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Abstract: Alkaline phosphatase (ALP) is abundant in raw milk. Because of its high heat resistance,
ALP negative is used as an indicator of successful sterilization. However, pasteurized milk loses
its immune protection against allergy. Clinically, ALP is also used as an indicator of organ diseases.
When the activity of ALP in blood increases, it is considered that diseases occur in viscera and organs.
Oral administration or injecting ALP will not cause harm to the body and has a variety of probiotic
effects. For infants with low immunity, ALP intake is a good prebiotic for protecting the infant’s
intestine from potential pathogenic bacteria. In addition, ALP has a variety of probiotic effects for any
age group, including prevention and treatment intestinal diseases, allergies, hepatitis, acute kidney
injury (AKI), diabetes, and even the prevention of aging. The prebiotic effects of alkaline phosphatase
on the health of infants and consumers and the content of ALP in different mammalian raw milk
are summarized. The review calls on consumers and manufacturers to pay more attention to ALP,
especially for infants with incomplete immune development. ALP supplementation is conducive to
the healthy growth of infants.

Keywords: ALP; infant intestinal health; raw milk; inflammation; allergy

1. Introduction

Milk and dairy products may contain a variety of microorganisms, which may be an
important source of foodborne diseases [1,2]. To eliminate pathogenic microorganisms
in milk, processing plants choose to use the heating method for sterilization. Negative
ALP activity is used to confirm the successful pasteurization of skimmed or whole milk [3].
Compared with most pathogenic bacteria, ALP has slightly higher heat resistance (71.6 ◦C
for 15 s). Therefore, ALP activity is used to measure the pasteurization degree of bever-
ages, especially milk and dairy products [3–5]. Pasteurization is the standard method for
eliminating pathogens. Inadequate or defective pasteurization does not kill all foodborne
pathogens [5]. The ALP activity in raw milk varies with the source of raw milk. China,
the United States, and European countries require that the ALP activity in pasteurized
beverages be less than 350 mU/L [3,6].

However, negative ALP activity results in a loss of inhibition activity against the
toxicity of Gram-negative bacteria LPS in milk [7]. ALP can remove the phosphate bond on
LPS and then remove the pathogenicity of LPS. After sterilization, LPS existing on bacterial
cell membranes in raw milk will be released into milk. However, ALP-negative milk will
no longer have the dephosphorylation of LPS. LPS with inflammatory activity in dairy
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products may pose a threat to consumers [7]. At the same time, some studies pointed out
that pasteurized milk lost its protective effect on food allergy and that its protective ability
recovered after adding ALP [8].

Alkaline phosphatase (ALP) is an enzyme that catalyzes the hydrolysis of phosphate
under alkaline conditions. ALP widely exists in various mammalian tissues and plays an
important role in biological processes. However, human tissues can also synthesize ALP,
including tissue nonspecific alkaline phosphatase (TNAP), placental alkaline phosphatase
(PLAP), germ cell alkaline phosphatase (GCALP), and intestinal alkaline phosphatase
(IAP) [9]. However, for infants with incomplete immune development, ALP gene expression
is still low, and exogenous ALP supplementation is very necessary [10]. At the same time,
ALP protects the health and stability of tissues and bodies at all life stages. When diseases
occur, ALP is used as an important biomarker for the diagnosis of many diseases [11–13].

In this paper, the prebiotic effects of ALP on the infant intestinal tract and allergy
prevention are summarized; ALP, whether oral or injection, will not pose a threat to the
body’s health and can treat or prevent the body’s diseases. At the same time, the content
of ALP in different mammalian raw milk that was determined in different studies is
statistically summarized. Through the introduction of this paper, we hope to appeal to
food processors and consumers to pay more attention to ALP and to provide theoretical
support for further improving the level of nutrition and health.

2. Important Health Indicators

According to clinical diagnosis, abnormal ALP activity in blood is related to various
diseases—for example, bone-specific ALP and bone disease [11], breast cancer diagno-
sis [12], and diabetes [13]. In the case of diagnosis, ALP measured in serum is used as a
diagnostic tool for liver disease [14] and testicular cancer [15,16]. In patients with chronic
liver disease, blood ALP increased in the order of chronic hepatitis (CH), liver cirrhosis
(LC), and hepatocellular carcinoma (HCC) with pathological progress [17]. At the same
time, ALP in the patient’s blood will be detected before and after a medical process. The
change in ALP in blood can affect the therapeutic effect and survival rate of patients, such as
metastatic prostate cancer [18], metastatic breast cancer [19], clear cell chondrosarcoma [20],
and metastatic nasopharyngeal carcinoma [21].

