Sanjuan et al. [23]

and the model from Stiehl et al. [8] applying nonlinear mixed-effects modelling (population

approach). The population approach is used on the one hand to qualitatively confirm our

proposed model variation based on the set of population parameters. On the other hand we

wanted to compare our set of population parameter values with recently published models

and give a reason why the Friberg model serves as our basic model and not recently published

models which are similar to the Friberg model, but with several extensions. A comment on

the use of initial value approach I1 instead of I3 for the population approach is given in the S1

Appendix. Once the model parameters have particular values, the model is called personalised

model (PM).

Prediction & cross-validation

The PMs were then used to predict (simulate) and cross-validate WBC counts for the last CC

of 14 patients for whom at least two consecutive CCs are available. Additionally, we calculated

predicted trec values from our 42 PMs applying D123 and D135 schedules and compared the

descriptive statistics with published average trec values from a subset of data (367 CCs of 208

AML patients, no G-CSF support) of the AMLSG 07-04 trial in which the schedules D123 and
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D135 after 7+3 regimen were analysed [46]. The published AMLSG 07-04 [46] trial does not

provide WBC counts to obtain new PMs, therefore we used the median of observed trec values

for D123 and D135 Ara-C schedules. In the interest of a fair comparison (i.e., to avoid compar-

ison with the value 0) we excluded five (d135:1 and D135:4) out of 42 PMs for which at least

one out of the 42 predictions (M1–M12 with either D123 or D135) resulted in no WBC counts

below the threshold value. This could occur as we personalised the models for a specific treat-

ment plan, e.g. D135. Afterwards we applied a different treatment plan to the PMs, i.e D123,

which may have resulted in a reduced cytotoxic effect. Not each out of the 42 predictions

resulted in a nadir value below 1 G/L. Further, we predicted trec values for two Ara-C schedules

in which a constant administration of Ara-C throughout days 1-5, with either 100mg/m2 per

day or 400mg/m2 per day was given. These schedules, together with D135, have been clinically

analysed for 1088 AML patients (median 52, 568 male) by Mayer et al. [3], and the superiority

of D135 with respect to disease-free survival rates and remaining in continuous complete

remission after four years has been shown but no trec values were reported. Finally, we analysed

the effect of the inter-individual PK variability on the trec values derived by the models M3 and

M10 (with I1). We applied schedules D123 and D135 with fixed population parameter values

for B, slope, ktr, and γ and performed 500 simulations each with randomly chosen values from

constructed inter-individual variability (IIV) for the PK parameters clearance CL and central

volume VC.

All experiments were performed to analyse the 12 proposed models with respect to WBC

count and trec predictability.

Schedule timing

After verifying the predictability performance of the PMs, we performed a simulation study in

which we demonstrated a further possible application of the PMs in planning the start of con-

secutive CCs. We analysed the impact of the treatment timing on the individual nadir values.

For each of the 14 patients, for whom at least two consecutive CCs were available, the nadir

of the last CC was compared to 20 simulated nadirs. These nadirs resulted from simulations

using the patient’s PMs (second row of Table 3) in which the timing of the last CC was varied

daily with the maximal starting variation of 10 days earlier or later.

Results

Accuracy of PMs with fixed Ara-C schedule

Table 3 shows statistics about the accuracies of the PMs describing the clinical data, for a pure

estimation (using all available WBC counts to personalise the model) and for a cross-validation

(using all but the last CC for personalisation).

The accuracies depend strongly on the number of compartments and initial condition strat-

egy (M1–M5), but do not differ much with respect to modelling assumptions of possible effects

of Ara-C considered in M6–M12. These values were even better when the standard schedule

D135 was applied in the estimated and predicted cycles. Regarding the root mean squared

errors for M1-M5 the results implied that one transition compartment and initial approach I3

were the best choice for the structural model and hence served as a starting point to analyse

different pharmacodynamic effects of Ara-C. As mentioned in the previous section, the num-

ber of transition compartments determines the MMT of the differentiating progenitor cells.

