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Undergoing Hepatic Metabolism: A Simulation Study to Search for the Simplest
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Abstract. Previous research showed that scaling drug clearance from adults to children
based on body weight alone is not accurate for all hepatically cleared drugs in very young
children. This study systematically assesses the accuracy of scaling methods that, in addition
to body weight, also take age-based variables into account for drugs undergoing hepatic
metabolism in children younger than five years, namely scaling with (1) a body weight-based
function using an age-dependent exponent (ADE) and (2) a body weight-based function with
fixed exponent of 0.75 (AS0.75) combined with isoenzyme maturation functions (MFPBPK)
similar to those implemented in physiologically based pharmacokinetic (PBPK) models
(AS0.75 +MFPBPK). A PBPK-based simulation workflow was used, including hypothetical
drugs with a wide range of properties and metabolized by different isoenzymes. Adult
clearance values were scaled to seven typical children between one day and four years.
Prediction errors of ± 50% were considered reasonably accurate. Isoenzyme maturation was
found to be an important driver of changes in hepatic metabolic clearance in children
younger than five years, which prevents the systematic accuracy of ADE scaling. AS0.75 +
MFPBPK, when accounting for maturation of isoenzymes and microsomal protein per gram of
liver (MPPGL), can reasonably accurately scale hepatic metabolic clearance for all low and
intermediate extraction ratio drugs except for drugs binding to alpha-1-acid glycoprotein in
neonates. As differences in the impact of changes in system-specific parameters on drugs with
different properties yield differences in clearance ontogeny, it is unlikely that for the
remaining drugs, scaling methods that do not take drug properties into account will be
systematically accurate.

KEY WORDS: maturation; paediatrics; PBPK modelling; physiologically based pharmacokinetics;
prediction.

INTRODUCTION

Accurate scaling of drug plasma clearance (CLp) from
adults to children is important for the definition of first in
child doses and hence robust study design involving younger
children. To date, physiologically based pharmacokinetic
(PBPK) models represent the most mechanistic method to
scale CLp across the paediatric age range. PBPK models
quantify the interactions between drug-specific and system-
specific parameters and predict paediatric CLp by accounting
for developmental changes in the system-specific parameters
and how they impact drugs with specific properties. Applica-
tion of these models is considered best practice in pharma-
ceutical industry, but obtaining PBPK ontogeny functions for
a given drug is time-consuming and complex due to the
requirement of a wide range of drug-specific and system-
specific information. Moreover, all information may not
always be available for each drug or each population. This
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leads to a need for simplified scaling functions which are more
convenient for defining paediatric CLp in pharmacometrics.
As multiple system-specific parameters may change in the
paediatric population and as the impact of each of these
changes on paediatric CLp may be different for each given
drug with different characteristics, the challenge in develop-
ing simplified scaling functions is to aggregate all relevant
information in functions with a limited number of scaling
variables. Various simplified clearance scaling methods for
the paediatric population have been proposed. Allometric
scaling using a fixed exponent of 0.75 (AS0.75) is one of the
simplest scaling methods, as it only uses body weight as
scaling variable. However, AS0.75 has been shown to lead to
large over-predictions of hepatic metabolic CLp in children
younger than 5 years, especially when isoenzymes are
immature (1,2).

As scaling based on body weight alone was found not to
lead to systematic accurate scaling, other proposed scaling
functions that rely on the use of additional age-based
variables are of interest. Mahmood et al. have proposed the
age-dependent exponent method (ADE) that was found to
outperform AS0.75 in young children (1,3). ADE relies on
the use of an allometric equation with exponents of 1.1, 1.0
and 0.9 for ages 0 (term neonates)–3 months, >3 months–
2 years and > 2–5 years, respectively, for all drugs as most
recently reported (3). While this method is claimed to be
applicable to any drug irrespective of their elimination route,
this method does not account for the differences in isoenzyme
maturation, which are known to impact hepatic metabolic
clearance and to vary greatly (4).