3. Factors Affecting ALP Activity

IAP has an important protective effect on the infant intestine. IAP is a homodimer,
and each subunit consists of two Zn2+ and one Mg2+ ion [22]. The activity of IAP was
the highest at pH 9.7 [23]. IAP is generally secreted in the duodenum, followed by less
expression in the jejunum, ileum, and colon [24–26]. IAP is largely absent in the stomach in
an acidic environment [26,27]. IAP mainly exists in lumen vesicles secreted by intestinal
cells on the brush edge of microvilli. At the same time, a small amount of IAP will also
be bidirectionally released into the blood and lumen and then spread throughout the
intestine [28]. The investigation found that the level of IAP activity in human intestinal
tract varies with blood type. The level of IAP in human intestinal tract of type O and type B
is the highest, while the activity in human intestinal tract of type A blood is the lowest [29].
In the gut, IAP is a mucosal defense factor that restricts bacteria from crossing the mucosal
barrier into mesenteric lymph nodes [30,31]. In addition to the local activity of IAP in
intestinal mucosa, about 1–2% of IAP is released into the blood or gastrointestinal cavity to
treat and prevent systemic infection and sepsis [32].

IAP activity is related to dietary nutrition and dietary frequency. Food intake can
regulate the activity of IAP. Intake of omega-3 fatty acids can reduce the level of LPS and
improve intestinal permeability by increasing the activity of intestinal IAP in transgenic
mice [33]. In addition, a protein diet may reduce the activity of IAP. When feeding calves
before rumination with a soybean diet, the activities of intestinal enzymes such as IAP
in the intestine are reduced [34]. Another study found that the intestinal IAP activity
of pigs increased significantly in the short term after using wheat or barley instead of a
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milk-based high protein diet [35]. After the protein structure of milk is destroyed by fer-
mentation, intake of yogurt can increase the activity of IAP [36]. In addition, glucomannan,
oligosaccharide, and vitamin D supplementation are associated with increased intestinal
IAP activity [37–39]. Some phytochemical components, such as curcumin, black pepper,
red pepper, ginger, piperine, and capsaicin, have also been found to be associated with
increased IAP activity [40]. When mice were fasted for two days, IAP expression in the
intestine decreased significantly, resulting in a decrease in the ability of intestinal LPS
dephosphorylation [31]. Because starvation leads to the downregulation of IAP, the host’s
sensitivity to pathogens increases. Therefore, for the treatment and prognosis stage of
patients, intake of diet that can increase IAP is of positive significance for the recovery of
patients’ health [31] because IAP is associated with limiting the speed of fatty acid trans-
membrane transport to intestinal cells [41,42]. HFD feeding increases IAP stress-induced
secretion in the intestine, thereby maintaining host weight stability [43]. On the other hand,
some studies have found that HFD feeding can reduce IAP activity and increase TLR4
activity in the intestine of obese rats [44]. Similarly, when present in foodω- 3 PUFA will
also lead to a decrease in IAP expression and activity [45]. IAP-KO mice fed HFD were
more likely to gain weight [41]. Therefore, for different individuals, the effect of HFD
feeding on intestinal IAP is not stable, and further research is needed. In addition, protein
intake may also be related to the regulation of IAP. The activity of ALP in the intestine
of rats fed a protein-free diet decreased by 36–38% [46]. In conclusion, the intake of food
nutrition is related to the activity of ALP. Reasonable dietary intake is helpful for regulating
the activity of intestinal ALP.

4. Infant Intestinal Health

In Table 1, the research papers on the prevention and treatment of diseases by ALP are
summarized. Relevant studies were identified by searching Web Science, Google Scholar,
and PubMed. If a study met the following criteria, it was included in the table: 1. Study
and evaluate the effect of oral or injection ALP treatment; 2. Research papers written in
English until December 2021. All studies that met the requirements of direct ALP treatment
of laboratory animals are listed in the table. It turns out that high IAP activity in the
intestine of full-term newborns, coupled with the high ALP activity in breast milk in the
first few days after birth, provides sufficient detoxification capacity for LPS of initially
colonized bacteria [10]. After the onset of IBD in infants, TLR4 mRNA expression and
protein levels in inflammatory colonic mucosa in children increased [47]. The increased
expression of TLR4 may be related to the content of IAP in intestinal mucosa. IAP activity
below normal level may lead to IAP/TLR4 imbalance, resulting in increased sensitivity of
mucosa to LPS [25]. After treatment, the recovery of intestinal mucosa is very important
for the prognosis of the disease. Therapeutic treatment to restore intestinal flora balance
may have a significant impact on mucosal healing of IBD [48]. In an animal model of colitis
induced by sodium dextran sulfate (DSS), exogenous administration of IAP improved
the symptoms of colitis [49]. Compared with wild-type mice, IAP-KO mice had more
severe colitis induced by DSS [32]. In the case of severe intestinal epithelial injury, oral
IAP may have beneficial effects [50]. The results obtained in the pediatric population also
demonstrate that oral IAP may be beneficial for children with IBD [25].