Comparing the MMTs resulting from the population approach for M1-M3 we achieved a

slight decrease from 154 h to 144 h to 128 h by using the corrected formula MMT = n/ktr[17]

instead of the original formula MMT = (n + 1)/ktr [12]. During the administration of cytostatic

drugs it is known that the cells are encouraged to rapidly differentiate such that a MMT of 128
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h is reasonable. Furthermore, the MMT value from one transition compartment is closest to a

previously published corrected MMT value of 106.4 [17, 30]. Studies with healthy volunteers

reported MMTs of 153.6 h and 165.6 h [17]. But these values are difficult to compare as che-

motherapy can speed up proliferation and differentiation. With this knowledge and the accu-

racy values of Table 3 we decided to fix the number of transition compartments to one. The

original MMT formula from [12] would have resulted in 180 h, 193 h and 256 h. By using M5

as the reference model and analysing different hypotheses of Ara-C’s PD effect in M6-M12, all

models could describe the clinical data equally well. Goodness-of-fit plots in Fig 3a and 3b and

S1 Fig visually support the good match between model predictions and measured WBC counts

(respectively observed vs. calculated trec values) around the nadir and a wider spread of large

WBC counts. To analyse the reliability of the PMs to predict the WBC dynamics in subsequent

CCs, Fig 3c and 3d indicate the involved model uncertainty from parameter uncertainty by

means of Monte Carlo simulations. The model uncertainty was derived from 1000 randomly

chosen parameter sets sampled from the variance-covariance matrix resulting from the indi-

vidual parameter estimation problem (10) (for more information see S1 Appendix). The infor-

mation from one CC and no available prior knowledge leads to a high uncertainty. The

uncertainty reduces when more WBC counts are present, and the prediction accuracy for con-

secutive CCs and myelosuppression increases. Examining the accuracy of the PMs for each

patient separately, the WBC counts around the nadir are explained well by all models for fixed

Ara-C schedules (either D135 or D123), as shown in Fig 4a–4d for two exemplary patients and

in S2 and S3 Figs for the other 12 patients with at least two consecutive CCs.

Regarding the estimated parameter values, we only determine a slight change of the esti-

mated fixed-effects parameter values for B, ktr and slope, the inter-individual variability for all

four parameters and the residual error between models M3 and M10 whereas the estimated

fixed-effects parameter value for slope significantly decreases when a second PD term is intro-

duced (see).

Accuracy of PMs with altered Ara-C schedule

As we were interested to differentiate between the distinctive model hypothesis, we applied dif-

ferent chemotherapy schedules to the PMs and analysed their dynamical behaviour, especially

Table 3. Root mean squared error (RMSE) values for the models M1–M12.

RMSE M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

42 CCs 0.911 0.836 0.742 0.636 0.579 0.595 0.639 0.576 0.574 0.574 0.577 0.587

23 Pat 1.154 1.011 0.892 0.825 0.741 0.758 0.785 0.753 0.738 0.740 0.740 0.741

14 Pred 1.269 1.128 1.059 1.007 0.908 0.972 0.997 0.960 0.958 0.927 0.940 0.947

7 D135 1.108 0.912 0.834 0.778 0.750 0.753 0.781 0.750 0.767 0.765 0.731 0.768

5 d135 1.319 1.240 1.141 1.093 0.921 1.095 1.023 1.068 1.043 0.957 1.037 1.009

PD123 2.404 2.218 2.241 2.258 2.011 2.014 2.324 2.006 1.996 1.996 2.029 2.022

PD12 1.014 0.991 1.042 0.924 0.842 0.843 1.049 0.839 0.840 0.843 0.824 0.823

Measured and calculated WBC counts were compared. The estimations and predictions used personalised mathematical models (PMs) that were calculated based on the

twelve different mathematical models M1–M12. The first row refers to a personalisation for all 42 consolidation cycles (CCs). The second row shows results for

personalisations using all available cycles per patient (Pat). For predictions (Pred) all but one cycle were used for personalisation and the last cycle for cross-validation.