Another proposed scaling method uses AS0.75 together
with isoenzyme maturation functions that are similar to
those implemented in PBPK models (AS0.75 +MFPBPK)
(4). In addition to body weight, this method also requires
information on the fraction of the drug metabolized by each
isoenzyme in adults, as well as on isoenzyme maturation.
This method does not explicitly account for maturation in
haematocrit and plasma protein abundance. Based on data
of five CYP3A substrates, AS0.75 +MFPBPK was found to
be accurate in children older than 3 months, but it could
lead to inaccurate predictions in younger children for some
drugs (4).

While ADE and AS0.75 +MFPBPK represent potentially
viable options to accurately scale clearance in children under
five years of age (1,3,4), no systematic investigation of their
accuracy has been undertaken. The aim of this study was
therefore to systematically assess the accuracy of paediatric
CLp scaling with ADE and AS0.75 +MFPBPK in children
younger than five years for drugs undergoing hepatic
metabolism that are not substrates for transporters, to
identify drug properties that are predictive for accurate
scaling with these methods. This will ultimately allow for the
a priori assessment of the suitability of these scaling methods
for different paediatric ages and for drugs with known
properties, by defining the minimum level of complexity that
is required for accurate CLp scaling. For this, a previously
developed PBPK-based simulation workflow was used (5). In
this workflow, hypothetical drugs that are substrates for
common hepatic isoenzymes are generated, covering the
entire potential drug parameter space regarding plasma
protein binding, blood-to-plasma partitioning and intrinsic

microsomal clearance. PBPK modelling principles are used to
obtain ‘true’ hepatic metabolic CLp values for all hypothet-
ical drugs in adults and children of various ages. Subse-
quently, CLp values scaled from ‘true’ adult values to
paediatric values with ADE and AS0.75 +MFPBPK are
compared to ‘true’ CLp values in children, and drug
properties that lead to systematically accurate scaling in
various ages are identified.

METHODOLOGY

A PBPK-based simulation workflow was used (5) that
was running in R (a software environment for statistical
computing and graphics) version 3.3.1 with R studio interface
version 0.99.902 (6). In this workflow, ‘true’ adult and
paediatric hepatic metabolic CLp values for hypothetical
drugs with a wide range of properties that are substrates for
known hepatic enzymes were generated using PBPK-based
simulations, based on the dispersion model for hepatic
metabolic CLp (7,8). This model was selected as it has been
reported to better predict CLp than the well-stirred model for
drugs with a high extraction ratio, while both models lead to
equivalent CLp prediction for other drugs (7,9). Subse-
quently, the accuracy of scaling the ‘true’ adult CLp values
to paediatric CLp values with the two scaling methods was
assessed, by comparing CLp values scaled by ADE and
AS0.75 +MFPBPK to ‘true’ paediatric CLp values.

PBPK Simulation Workflow

Hypothetical drugs

A total of 84,000 hypothetical drugs were generated, with
all possible combinations of values for the following three
drug-specific variables:

Plasma protein binding. The hypothetical drugs were
assumed to exclusively bind to either human serum albumin
(HSA) or alpha-1 acid glycoprotein (AAG). The unbound
drug fraction in plasma (fu) in adults ranged from 1 to 100%,
with 8 equidistant intermediate values. Equations by Rodgers
and Rowland (10) were used to derive the affinity to plasma
proteins from the fu and the concentration of the binding
plasma proteins in adults (11). The affinity to plasma proteins
was assumed to remain constant with age.

Blood-to-plasma partition coefficient (Kp). Kp values of
0.35 and 0.8 and values from 1 to 40 with 38 intermediate
equidistant values were selected, reflecting different extents
of drug diffusion into the red blood cells (12,13). Kp was
assumed not to change with age.

Total unbound intrinsic clearance value of one microgram
of liver microsomes (total CLint,mic). Total CLint,mic ranged
between 0.56·10−6 and 0.209·10−3 mL min−1 μg−1 microsomal
protein in adults (14), with 98 equidistant intermediate values.
These different values reflect difference in both affinities for
and abundances of isoenzymes.