Early in life, the initial colonization of intestinal microorganisms will affect the devel-
opment of intestinal host defense [51,52], and the appropriate development of intestinal
tissue may have a far-reaching impact on immune health in infancy and even throughout
life [53,54]. Because the intestinal immune tissue is immature at birth and develops with
the initially colonized microorganisms, it has been suggested that the increase in allergy
and autoimmune diseases may be caused by the interference of microbial colonization
and development of intestinal host defense system [55]. It is worth noting that the host
defense capacity of the intestine of preterm infants is particularly immature and that the
initial colonization of intestinal microorganisms is not the same as that of normal-born
infants [56]. Compared with mature human intestinal cells, infant intestinal cells are more
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likely to produce excessive inflammatory response when stimulated and even respond to
some intestinal symbiotic bacteria with an inflammatory effect [57,58]. The imbalance in
intestinal microbial ecology in the neonatal period of preterm infants may lead to excessive
intestinal inflammation, resulting in NEC. As the sole source of nutrition for infants, breast
milk helps healthy bacterial colonization in the infant’s intestines [59]. Studies have pointed
out that breast milk extruded by preterm mothers can protect the infant’s intestine from
NEC [60,61]. Although breast milk contains many immune nutrients, such as IgA, oligosac-
charides, lactoferrin, ALP, etc., it may help to prevent intestinal inflammation and NEC. At
the same time, breast milk may also play an active role in stimulating health-promoting
bacteria, thus providing protection against NEC. Studies have pointed out that giving
probiotics to preterm infants can also prevent NEC. The combination of probiotics (e.g.,
Lactobacillus acidophilus and Bifidobacterium bifidum) and human milk has a protec-
tive effect, but the combination of probiotics and infant formula has lost its protective
effect [62,63].

Compared with infant formula, breast milk has several unique factors to actively
protect the intestine of newborns. First, oligosaccharides in breast milk provide an energy
source for the intestinal microbiota, help the growth of infant intestinal probiotics, and
are beneficial to the infant intestine [64,65]. Second, breast milk itself contains a variety of
bacteria that actively colonize the intestine, providing protection for the infant’s primitive
microbiota [66]. Third, breast milk contains immunobioactive factors, such as secretory
IgA, which can change the colonization of infants’ intestines and protect infants from
pathogens [67,68]. Fourth, gastrointestinal administration of exogenous IAP can improve
intestinal inflammation and promote intestinal tissue regeneration, while intestinal and
systemic IAP administration can reduce systemic inflammation [69]. In addition, oral IAP
supplements may regulate intestinal metabolic homeostasis by stimulating intestinal IgA
secretion [12]. In conclusion, breast milk not only can change the intestinal environment of
infants to prevent pathogenic bacteria but also can promote the colonization of symbiotic
bacteria, so as to promote the short-term and long-term immune health of the host.

IAP can maintain intestinal immune balance and improve host tolerance to symbi-
otic microbiota by reducing lumen ATP concentration and dephosphorylating bacterial
LPS [70]. At the same time, IAP knockout mice showed increased fat absorption and
obesity, suggesting that intestinal lipid transport is related to the regulation of IAP [36].
Both endogenous and oral IAP supplementation can inhibit the absorption of LPS in dietary
fat, and oral IAP supplementation can prevent and reverse metabolic syndrome. In addi-
tion, IAP supplementation improved the blood lipid status of mice fed standard low-fat
food [36,71]. In animal models of intestinal injury, oral IAP reduces intestinal epithelial
injury and inflammation [50]. The dynamic transformation of the form of ALP isozyme is
related to the maturation of fetal intestine [72], suggesting that ALP activity may change
during human fetal development. Supplementation of ALP in the intestine of newborn
rat pups has a protective effect on experimentally induced NEC [73]. ALP has a protective
effect on the intestine of premature young rats against intestinal damage and inflammation
caused by microbial LPS [74].