Four more rows show the predictions sperated into the different schedules (D135, d135, D123 and D12). The RMSE values decrease from cycles to patients and from

personalisation towards prediction, as expected. Comparing the mathematical models, the accuracy increases with a reduced number of compartments from M1 to M3.

The initial condition strategies I2 in M4 and I3 in M5 decrease RMSEs further. M5–M12 all used ntr = 1 and I3 and performed equally well, with the slight exception of

M7. Note that in particular there is no significant difference between the established gold-standard model M5 and our newly proposed extended model M10.

https://doi.org/10.1371/journal.pone.0204540.t003
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the WBC recovery. Fig 4e and 4f show two cases where D135 was used for personalisation and

D123 for prediction (and vice versa). Here, M9, M10, and M12 have a faster (slower) haemato-

logical recovery for D123 (D135). All three models assume that the proliferation speed γ
depends on the Ara-C concentration. This modelling assumption is visualised in a different

way for M5, M10 and M12 in S4, S5 and S6 Figs.

It is shown that the negative proliferation rate F of M10 and M12 compared to M5 has an

altered dynamical behaviour during chemotherapy due to the increased γ value from the PD

effect achieving a faster WBC recovery for D123 schedules. For this accelerated feedback rela-

tionship between WBCs and G-CSF biological interpretations are given in the next section.

Fig 3. Visualisation of predictive accuracies of personalised mathematical models (PM). (a) Goodness-of-fit plot for M10. Shown are

measured versus calculated white blood cell (WBC) counts. Models were personalised using complete data sets of one to three cycles from 23

patients. The measured counts around the nadir coincide well (RMSE = 0.740) with the calculated WBC counts. (b) As (a), but cross-validated:

WBC counts from the last cycle of patients were not used for personalisation, but compared to predictions (RMSE = 0.927). The plot shows

cross-validated WBC counts from the last cycle in red, others in blue. The plots are prototypical for M1–M12. (c) PMs based on M10 and either

personalisation with WBC counts from one or from all three cycles. 1000 Monte Carlo simulations after personalisation with WBC counts from

one cycle were used to indicate the propagated probability density function. (d) As (c), but using WBC counts from the first two cycles for

personalisation. More measurements lead to higher prediction accuracy. The uncertainty tube tightens and the predicted trajectory gets closer to

the solution that used all available WBC counts.

https://doi.org/10.1371/journal.pone.0204540.g003
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Fig 4. Comparison of personalised models (PMs) based on M1-M12 and white blood cell (WBC) data. Patient with three

D135 cycles (left) and patient PD123 with two D123 cycles (right), as indicated on the x-axis. The PMs exemplify reproducability

(first row), predictability (second row) and simulation of a different schedule in prediction than estimation (third row). (a)

Reproducability: all 12 PMs based on M1–M12 are able to explain the measured WBC counts. (b) As in (a), all PMs explain the

measured WBC counts well, particularly around the nadirs. (c) Cross-validated prediction: all PMs explain the WBC counts well,

also in the predicted third cycle. (d) As in (c), here with a slightly too slow predicted recovery time in the second cycle for all

models. (e) Varied Ara-C schedule: prediction of D123 in the third cycle for a PM based on two D135 cycles shows faster WBC

recovery for M9, M10, and M12. (f) Prediction of D135 in the second cycle for a PM based on one D123 cycle shows slower

WBC recovery times for M9, M10, and M12.

https://doi.org/10.1371/journal.pone.0204540.g004
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In conclusion, the comparison of WBC recovery times between D123 and D135 treatments

is a suitable criterium for model discrimination.

The next study was performed to compare the calculated trec values from M1-M12 with

clinically collected values to figure out which of the models coincided with clinical findings.