System-Specific Variables

The accuracy assessment of two scaling methods was
performed in seven typical paediatric individuals, including
term neonates of one and fifteen days, infants of one month,
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six months, and one year, and children of two and four years.
CLps were scaled from a typical twenty-five-year-old adult.
The demographic and system-specific parameters of the
PBPK model for these typical individuals can be found in
Appendix 1.

For each investigated paediatric age, isoenzyme matu-
ration (CLint,mic maturation) was implemented as a near
continuous variable. To do so, first, a realistic range of
isoenzyme maturation values was defined for each age by
taking the maximum and minimum isoenzyme maturation
values reported for 15 isoenzymes. A minimum limit of 5%
isoenzyme maturation was set. For all isoenzymes but
SULT1A1, isoenzyme maturation values were taken from
the Simcyp® library. For SULT1A1, maturity was taken to
have been reached at birth (15). Then, intermediate values
across these ranges were taken with 1% increments, to
allow for the investigation of CLp maturation of drugs
metabolized to different extents by all possible combina-
tions of multiple isoenzymes, an important feature since
most drugs are metabolized by several isoenzymes.

Computations

Step 1: ‘True’ CLp

For each hypothetical drug, ‘true’ hepatic metabolic
CLp values were generated for the typical adult and children
as described previously. More details can be found in
Appendix 1.

For each paediatric age, ‘true’ relative paediatric CLps
were computed as in Eq. (1), reflecting ‘true’ paediatric CLp
as a percentage of ‘true’ adult CLp:

‘true’relative paediatric CLp ¼
‘true’ paediatric CLp

‘true’ adult CLp
� 100 ð1Þ

Step 2: CLp Scaling

First, for each hypothetical drug and for each of the
different percentages of isoenzyme maturation defined for
each age, the ‘true’ adult hepatic metabolic CLp values from
step 1 were scaled to each typical paediatric individual using
ADE and AS0.75 +MFPBPK scaling functions according to
Eqs. (2) and (3), respectively.

ADE−based paediatric CLp ¼ ‘true’adult CLp� BWpaediatric
BWadult

� �ADE

ð2Þ

AS0:75þMFPBPK−based paediatric CLp

¼ ‘true’adult CLp� BWpaediatric
BWadult

� �0:75

�MFPBPK ð3Þ

In these equations, BW stands for body weight, ADE
equals 1.1, 1.0 and 0.9, for ages 0 (term neonate)–3 months, >
3 months–2 years, and > 2–5 years, respectively (3) and
MFPBPK corresponds to the different percentages of

isoenzyme maturation defined for each age, as also used in
the PBPK model for the generation of ‘true’ relative
paediatric CLps (see Appendix 1).

In literature, there are two different interpretations of
MFPBPK in use and both were investigated in this work.
MFPBPK was either expressed as percentage of adult unbound
intrinsic clearance per gram of liver (MFPBPK-liver), which
accounts for maturation in both isoenzyme activity and
microsomal protein per gram of liver (MPPGL). Alterna-
tively, MFPBPK was expressed as percentage of adult unbound
intrinsic clearance per microgram of microsomes (MFPBPK-

microsomes), which only accounts for maturation of isoenzyme
activity. Therefore, for MFPBPK-liver, maturation in MPPGL as
implemented in the PBPK model for the generation of ‘true’
relative paediatric CLps was also used.

For comparative purposes, Eq. (4) was used to calculate
the exponent that in the allometric equation of the ADE
method would yield perfect scaling of ‘true’ adult hepatic
metabolic CLp to ‘true’ paediatric hepatic metabolic CLp;
this will be referred to as ‘true’ allometric exponent.

‘true’ EXP ¼ log10 ‘true’ relative paediatric CLp
� �
log10

BWpaediatric
BWadult

� � ð4Þ

Step 3: Assessment of CLp Scaling Accuracy

For each drug and each percentage of isoenzyme
maturation in each paediatric age, the accuracy for both
ADE and AS0.75 +MFPBPK-based CLp scaling was numeri-
cally assessed using the prediction error (PE). PE was
computed for each ‘true’ paediatric hepatic metabolic CLp
generated in step 1 and its corresponding scaled value in step
2 using Eq. (5).