Intestinal alkaline phosphatase (IAP) can maintain intestinal health through a variety
of mechanisms, including detoxification of lipopolysaccharide (LPS), flagellin, CpG DNA
and nucleotides; upregulation of the expression level of tight junction protein, thereby
increasing intestinal barrier function; and regulation of intestinal microbiome homeosta-
sis [75–77]. During lactation, infant intestinal ALP gene expression and enzyme activity
remain low [78]. Preterm birth and formula feeding are considered to be associated with
the inhibition in IAP expression and activity, and the lack of ALP may increase the risk
of NEC [79]. For infants, breast milk is the only exogenous source of ALP [10], and pas-
teurization destroys 99% of ALP in breast milk [80]. ALP in breast milk is considered to be
an anti-inflammatory factor in the neonatal intestine and a key component in inhibiting
NEC [81,82]. The lack of IAP activity will lead to neonatal intestinal ecological imbalance
and bacterial translocation, resulting in a variety of diseases [83].
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In previous studies, it was found that taking LPS can lead to weight gain and acute
inflammation and eventually insulin resistance [84]. Similar effects can be seen in animal
models fed HFD or LPS. Similarly, LPS can also lead to a pro-inflammatory response in
the fetal brain after infecting the mother, thereby increasing anxiety and reducing social
activities [85]. Therefore, researchers believe that the important roles of HFD and LPS
in the pathogenesis of ASD seem to be consistent between humans and animals. ALP is
considered to be a drug that can protect the balance in the intestinal environment and
reduce inflammation [86]. ALP has anti-inflammatory effects, prevents intestinal leakage,
and promotes a healthy microbiota [70]. At the same time, recent studies have proved that
oral supplementation of IAP to pregnant mothers is of positive significance to the health of
infants. A mouse model test found that maternal IAP treatment can alleviate some autism
spectrum disorder (ASD)-like symptoms of offspring mice [87]. It is worth noting that the
content of ALP in breast milk decreased with lactation time [88]. Therefore, the intake of
ALP supplementation for infants and mothers is of great significance for maintaining infant
health. Unfortunately, ALP does not exist in any infant formula.

5. Inhibition of Allergy

Children growing up on farms have a lower risk of asthma and allergies than children
living in the same rural area but not on farms [89,90]. This protective “farm effect” is
recognized in many people until adulthood [91]. The farm exposure associated with this
allergic protective effect appears to be eating unprocessed raw milk [92,93]. In particular,
the consumption of raw milk and the protective effect of raw milk have nothing to do with
farm conditions, so it can protect the ordinary non-agricultural population [94,95]. Many
studies have shown that eating untreated raw milk can prevent the risk of asthma and
allergic diseases [92–96]. These epidemiological findings recently confirmed the causal
evidence that biological milk can prevent allergic asthma caused by household dust mites
and OVA-induced food allergy in mouse models [97,98].

Pasteurization makes milk lose the ability to protect consumers from allergies. The
histone acetylation degree of Th1-, Th2-, and regulatory T cell-related genes in splenocyte
CD4+ T cells of rats treated with raw milk was higher than that of mice treated with
pasteurized milk. Compared with processed milk products, the histone acetylation degree
of Th2 gene in rats treated with raw milk was lower. In the study of mice allergic to food, raw
milk reduced allergic symptoms to food allergens other than milk. The activation of T cell-
related genes is considered to be the cause of the observed tolerance induction, indicating
that epigenetic modification helps raw milk protect the body from allergy [98]. On the
other hand, some studies have shown that pasteurized milk lost its allergic protection, but
pasteurized milk added with ALP restored its allergic protection [8]. Skimmed raw milk
inhibited food allergy symptoms similar to raw milk and reduced acute skin allergy and
lowered levels of OVA-specific Ig-E- and Th-2-related cytokines. This indicates that the fat
component is not an ingredient in raw milk that inhibits food allergy [8].

ALP can regulate the structure of intestinal microbiota and protect consumers from
allergy induction. Raw milk treatment increased the relative abundance of butyrate pro-
ducing bacteria in mouse intestine, in addition to increasing Lachnospiraceae ucg-001,
Lachnospiraceae ucg-008, and Ruminiclostridium 5 (Clostridium clusters xiva and IV),
and decreased the relative abundance of bacterial Proteus that can promote inflammation.
Clostridium clusters xiva and IV can decompose nondigestible oligosaccharides to produce
acetic acid, propionic acid, and butyric acid. These organisms are usually close to host
epithelial cells, which have a great impact on the host immune balance [99,100]. In a study
of mice intestinal microorganisms, Clostridium clusters xiva and IV can help induce the
accumulation and differentiation of Foxp3 + Treg cells in mouse colon. Clostridium can
induce colon epithelial cells to release active TGF-β and other Treg inducing factors, which
can induce Treg differentiation by regulating CD103+ DC. In addition, Clostridium has also
been shown to induce IL-10 expressing Treg cells in the colon. Increasing the colonization
of intestinal Clostridium can increase the body’s resistance to allergy [101]. These microbes
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disappeared in the intestines of mice fed pasteurized milk. However, after the addition of
ALP to pasteurized milk, the changes in the intestinal probiotic microbiota observed in the
raw milk treatment group reappeared and reduced allergic reactions [102].