We used 444 PMs (using M1–M12 and clinical data from 37 cycles with schedules D135, d135,

D123 and D12 from section Clinical Data & Personalisation) to predict the outcome of D135

and D123 schedules. The median values of the predicted trec were compared to the values from

a subset of data (108 with D135 and 259 with D123 schedules) from the AMLSG 07-04 trial

[46]. M9, M10, and M12 resulted in roughly 4 days faster trec for D123 compared to D135, sim-

ilar to the clinical result from the literature and in contrast to the 1 day difference of M5 (com-

pare Table 4). The individual results have been qualitatively confirmed by the predicted trec

values from the population approach (see). The models from Henrich et al. and Mangas-San-

juan et al. were not further considered, as both models simplified to the Friberg model after

parameter estimation. For the model from Henrich et al., the estimated population parameter

value ftr was 0.96, supporting the visual assessment that the patients’ nadirs are not decreasing

during the CCs. The estimated parameter values kcycle = 0.0009 and Fprol = 0.941 of the model

from Mangas-Sanjuan et al. yielded a non-existing stem cell cycle. A possible reason for the

non-identifiability of the parameters might be the limited schedule variation. The authors state

that a vast variation of schedules has to be available for parameter identification [23]. The

model from Stiehl et al. provided the highest model accuracy with respect to the final objective

function value, but exhibited disagreeing WBC recovery times and large relative standard

errors (see S5 Table). Therefore we did not consider this model in our further studies. The sim-

ulation study analysing the effect of the PK variability on the resulting recovery times of sched-

ules D123 and D135 for models M3 and M10 (with I1) revealed that model M10 was more

sensitive to different high-dose Ara-C treatment schedules compared to model M3 despite the

high inter-individual PK variability. This was verified in S8 Fig presenting boxplots of 500 sim-

ulated trec values for both models and schedules with constructed IIV on the PK.

Schedule timing

Similar to previous simulation studies dealing with varying and shortening cycle duration and

finding the optimal number and timing of G-CSF administrations to reduce myelosuppression

[52–54], we analysed the impact of different treatment starts of the last CCs with respect to

obtained nadir values. A comparison to the clinically observed nadir values indicated a large

potential for clinical improvement, i.e., a higher nadir value due to a different treatment timing

(see Fig 5a). Fig 5b exemplarily shows the WBC dynamics for different treatment timings. Ear-

lier (later) starts resulted in sequentially higher (lower) nadir values.

Discussion

High-density WBC counts from 23 AML patients were collected and used to personalise 12

mathematical models and analyse their prediction accuracy with respect to different modelling

hypotheses and treatment schedules. The high prediction accuracies of the PMs, especially

around the nadir, confirm previous claims [4, 24] that the general approach of in-silico studies

can be used for clinical decision support. As clinical decision support we understand tools

which help physicians to monitor and predict WBC dynamics and the duration and grade

of myelosuppression. In combination with clinical expertise on the impact of schedules

on relapse probabilities and their small scope determining the start of the next cycle due to

subjective experience and the patients fitness, this might have an important clinical impact via
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altered treatment schedules which might eventually result in decreased depth and duration of

myelosuppression.

Current drawbacks are the high model uncertainty, if insufficient information is available.

This makes precise and reliable predictions difficult (compare Fig 3c and 3d). Furthermore,

the lack of leukemic cell dynamics and the validation of the PMs based on one specific che-

motherapy schedule might lead to not appropriate models concerning an optimisation of

Ara-C dosage.