PE %ð Þ ¼ scaled CLp−‘true’ paediatric CLp
‘true’ paediatric CLp

� 100 ð5Þ

For each paediatric age and investigated percentage of
isoenzyme maturation, the scaling performance of both
methods was visually assessed in plots of ‘true’ and scaled
relative paediatric CLp values. The scaling accuracies were
also compared to scaling accuracy of AS0.75. AS0.75 CLp
predictions were computed as in Eq. (2), with an exponent
of 0.75 in all ages. Analogue to previous systematic
assessments of simplified scaling methods, accurate CLp
scaling was defined as scaled values having a PE within ±
30% (2,5,16).

Step 4: Drug Properties Predictive for Accurate Scaling

To define scenarios in which each scaling method
systematically yields accurate paediatric hepatic metabolic
CLp values, the combined impact of plasma protein binding
to HSA or AAG and diffusion in red blood cells was assessed
using the following categorization:
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– drugs influenced neither by plasma protein
maturation (fu = 1) nor by haematocrit maturation (Kp = 1)
(n = 100);

– all hypothetical drugs binding to HSA, including
drugs with fu = 1 (n = 42,000);

– all hypothetical drugs binding to AAG, includ-
ing drugs with fu = 1 (n = 42,000).

These categories were, then, further subcategorized
based on the extraction ratio in adults (ER) as having either
a low (ER≤ 0.3, n = 19,002), intermediate (0.3 < ER≤ 0.7,
n = 17,684), or high (ER > 0.7, n = 5314) ER in adults.

RESULTS

CLp Scaling Accuracy

Table I provides the range of ‘true’ relative paediatric
hepatic metabolic CLp values for each age, as well as the
corresponding range of PE obtained when scaling hepatic
metabolic CLp with ADE, AS0.75 + MFPBPK-liver and
AS0.75 +MFPBPK-microsomes. For comparative purposes, PE
values upon AS0.75 scaling are provided as well (Table I).

ADE, AS0 . 75 + MFPBPK _ l i v e r and AS0 . 7 5 +
MFPBPK_microsomes capture changes in ‘true’ hepatic metabolic
CLp for part of the hypothetical drugs, as can be seen from
the PE ranges which all include ± 30% in each age for each of
these scaling methods. However, each of these methods also
leads to inaccurate paediatric CLp predictions for other
hypothetical drugs in each age. Scaling with ADE, AS0.75 +
MFPBPK_liver and AS0.75 +MFPBPK_microsomes yields extreme
PE values that, on an absolute scale, are at least 437, 80, or
77%, respectively, with higher values for younger ages
(Table I). As maturation in system-specific parameters may
impact drugs with different properties differently and since
scaling based on ADE or AS0.75 +MFPBPK does not account
for drug properties, these methods are not able to capture the
wide range in ‘true’ CLp values and, therefore, yield a wide
range of PEs in the different ages. Unlike AS0.75 +MFPBPK,

ADE does not account for differences in isoenzyme matura-
tion, which translates to a wider PE range with this scaling
method. However, compared to the use of AS0.75, ADE does
yield a range of PEs that is greatly reduced.

Impact of Isoenzyme Maturation on CLp Scaling Accuracy

Figures 1 and 2 compare the scaled relative paediatric
hepatic metabolic CLp with a ± 30% PE using, respectively,
ADE or AS0.75 +MFPBPK versus the ‘true’ relative paediatric
hepatic metabolic CLp for all hypothetical drugs in each
investigated paediatric age and across their respective isoen-
zyme maturation range. The x-axis in Figs. 1 and 2a displays
isoenzyme maturation per gram of liver (MFPBPK_liver) which
reflects both MFPBPK_microsomes and maturation in MPPGL,
while the x-axis in Fig. 2b displays isoenzyme maturation per
microgram of microsomes (MFPBPK_microsomes).