6. Diabetes and Metabolic Syndrome Prevention

The supplement of alkaline phosphatase not only has a prebiotic effect on infants but
also has a positive effect on the elderly and even adults with weak immunity. A study
of endocrine diseases found that the supplement of ALP may be helpful in preventing
type 2 diabetes mellitus (T2DM). T2DM is an important global metabolic disease. Because
type 2 diabetes patients have high blood sugar concentration and symptoms that are easily
complicated, T2DM has a serious impact on medical expenses, incidence rate, and mortality
rate. The hyperglycemia concentration of T2DM is similar to immersing organs in high
glucose medium. Long-term illness can lead to long-term injury, dysfunction, and even
failure of organs such as eyes, kidneys, nerves, heart, and blood vessels [103–105]. From the
perspective of etiology, many factors are considered to be related to the occurrence of T2DM,
such as autoimmune level, metabolic syndrome, dietary conditions, weight, external infec-
tion, genetic information, drug use, stress, pregnancy, etc. [105,106]. Recently, low-grade
systemic inflammation caused by continuously elevated levels of endotoxin (LPS) in the
blood (metabolic endotoxemia) has been considered to be a cause of T2DM [107]. Studies
have shown that high levels of IAP have a protective effect on T2DM patients, whether
obese or not. Obese patients with a high level of IAP (about 65 U/g feces) generally do not
develop T2DM. When the activity of ALP in feces decreases by 25 U/g, the risk of diabetes
increases by 35% [108]. The IAP activity of fecal excretion reflects the level of IAP produc-
tion, digestion, and degradation in the intestine. IAP activity may be regulated by different
factors, especially dietary conditions [69]. A survey found that more than 65% of healthy
people suffer from “early metabolic syndrome” [71,109]. Oral IAP supplementation is a
treatment for early prevention and treatment of early diabetes and/or other dominant or
early metabolic diseases. Researchers believe that any treatment target should at least main-
tain or restore a healthy level of IAP in feces (about 65.0 U/g feces) [108]. Other treatments
may involve upregulating IAP to improve immune levels, such as short chain fatty acids
(such as sodium butyrate and sodium propionate), thyroid hormone, curcuminω- 3 fatty
acids, etc. [33,110,111]. In addition, eating corn oil can increase IAP secretion in rats [112].
This may be the physiological response of the body to prevent high-fat diet-related endo-
toxemia by secreting IAP [71]. Therefore, further study on the mechanism of IAP deficiency
is of great significance for understanding the pathophysiology of T2DM. Imbalance in
intestinal flora may be related to the incidence of metabolic syndrome and diabetes mel-
litus [113]. IAP plays two very important physiological roles in the intestinal bacterial
environment: firstly, IAP can help maintain the normal structure of intestinal flora; secondly,
IAP has the ability to detoxify bacterial toxins. IAP knockout mice had fewer bacteria than
wild-type littermates [77]. IAP can reduce the concentration of nucleotide triphosphate,
protect intestinal bacteria, and promote intestinal growth [114]. IAP can detoxify LPS toxins
and destroy toxin targets by dephosphorylation (phosphohydrolysis) [115]. In addition,
IAP can limit fat absorption, thereby maintaining intestinal mucosal integrity [24,116].
Oral IAP supplementation reduces intestinal sensitivity to antibiotic-induced Salmonella
typhimurium and Clostridium difficile and maintains intestinal healthy homeostasis [117].

IAP deficient mice were found (akp3 gene knockout, akp3 −/−) to be diagnosed as
metabolic syndrome, followed by presenting with T2DM symptoms. At the same time,
because IAP can detoxify LPS and reduce metabolic endotoxemia, researchers used IAP
to supplement mice orally. The results showed that oral supplement of IAP not only can
prevent but also can treat metabolic syndrome and high-fat diet (HFD)-induced T2DM in
wild-type mice [71]. The etiology of metabolic syndrome caused by HFD is considered to
be related to metabolic endotoxemia caused by endotoxin entering the blood [62]. Other
studies have found that HFD may destroy the balance of intestinal flora and lead to barrier
dysfunction, after which endotoxin enters the blood through the intestinal epithelium and
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translocates to systemic circulation [44]. When endotoxemia occurs, IAP can be used as an
effective oral supplement for preventing or treating endotoxemia, thereby protecting the
host from the effects of metabolic syndrome [75]. In addition, IAP can also prevent diabetes
and metabolic syndrome induced by antibiotic use in mice [118]. The protective effect of
intestinal ALP has also been confirmed in transgenic mice. The overexpression of IAP in
the gastrointestinal tract can reduce the HFD-induced diabetes phenotype by improving
the intestinal barrier [119].