Table 4. Double cross-validation with clinical data from two independent clinical trials.

trec tD135� D123
rec tleu nadir

D123 D135 D123 D135 D123 D135

Clinical Data 19.3 ±1.0 23.1 ±2.9 – – 11.5 ±3.5 12.5 ±4.7 0.3 ±0.0 0.3 ±0.2

nD123 = 2,nD135 = 23 (18.6 20.1) (14.1 27.1) – – (9.1 14.0) (5.0 20.0) (0.24 0.27) (0.1 0.8)

Subdata (AMLSG 07-

04)

18.0 – 22.0 – – – – – – – – – – –

nD123 = 259,nD135 =

108

(– –) (– –) – – – – – – – – – –

Model Group D123 D135 D123 D135 D123 D135

M1 37 PMs 21.9 ±3.7 22.6 ±3.7 0.7 ±0.2 13.3 ±4.5 13.3 ±4.6 0.2 ±0.2 0.2 ±0.2

(16.0 34.8) (17.0 35.6) (0.3 1.0) (7.5 28.3) (7.5 28.5) (0.0 0.6) (0.0 0.6)

M2 37 PMs 22.2 ±3.5 22.6 ±3.5 0.5 0.2 13.3 ±4.2 13.4 ±4.2 0.3 ±0.2 0.3 ±0.2

(16.4 33.3) (17.4 33.8) (0.2 1.0) (7.5 26.2) (7.6 26.4) (0.1 0.6) (0.1 0.6)

M3 37 PMs 22.3 ±2.7 23.2 ±2.7 0.9 0.1 13.2 ±3.7 14.1 ±3.6 0.4 ±0.2 0.4 ±0.2

(17.1 30.7) (18.2 31.7) (0.8 1.3) (7.2 23.3) (8.3 23.9) (0.1 0.8) (0.1 0.8)

M4 37 PMs 22.4 ±2.8 23.3 ±2.7 0.9 0.1 13.2 ±3.7 14.1 ±3.6 0.4 ±0.2 0.4 ±0.2

(17.0 30.9) (18.1 31.9) (0.8 1.2) (8.5 23.5) (9.4 24.1) (0.1 0.8) (0.1 0.7)

M5 37 PMs 22.4 ±3.1 23.3 ±3.0 0.9 0.2 12.7 ±4.0 13.5 ±4.0 0.3 ±0.2 0.4 ±0.2

(16.8 32.5) (18.0 33.5) (0.1 1.2) (6.6 25.5) (7.6 26.1) (0.1 0.9) (0.1 0.9)

M6 37 PMs 22.6 ±3.4 22.8 ±3.3 0.2 0.2 13.2 ±4.0 13.2 ±4.0 0.4 ±0.2 0.4 ±0.2

(14.5 32.0) (15.3 32.4) (0.0 0.8) (4.6 25.0) (4.7 24.9) (0.1 0.9) (0.1 0.9)

M7 37 PMs 22.5 ±2.7 23.0 ±2.7 0.5 0.2 12.8 ±4.3 13.2 ±4.7 0.3 ±0.4 0.3 ±0.4

(17.8 31.0) (18.4 31.8) (0.0 1.1) (0.0 23.6) (0.0 23.9) (0.1 2.7) (0.0 0.9)

M8 37 PMs 21.7 ±2.7 22.6 ±2.6 0.9 0.1 12.6 ±4.0 13.5 ±3.9 0.3 ±0.2 0.4 ±0.2

(16.7 29.4) (17.9 30.5) (0.6 1.3) (6.5 22.1) (7.3 22.7) (0.1 0.8) (0.1 0.7)

M9 37 PMs 20.1 ±2.7 23.7 ±2.6 3.1 0.9 10.5 ±4.0 14.7 ±3.6 0.4 ±0.2 0.3 ±0.2

(16.0 28.9) (18.6 31.6) (0.8 5.2) (3.4 21.7) (7.3 23.9) (0.1 0.9) (0.0 0.7)

M10 37 PMs 20.3 ±3.2 24.2 ±3.2 3.5 1.0 11.6 ±4.4 15.2 ±3.9 0.4 ±0.2 0.3 ±0.2

(15.4 32.4) (18.9 35.7) (0.9 5.8) (1.6 25.5) (7.6 28.4) (0.1 1.0) (0.0 0.7)