Figure 1 shows that while ADE can accurately scale
hepatic metabolic CLp for some hypothetical drugs and for
some isoenzyme maturations in each age, this scaling method
can lead to a wide range of PEs due to the large variation in
‘true’ relative paediatric CLp values. Figure 1 also shows that
for each typical paediatric individual, ‘true’ CLp values that
are lower and higher than those predicted with ADE and a
± 30% PE range are found, with over-predictions for the
lowest isoenzyme maturation values and under-predictions
for highest isoenzyme maturation values.

Figure 2a shows that AS0.75 +MFPBPK-liver does not
generally lead to over-prediction of hepatic metabolic CLp in
the studied age range, but under-predictions may occur,
especially when isoenzyme maturation is low. When enzyme
maturation in this approach is expressed relative to adult
intrinsic activity per microgram of microsomes (AS0.75 +
MFPBPK-microsomes), both over- and under-predictions of
paediatric CLp for different drugs are observed in all ages
(Fig. 2b).

It was determined for all hypothetical drugs, what the ‘true’
allometric exponent would be if it was estimated in the typical

Table I. Assessment of Paediatric CLp Scaling Accuracy, Expressed as Prediction Error, for Different Ages, and ‘True’ Relative Paediatric
CLp

Age ‘True’ relative paediatric CLpa (range)
(%)

Prediction error (range)

A D E b

(%)
AS0.75 + MFPBPK_liver

c

(%)
AS0.75 + MFPBPK_microsomes

d

(%)
A S 0 . 7 5 e

(%)

One day 0.26–13.31 − 74–1224 − 87–23 − 79–92 − 24–3745
F i f t e e n
days

0.29–8.14 − 54–1220 − 87–20 − 81–87 31–3645

One month 0.32–9.15 − 51–1305 − 87–22 − 80–89 31–3679
Six months 1.09–15.56 − 33–853 − 85–19 − 77–82 18–1578
One year 1.62–21.26 − 36–739 − 84–22 − 76–83 5–1281
Two years 2.67–29.3 − 42–536 − 83–22 − 75–77 − 10–890
Four years 5.07–43.02 − 37–437 − 80–33 − 72–82 − 21–567

a Paediatric CLp expressed as percentage of adult value
bAge-dependent exponent
c Scaling using AS0.75 in combination with a maturation function expressed in percentage of adult unbound intrinsic clearance per gram of liver
d Scaling using AS0.75 in combination with a maturation function expressed in percentage of adult unbound intrinsic clearance per microgram
of microsomes
eAllometric scaling using a fixed exponent of 0.75
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paediatric patients within the respective isoenzyme maturation
range. Figure 3 illustrates how the range of ‘true’ allometric
exponents compares to the allometric exponent used in ADE
scaling. High values of ‘true’ relative paediatric CLpwill yield low
values of ‘true’ allometric exponent, and, therefore, the reverse
trends with isoenzyme maturation can be observed in Fig. 3 as
compared to Fig. 1. The ‘true’ allometric exponent varies
considerably within each paediatric age, ranging from 0.57 to
2.07 across all ages. Table I and Fig. 3 show that changing the
allometric exponent in the scaling function with age, as proposed
with ADE scaling, will lead to an overall improved scaling for
more hypothetical drugs, but it also illustrates that there is no
single exponent that will accurately scale hepatic metabolic CLp
for all drugs in each age.

Identification of Drug Properties Predictive for Accurate
CLp Scaling

In Figs. 1 and 2, results were grouped in 3 categories
in order to assess the combined impact of drug binding to
HSA or AAG and drug diffusion in red blood cells on

‘true’ relative paediatric hepatic metabolic CLp. This
categorization does not explain the observed variability
in ‘true’ relative paediatric CLp values, which can be seen
by the observed values for each category outside the ±
30% PE range of the scaling methods. As such, drug
binding to HSA or AAG and drug diffusion in red blood
cells do not allow for the definition of drug variables for
which ADE or AS0.75 +MFPBPK systematically leads to
accurate scaling.