7. Other Diseases

ALP supplementation has a probiotic effect on multiple organs of the body, including
the treatment of intestinal-, liver-, and kidney-related diseases [120,121]. ALP supplemen-
tation can detoxify a variety of proinflammatory mediators in the intestinal cavity. Among
them, ALP has the most significant detoxification function on LPS (also known as endo-
toxin). In recent years, LPS has been proved to be one of the key mediators connecting the
development of intestinal and liver diseases and many other systemic diseases. LPS consists
of core polysaccharide, O-antigen, and lipid A. ALP can remove the phosphate group on
LPS lipid A by dephosphorylation, so as to relieve the toxicity of LPS [122–124]. In a study
of liver inflammation, it was found that LPS induced chronic inflammation by stimulating
the expression of TLR4 in tissue cells [125,126]. When the IAP gene was knocked out, the
tolerance of mouse intestinal environment to LPS decreased significantly and was more
vulnerable to intestinal validation [49,71]. When intestinal injury occurs, LPS is more likely
to enter the blood, causing liver injury and even serious diseases. When disease occurs,
IAP supplementation—whether oral or injection—has been widely used to prevent and
treat inflammatory diseases. For example, oral administration of recombinant ALP can
prevent alcohol-induced hepatic steatosis and chronic liver failure [127,128]. Although IAP
may be partially degraded in the stomach, oral administration after mixing IAP in drinking
water is a very simple route of administration. A large number of experiments have proved
that oral ALP supplementation can effectively increase the concentration of IAP in the
intestinal cavity [77,86]. At the same time, after IAP supplementation in drinking water, the
concentration of serum LPS in intestinal vena cava and portal vein decreased significantly,
which will greatly reduce the harm of LPS translocation to the liver, so as to further protect
the liver and reduce the development of malignant inflammatory circulation and liver
fibrosis [129]. In human clinical studies, duodenal and enteral IAP was administered to
patients with severe ulcerative colitis for 7 days, and no human safety problems, adverse
events, or side effects of ALP were reported [130].

With regard to intestinal flora, it was found that the number of intestinal bacteria in
IAP-ko mice decreased overall and that oral supplementation of IAP in WT mice could
quickly restore the normal intestinal flora of mice affected by antibiotics [77]. IAP prevents
HFD-induced metabolic endotoxemia by regulating intestinal flora [71]. In a zebrafish
model, zebrafish lacking IAP are highly sensitive to LPS toxicity. IAP plays a crucial
role in promoting mucosal tolerance to intestinal resident bacteria [122]. Knockout of the
intestinal ALP gene (AKP3) in mice leads to metabolic abnormalities, resulting in visceral
fat accumulation and hepatic steatosis [131]. On the other hand, an investigation found
that the endogenous IAP level of rats decreased with age and that metabolic syndrome
was common in older animals [132,133]. This suggests that “IAP deficiency” may be an
inducement leading to metabolic syndrome and that the oral supplementary IAP dose can
be easily adjusted to achieve the purpose of preventing or treating metabolic syndrome [77].

Studies have demonstrated that the use of ALP in the treatment of sepsis-induced AKI is
promising [134–136]. In the treatment of acute renal injury, high-dose ALP (75 U/kg + 25 U/kg/h
intravenous injection) can significantly increase serum ALP activity, making serum ALP
about 5 times higher than baseline [137]. In a sheep model of sepsis, ALP can reduce
inflammation and improve lung function without adverse reactions [16]. Intravenous ALP
is preferentially delivered to blood and to liver, kidney, and other abdominal organs at
a lower dose. Therefore, in the treatment of renal injury, a high concentration of serum
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ALP level is required to increase the grade of renal tissue [138]. In addition, rodent model
studies of isolated renal ischemia-reperfusion injury have shown that ALP treatment can
reduce renal tubular injury [139].

For women at high risk of pregnancy complications due to LPS infection, the use of
supplementary AP isozymes may be an attractive treatment option [140]. In a mouse model
study, IAP inhibited LPS to play an inflammatory role by upregulating the expression of
autophagy-related genes (ATG5, ATG16, IRGM1, TLR4) in the mouse small intestine. Oral
ALP can prevent the immune stimulation of LPS in blood to the liver. ALP can remove
the phosphate group on LPS and eliminate the toxicity of LPS. At the same time, ALP can
reduce TLR4, TNF-a, matured IL-1β, and NF-κB expression by upregulating the level of
mir146a in mouse liver tissue, which in turn reduces the inflammatory response of the
liver [141]. It was found that endogenous IAP decreased during liver fibrosis, resulting in
intestinal barrier dysfunction and fibrosis deterioration. Oral IAP can protect the intestinal
barrier and further prevent the development of liver fibrosis through a TLR4-mediated
mechanism [131]. Although the mechanism is unclear, oral and intravenous ALP play a
renal protective role in various sepsis animal models [16,129,142,143].