M11 37 PMs 22.3 ±3.0 23.2 ±2.9 0.9 0.1 12.7 ±4.1 13.5 ±4.0 0.3 ±0.2 0.4 ±0.2

(16.7 32.6) (17.9 33.7) (0.7 1.2) (6.5 25.6) (7.6 26.2) (0.1 0.8) (0.1 0.7)

M12 37 PMs 20.4 ±3.3 24.0 ±3.4 4.0 1.2 11.9 ±4.4 15.4 ±3.9 0.4 ±0.2 0.2 ±0.2

(15.6 32.9) (18.7 36.4) (2.0 8.2) (3.1 26.0) (8.4 29.1) (0.1 0.9) (0.0 0.6)

Shown are the median, standard deviation, minimum and maximum (in brackets) of trec, the leukopenia time tleu (the number of days with WBC count�1 G/L) and

nadir for D123 and D135 schedules. The first two rows show values from two independent clinical studies that serve as a comparison. The second part of the table shows

prediction results. Predictions were calculated with PMs from our clinical data with underlying mathematical models M1–M12. Model M5 explained well the outcome

of schedule D135, but showed a significant mismatch of more than three days for schedule D123. The predictions using the extended model M10 were better for

schedule D123. See also Fig 4e and 4f for an illustrated comparison between M5 and M10. Model M9 and M12 were also promising, but we focused on M10 applying

Ockam’s razor.

https://doi.org/10.1371/journal.pone.0204540.t004
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Comparing the estimated parameter values with published values, the estimated baseline

value for the WBCs is within the normal human WBC range of 4.5−10 G/L but reduced by 2

G/L compared to published baseline values for the Friberg model being in the range of 7 to 7.8

G/L [12]. The mean maturation time of 128 h for M3 using the corrected formula [17] is rea-

sonable and fits into the range of previously published values [55]. The estimated γ values are

roughly two to three times higher compared to published values for the reason that we only

use one transition compartment. The γ values for M2, containing three transition compart-

ments, are in the same range then published values. The decrease of the slope parameter value

from one to two PD effects occurs as the effect of Ara-C is distributed on two different sites

of action. During the parameter estimation we observed for some CCs correlations (> 0.9)

between γ and ktr and between γ and slope. But these correlations had no influence on the

parameter identifiability. Further, it was shown that under certain assumptions, which we ful-

filled (kprol = ktr), the Friberg model is structurally globally identifiable [55]. In future studies

we propose to use global design measures from [56] to provide treatment schedules reducing

global parameter sensitivity and undesired parameter correlation.

We showed that an analysis based on a fixed chemotherapy schedule cannot discriminate

between different modelling hypotheses. The agglomerative nature of the mathematical mod-

els leads to a choice of model parameters that is not only personalised to the patient, but also

to the applied schedule. Therefore, we used different schedules for personalisation and predic-

tion to overcome this problem and to allow discrimination of the models. This approach

allowed us to distinguish between the modelling hypotheses implemented in models M5–M12

and enabled us to find the suitable model assumption considered in M9, M10, and M12. In

our opinion this procedure should be routinely applied, preferably using high density WBC

counts for different schedules in the same patients. As an alternative to such a tedious clinical

study we suggest to use average trec values as a discrimination criterion for competing models.

Comparing the trec values for D123 and D135 treatments from the PMs with our clinical

data and the AMLSG 07-04 trial in Table 4 and S2 Table implies, that model M10 (based on

Ockam’s razor in comparison to M9 and M12) is the best candidate among M1–M12 for

Fig 5. Analysing the influence of treatment timing on nadir values. (a) Simulation study in which 20 simulated nadirs were compared with

the true nadir of the last CC for the 14 patients who have more than one CC. The simulated nadirs were computed by using the patient’s PM

(second row of Table 3) and varying the start of the last CC daily with the maximal starting variation of 10 days earlier or later. (b) Exemplary

variation of the CC start for one patient. An earlier (later) start results in a larger (lower) nadir.

https://doi.org/10.1371/journal.pone.0204540.g005
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future work on the simulation and optimisation of intermediate to high-dose Ara-C treatment

schedules.