Further categorization of these results based on the ER
of drugs in adults was not found to allow for the definition of
drug variables for which ADE systematically leads to
accurate hepatic metabolic CLp scaling either. For ADE,
Supplementary Fig. 1, which is the same as Fig. 1 but
stratified on adult ER (i.e., low, intermediate and high ER),
shows the wide variability in ‘true’ relative paediatric CLp
driven by isoenzyme maturation in each age, leading to both
over- and under-predictions of ‘true’ relative paediatric CLp
for each ER category. Supplementary Table I also shows that,
although PE ranges decrease with increasing ER, every
category still includes PE values above 100%.

Fig. 1. Relative paediatric CLp (% of adult value) obtained with ADE scaling (solid black line with ± 30% PE as dotted black lines) and ‘true’
relative paediatric CLp (pink, green or yellow areas) for all hypothetical drugs versus the respective isoenzyme maturation range in the studied
typical paediatric individuals. Different colours represent hypothetical drugs with different properties, with pink representing drugs not binding
to plasma proteins (fu = 1) that are also in equilibrium between plasma and red blood cells (Kp = 1). Green and yellow are used to depict drugs
that diffuse into red blood cells to different extents and that bind to HSA or AAG, respectively, to different extents (including fu = 1). Under
the pink area, the pink, yellow and green areas overlap completely; therefore, the combination of pink and green areas shows the results for all
drugs binding to HSA and the combination of pink, green and yellow areas shows the results for drugs binding to AAG. Note that the scales on
the x- and y-axes may be different for different ages
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For hepatic metabolic CLp scaling using AS0.75 +
MFPBPK, further categorization based on ER of drugs in
adults did reveal scenarios for which CLp scaling is system-
atically accurate. Table IIA shows that PE values for scaled
CLp values of drugs with low and intermediate ER lie within
a ± 30 and ± 50% range, respectively, when MFPBPK-liver was
used for the predictions, except for AAG-bound drugs in
neonates of one day. Supplementary Fig. 2 reveals a close
agreement between CLp values scaled using AS0.75 +
MFPBPK-liver and the ‘true’ relative paediatric CLp for low

and intermediate ER drugs, which leads to the acceptable
accuracy of CLp scaling in all studied ages, except for drugs
binding to AAG in neonates of one day. However, for drugs
with a high ER, there are no scenarios based on age and drug
properties that systematically lead to accurate CLp scaling
with AS0.75 +MFPBPK-liver.

Regarding hepatic metabolic CLp scaling using MFPBPK-

microsomes, Table IIB shows that after additional categorization
of the results based on ER, all PE ranges included values
outside ± 30% and most of them included PE values outside

Fig. 2. Relative paediatric CLp (% of adult value) obtained with
AS0.75 +MFPBPK-liver scaling (a) and AS0.75 +MFPBPK-microsomes scal-
ing (b) (solid black line with ± 30% PE as dotted black lines) and ‘true’
relative paediatric CLp (pink, green and yellow areas) for all
hypothetical drugs versus the respective isoenzyme maturation range
in the studied typical paediatric individuals. Different colours represent
hypothetical drugs with different properties, with pink representing
drugs not binding to plasma proteins (fu = 1) that are also in
equilibrium between plasma and red blood cells (Kp = 1). Green and
yellow are used to depict drugs that diffuse into red blood cells to
different extents and that bind to HSA or AAG, respectively, to
different extents (including fu = 1). Under the pink area, the pink,
yellow and green areas overlap completely; therefore, the combination
of pink and green areas shows the results for all drugs binding to HSA
and the combination of pink, green and yellow areas shows the results
for drugs binding to AAG. Note that the scales on the x- and y-axes
may be different for different ages
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± 50% regardless of the drug category. Supplementary Fig. 3
shows a shift in which scaling with this approach moves from
predominantly over-estimation of relative paediatric CLp for
drugs with a low ER in all ages, towards under-prediction of
relative paediatric CLp in all ages with increasing ER of the
hypothetical drugs. For this method, no scenarios can
however be defined based on age and drug properties that
lead to systematically accurate scaling.