8. Prevent Aging

Recent studies have pointed out that many functions of IAP are related to aging and
inflammation. IAP may protect intestinal barrier function by upregulating intestinal tight
junction protein [75,76,116]. IAP can also regulate the growth of intestinal symbiotic bacte-
ria and maintain the healthy homeostasis of intestinal microbiota [77,114]. The supplement
of ALP not only has preventive and therapeutic effects on diseases but also is related to anti-
aging diseases. In a mouse model, it was found that the content of ALP in mouse intestine
decreased with age [78]. With an increase in age, intestinal permeability increases, accom-
panied by an increase in enterogenous and systemic inflammation. All these phenotypes
were significantly more pronounced in IAP-deficient animals. Oral IAP supplementation
can significantly reduce age-related intestinal permeability and intestinal-derived systemic
inflammation, reduce weakness, and prevent aging [144]. In addition, IAP supplemen-
tation is associated with maintaining the homeostasis of the intestinal microbiota during
aging [145], thereby reducing age-related intestinal permeability and intestinal-derived
systemic inflammation, reducing weakness and preventing aging [86].

9. ALP in Raw Milk

Table 2 summarizes the content of ALP in raw milk of different animals. It can be seen
from the results that among the non-human milk types, the content of alkaline phosphatase
in raw sheep’s milk is generally high [146–149]. In a study of human milk, the average
ALP activity of breast milk sampled in the first week after birth (6400 U/L) was 250%
higher than that of breast milk sampled in the second week (2500 U/L). The highest ALP
activity in breast milk in the first week was more than 20,000 U/L [10]. In addition, there
are great differences in ALP activity among the same animals. In a study of dairy cows,
it was found that the difference in ALP activity in the milk of individual dairy cows was
as high as 40 times. At the same time, the onset of mastitis may cause a large increase in
ALP activity in milk [149–155]. In a study of goat milk and sheep milk, it was pointed out
that the activity of ALP in goat milk was affected by season and lactation stage. Studies
have shown that ALP activity is higher in sheep’s milk produced in summer or in late
lactation [156–158]. ALP activity was highest in human colostrum and then decreased with
the increase in lactation time [159]. Some studies have found that ALP activity remains in
heat-processed cheese [160,161].
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Table 1. Preventive and therapeutic effects of alkaline phosphatase (ALP) on diseases.

Animal Treatment
Method Treatment Dosage Treatment

Frequency Duration Disease Description Reference

Rats Oral Base formula Feed 4 days NEC Protect intestine [162]

Rats Oral 0.4, 4,or 40 U/kg Feed 3 days NEC Preserving the intestinal
epithelial barrier function [163]

Rats Oral 0.4, 4, or 40 U/kg Feed 1 day NEC

Decreased nitrosative stress;
decreased intestinal TNF-α

mRNA expression; decreased
LSP translocation into

the serum

[164]

Rats Oral 0.4, 4, or 40 U/kg Feed 1 day NEC
Reduces systemic
proinflammatory

cytokine expression
[165]

Rats Oral 700 U/kg Gastroesophageal
catheter 6 days IBD Protection against

bacterial translocation [30]

Rats Oral 1035 U Drinking water 8 days IBD Reduced mRNA levels for
TNF-α, IL-1β, IL-6, and iNOS [26]

Mice Oral 200 U/kg Gavage 4 h Liver injury Reducing LPS toxicity and
preventing liver injury [141]

Mice Oral 6 U/ml Gavage 8 days Food allergic

Reduction in CD103+CD11b+
dendritic cells and

TGF-β-producing regulatory T
cells in the mesenteric

lymph nodes

[8]

Mice Oral 6 U/ml Gavage 8 days Food allergic Regulation of intestinal
microbial community structure [102]

Mice Oral 100 or 300 U Gavage 2 weeks Chronic colitis

Inhibit the activation of
intestinal epithelial cells and
peritoneal macrophages and

attenuate chronic murine colitis

[166]

Mice Oral 100 U/mL Drinking water 21 days Metabolic
syndrome

Alterations in the composition
of the gut microbiota [118]

Mice Oral 150 or 300 U/mL Drinking water 48 h Gut barrier
dysfunction

Decreased expression of
intestinal junctional proteins

and impaired barrier function
[116]