The 1 day shift in trec values between our clinical data and the AMLSG 07-04 trial can be

explained by the age difference between patients in our clinical data (median 62 and 57 years

for D123 and D135, respectively) and the subdata of the AMLSG 07-04 trial (median of all

patients in the trial 49 years) and a related statistical analysis: Jaramillo et al. [46] found in a

multivariable analysis a significantly longer WBC recovery for older patients (hazard ratio of

a 10-year age difference, 0.89; P = 0.001) [46] and a significantly shorter WBC recovery for

patients receiving D123 compared to the reference group D135 (hazard ratio, 1.94; P< 0.0001)

[46] which coincides well with our findings.

Regarding the PK model, no published compartment models for high-dose Ara-C are

available. Comparing our model with published low-dose Ara-C models, we showed that

the published models do not reach the measured maximum Ara-C concentrations from

high-dose schedules (see Fig 2) so that we rely on our derived model. As we logarithmised

the collected Ara-C concentrations, lower values became more important during parameter

estimation such that our fitted PK model slightly underpredicts the highest Ara-C concen-

trations (see Fig 2). Nevertheless, our model achieves higher values compared to the models

from [20] and [47] providing a more reasonable PK behaviour of Ara-C. We estimated a

smaller central volume leading to a reduced clearance activity derived from an almost equiv-

alently estimated elimination rate constant value (Table 2). The distribution rate constants

differ by a factor of 2 to 2.5 and the peripheral volume by a factor of almost 10. Future PK

studies for high-dose Ara-C can be used for model verification or updating our model

parameters. In a simulation study we analysed the influence of constructed PK variability on

the WBC recovery time for models M5 and M10. We showed that model M10 is more sensi-

tive to varied PK dynamics and reflects clinical findings more accurately, i.e. that the stan-

dard and dense treatment plans result in significantly different WBC recovery times. M5

was not able to match the clinical results. A critical part of the study is the constructed IIV.

In Krogh et al. [20] IIV was analysed for low-dose Ara-C schedules. We used the published

values as exemplary IIV values within our simulation study. Obviously, the results should be

treated with care as IIV is related to the underlying study, treatment, model and population

and thus cannot be applied to other studies in general. However, the IIV impacted only a

small part of our sensitivity analysis and we do not expect qualitative changes for updated

IIV values.

Summarising, we extended the gold-standard model for myelosuppression [12] to the most

important component in consolidation therapy [2, 25], Ara-C, and showed that one modelling

assumption was important for a faster WBC count recovery for D123 schedules. In models

M9, M10, and M12 we assumed that the Ara-C concentration has a direct impact on the prolif-

eration speed. As stated above, such a modelling assumption has an agglomerative nature and

the underlying physiological processes are still unknown.

We speculate that the increased number of cell deaths following chemotherapy might play a

role. Cell deaths induce phagocytosis and macrophage activation, which in turn might increase

G-CSF secretion and hence proliferation speed [57] resulting in a positive circulus vitiosus.
This might also be one explanation for the observation that G-CSF levels in neutropenia are

increased after chemotherapy compared to primary diseases [58]. Independent from the

underlying phyiological process, the dense treatment schedule D123 profits more than the

standard plan D135 from the induced dynamics with respect to WBC recovery times as dis-

cussed in S4 and S5 Figs.

Future G-CSF concentration measurements for AML patients during consolidation cycles

of D123 and D135 treatments and a comparison of our extended models with Quartino’s [30]
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integrated G-CSF-myelosuppression model or more sophisticated models from quantitative

systems pharmacology [54] may shed light on these speculations.
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and high-dose schedules explored in [3]. As M7-M9 are not able to reflect the lower toxic effects

through higher nadir values, the simulation study serves as an indicator that the secondary

effect of Ara-C may not be an Ara-C induced reduction of the transition rate.
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tion predicted t123rec and t135rec values), parameter and coefficient of variation (CV) estimates

with relative standard errors (RSE) from nonlinear mixed-effects modelling of model

from Stiehl et al. [8].
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S1 Fig. Goodness-of-fit plot for all but three (because of WBC counts greater 1) measured

and calculated trec values for M10 after model personalisation for each consolidation cycle.