DISCUSSION

As previous analyses have shown that hepatic metabolic
CLp scaling based on body weight alone is not systematically
accurate in patients younger than 5 years (2,16), the aim of
this study was to systematically assess the hepatic metabolic
CLp scaling accuracy of ADE and AS0.75 +MFPBPK in
children younger than five years. Since this systematic
assessment was performed using a PBPK-based simulation
workflow analogue to previous analyses of other scaling

methods (2,5,16), the reported accuracy of the different
methods can be directly compared.

Whereas ADE scaling was found to perform better than
standard AS0.75 scaling in all ages, ADE does not systemat-
ically lead to accurate scaling of hepatic metabolic CLp from
adult to children younger than 5 years. This is due to the
significant impact of isoenzyme maturation and drug proper-
ties on the ‘true’ relative paediatric CLp, which is not
properly accounted for in all cases by ADE. Figure 1 shows
that for each age there is not a single exponent that will be
able to accurately scale CLp values, as a different exponent
will result in a parallel increase or decrease of the horizontal
black lines, but it will not be possible to place them such that
all relative CLp values are included within those border. This
explains the lack of accuracy of scaling methods solely
accounting for age and body weight that has been reported
for some drugs in young children (1,17). Therefore, although
ADE scaling leads to accurate hepatic metabolic CLp scaling
for some drugs and isoenzyme maturations in each age, it has
not been possible to develop guidelines to a priori predict

Fig. 3. ‘True’ allometric exponent (pink, green and yellow areas) and ADE exponent used to scale CLp (solid black line with ± 30% PE in
CLp as dotted black lines) for all hypothetical drugs versus the respective isoenzyme maturation range in the studied typical paediatric
individuals. Different colours represent hypothetical drugs with different properties, with pink representing drugs not binding to plasma
proteins (fu = 1) that are also in equilibrium between plasma and red blood cells (Kp = 1). Green and yellow are used to depict drugs that
diffuse into red blood cells to different extents and that bind to HSA or AAG, respectively, to different extents (including fu = 1). Under the
pink area, the pink, yellow and green areas overlap completely; therefore, the combination of pink and green areas shows the results for all
drugs binding to HSA and the combination of pink, green and yellow areas shows the results for drugs binding to AAG. Note that the scale on
the x-axes may be different for different ages
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whether this will be the case for a specific individual drug.
Using an exponent value of 1.35 in term neonates, as was
suggested for drugs metabolized by UGT enzymes (18), may
improve scaling of individual drugs in neonates, but it will not
improve the systematic accuracy of this scaling method since
most drugs are metabolized by several isoenzymes and
because similar isoenzyme maturation patterns are found
between enzyme families, as for instance, CYP2D6 and
CYP2B6 activities having a similar maturation pattern as
UGTs in neonates (2).

The wide variations in ‘true’ hepatic metabolic CLp
values translate into a wider range in ‘true’ allometric
exponents of 0.57 to 2.07 across all ages, compared to the
range of 0.8 to 1.2 that we reported earlier for children
younger than 5 years (2). The previously reported range in

allometric exponent values was derived from scenarios in
which size-related changes were considered in the absence of
maturation in system-specific parameters. The range reported
here corresponds to allometric exponents needed to scale
‘true’ adult CLp values to ‘true’ paediatric CLp values that
are impacted by size-related changes as well as by matura-
tional changes in isoenzyme activity, plasma protein concen-
tration and haematocrit.