Mice Oral 200 U/mL Drinking water 5 days Bacterial
infections

Protected mice from
antibiotic-associated
bacterial infections

[117]

Mice Oral 100 U/mL Drinking water 11 weeks Metabolic
syndrome

Inhibits absorption of endotoxin
with dietary fat; prevents or
reverses metabolic syndrome

[71]

Mice Oral 300 U/mL Drinking water 7 days Inflammatory
bowel diseases

Tissue myeloperoxidase activity
and proinflammatory cytokines

were significantly decreased
[49]

Mice Oral 200 U/mL Drinking water 4 days Liver fibrosis

Protects the gut barrier and
development of liver fibrosis

via a
TLR4-mediated mechanism

[129]

Mice Oral 100 U/mL Drinking water Lifetime Aging

Targeting crucial intestinal
alterations, including gut

barrier dysfunction,
microbiome dysbiosis,

and endotoxemia

[86]

Mice Oral 200 U/mL Liquid diet 10 days Hepatosteatosis

Ameliorated the activation of
hepatic stellate cells and

prevented their lipogenic effect
on hepatocytes

[129]

Human Oral 30,000 U Infusion pump 7 days Ulcerative
colitis

Decrease the C-reactive protein
and stool calprotectin levels [130]

Rats Injection 1000 U/kg Intraperitoneal 4 days Acute liver
failure

Reduced LPS activity and
hepatic TLR4 expression [128]
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Table 1. Cont.

Animal Treatment
Method Treatment Dosage Treatment

Frequency Duration Disease Description Reference

Rats Injection 1000 U/kg Intraperitoneal 24 h Acute kidney
injury

Reduce renal inflammation;
dephosphorylation of ATP

and LPS
[142]

Rats Injection 500 U/kg Intraperitoneal 5 min Partial liver
resection

Attenuate both hepatic and
pulmonary injury [167]

Mice Injection 100 U/mL Intestinal loop 2 h Intestinal flora
disorder

Inhibiting the concentration of
luminal nucleotide

triphosphates
[114]

Mice Injection 15 U/mL Intravenous 1 day Sepsis Normalize body temperature [168]

Mice Injection 150 U Intravenous 5 min Pregnancy
complications

Protects early
pregnancy defects [140]

Mice Injection 150 U/kg Intravenous 72 h Secondary
peritonitis

Attenuates the inflammatory
response both locally and
systemically and reduces

associated liver and
lung damage

[169]

Human Injection 5.6 U/kg/h Intravenous 36 h Cardiac
surgery

Endogenous alkaline
phosphatase release [170]

Human Injection 67.5 U/kg +
132.5 U/kg/24 h Intravenous 48 h Acute kidney

injury

Reductions in the systemic
markers C-reactive protein, IL-6,
and LPS-binding protein and in
the urinary excretion of kidney

injury molecule-1 and IL-18

[135]

Piglet Injection 1, 5, or 25 U/kg/h Intravenous 4 h Acute kidney
injury

Increased serum or renal tissue
AP activity [137]

Piglet Injection 1, 5, or 25 U/kg/h Intravenous 4 h Cardiac
surgery

Increased kidney and liver
tissue alkaline

phosphatase activity
[171]

Table 2. Content of alkaline phosphatase in raw milk.

Source Content (U/L) Reference

Human 74.10–20,000.00 [10,159]
Cow 5.29–1155.00 [146–149,155,172–176]

Buffalo 15.05–117.21 [152,154]
Goat 2.28–1786.00 [147–150,156,157,172,173,175]

Sheep 722.00–2814.00 [147–150,156,175]
Equine 3.12–20.81 [174]
Donkey 35.04–37.06 [177]

Camelids 12.70–94.14 [153,175,178,179]

10. Conclusions

This paper summarizes the immunoprotective effect of ALP on a host, especially
infants. Whether administered orally or by injection, ALP will have preventive or ther-
apeutic effects on many host diseases, including enteritis, diabetes, liver diseases, and
kidney diseases. At the same time, the activity of ALP in raw milk of different animals was
summarized. At present, many studies have verified the prebiotic and medicinal effects
of ALP. ALP can be synthesized by animals themselves, and ALP ingested from external
sources also has a variety of prebiotic effects to protect the health of animal hosts. In the
future, research of infant food production and additives on the treatment and prevention of
infant diseases will receive more extensive attention. ALP supplementation has a positive
effect on the healthy growth of infants, human health, and the extension of life span. It
is hoped that through this review, consumers and producers will pay more attention to
ALP. Especially for infants with incomplete immune development, ALP supplementation
is conducive to healthy growth of infants.
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