The 39 measured trec values are slightly higher due to the coarser measurement grid.

(PDF)

S2 Fig. Cross-validation of predicted white blood cell (WBC) counts from personalised

models (PMs) M1-M12 and measured WBC counts for six patients treated with D135. All

but one cycle were used for personalisation and the last cycle for cross-validation. For patients

(a)-(e) the PMs can predict the WBC count decrease after Ara-C administration in the last

cycle where models M10 and M12 have a slower WBC recovery than M5. For patient (f) the

WBC recovery from the PMs starts to early compared to the measured WBC counts.

(PDF)

S3 Fig. Cross-validation of predicted white blood cell (WBC) counts from personalised

models (PMs) M1-M12 and measured WBC counts for five patients (a)-(e) treated with

d135 and one patient (f) treated with D12. The PMs provide good predictions for patient (a)

and (f) but show mismatches in recovery times and nadir values for patients (b)-(e).

(PDF)

S4 Fig. Comparing personalised mathematical models (PMs) M5 and M10 for D123 and

D135 schedules (exemplary patient I).

(PDF)

S5 Fig. Comparing personalised mathematical models (PMs) M5 and M10 for D123 and

D135 schedules (exemplary patient II).

(PDF)

S6 Fig. Comparing personalised mathematical models (PMs) M10 and M12 for D123 and

D135 schedules (exemplary patient I).

(PDF)

S7 Fig. Visual predictive checks (VPCs), derived by 1000 simulations, for leukocytes

[G/L] versus time [days] starting with the first measurement before dosing for model M3

(a) and M10 (with I1) (b). Blue circles are the measured WBC counts of 23 AML patients

described in section Clinical Data & Personalisation. One measurement was taken at time-

point 88.98 [days] with the value 7.18 [G/L] which is not shown in the VPCs. Red lines show

the median (solid) and 5th and 95th percentiles (dashed) of measurements. The shaded areas

represent the 95% confidence intervals around the 5th (blue), 50th (red) and 95th (blue) sim-

ulated percentiles of the model predictions. Regarding the VPCs, model M3 and M10 have

an almost equivalent prediction accuracy. The 50% percentiles of measurements and model

predictions perfectly overlap, thus supporting our individually based results from Table 3.

The same applies to the start of the 5% and 95% percentiles until the nadir. After the nadir

the 5% and 95% percentiles of the model predictions recover slightly faster/slower compared

to the measurements. At day 30 the percentiles of measurements and model predictions

coincide again.

(PDF)
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S8 Fig. Simulation study analysing the sensitivity of model M5 and M10 on inter-individ-

ual PK variability (IIV) when schedules D123 and D135 are applied. (a) As Fig 2, but with

500 simulations of our fitted two-compartment PK model with IIV on the clearance and the

central volume. (b) Recovery times (trec) from 500 simulations each of models M3 and M10

(with I1) applying schedules D123 and D135 with inter-individual variability given as coeffi-

cient of variation (CV) on PK parameters clearance (45%) and central volume (70%). Red lines

within the boxes are the medians, the upper and lower box limits are the first (Q1) and third

quartiles (Q3) of the data. The lower whiskers will extend to the first trec values greater than

the first quartiles minus the 1.5-times the interquartile ranges (IQR) (Q1 − 1.5 � IQR). Equiva-

lently, the upper whiskers will extend to last trec values less than Q3 + 1.5 � IQR. Beyond the

whiskers, data are considered as outliers and are plotted as individual points (+). The simula-

tion study revealed that model M10 was more sensitive to different high-dose Ara-C treatment

schedules compared to model M3 despite the high inter-individual PK variability.

(PDF)
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