AS0.75 +MFPBPK is a simplified scaling method that, in
addition to scaling based on body weight, includes an age-
based PBPK function for enzyme maturation. In our analysis,
the same isoenzyme maturation functions were used in the
PBPK model and the scaling method; thereby, this maturation
function is assumed to be known without bias. This scaling
method does not take maturational changes in haematocrit

Table II. Range of Prediction Errors of CLp Values Obtained When Scaling the CLp of the Hypothetical Drugs Using Either AS0.75 +
MFPBPK-liver (A) or AS0.75 +MFPBPK-microsomes (B) for the Investigated Paediatric Ages Categorized per Drug Property

a

Drug category
Age

One day Fi�een days One month Six months One year Two years Four years

Low ER
HSA bound [-17% - 23%] [-18% - 20%] [-10% - 22%] [-7% - 19%] [-8% - 18%] [-9% - 12%] [-14% - 9%]
AAG Bound [-55% - 23%] [-22% - 20%] [-19% - 22%] [-4% - 19%] [-5% - 21%] [-9% - 22%] [-9% - 33%]
fu=1 & Kp=1 [4% - 23%] [1% - 20%] [2% - 21%] [0% - 18%] [-2% - 16%] [-5% - 11%] [-7% - 9%]

Inter. ER
HSA bound [-46% - 18%] [-47% - 13%] [-42% - 16%] [-40% - 17%] [-40% - 20%] [-40% - 14%] [-42% - 8%]
AAG Bound [-70% - 18%] [-50% - 13%] [-48% - 16%] [-38% - 17%] [-38% - 22%] [-40% - 20%] [-38% - 28%]
fu=1 & Kp=1 [-37% - 16%] [-38% - 13%] [-38% - 14%] [-37% - 14%] [-38% - 15%] [-40% - 10%] [-38% - 7%]

High ER
HSA bound [-87% - 9%] [-87% - 2%] [-87% - 5%] [-85% - 13%] [-84% - 20%] [-83% - 14%] [-80% - 6%]
AAG Bound [-87% - 9%] [-87% - 2%] [-87% - 5%] [-85% - 13%] [-84% - 21%] [-83% - 18%] [-80% - 18%]
fu=1 & Kp=1 [-84% - 3%] [-84% - 1%] [-84% - 2%] [-81% - 6%] [-81% - 13%] [-80% - 8%] [-77% - 3%]

b

Drug category
Age

One day Fi�een days One month Six months One year Two years Four years

Low ER
HSA bound [30% - 92%] [28% - 87%] [41% - 89%] [43% - 82%] [39% - 77%] [32% - 63%] [17% - 49%]

AAG Bound [-30% - 92%] [22% - 87%] [26% - 89%] [47% - 82%] [42% - 82%] [33% - 77%] [24% - 82%]
fu=1 & Kp=1 [62% - 92%] [57% - 87%] [59% - 88%] [54% - 81%] [47% - 74%] [38% - 62%] [28% - 49%]

Inter. ER
HSA bound [-16% - 83%] [-18% - 76%] [-11% - 80%] [-7% - 79%] [-9% - 81%] [-13% - 65%] [-20% - 48%]

AAG Bound [-53% - 83%] [-22% - 76%] [-19% - 80%] [-5% - 79%] [-7% - 83%] [-12% - 75%] [-16% - 75%]
fu=1 & Kp=1 [-1% - 81%] [-4% - 76%] [-3% - 78%] [-4% - 74%] [-7% - 72%] [-12% - 60%] [-16% - 46%]

High ER
HSA bound [-79% - 70%] [-81% - 59%] [-80% - 64%] [-77% - 73%] [-76% - 81%] [-75% - 65%] [-72% - 46%]

AAG Bound [-79% - 70%] [-81% - 59%] [-80% - 64%] [-77% - 73%] [-76% - 82%] [-75% - 71%] [-72% - 62%]
fu=1 & Kp=1 [-75% - 61%] [-75% - 57%] [-75% - 59%] [-71% - 62%] [-71% - 70%] [-71% - 58%] [-68% - 41%]

Low, intermediate and high extraction ratios are defined as ER≤ 0.3, 0.3 < ER≤ 0.7 and ER > 0.7. fu = 1 and Kp = 1 correspond to drugs not
binding to plasma proteins (fu = 1) that are also in equilibrium between plasma and red blood cells (Kp = 1). HSA bound corresponds to drugs
that diffuse into red blood cells to different extents and that bind to HSA to different extents (including fu = 1). AAG bound corresponds to
drugs that diffuse into red blood cells to different extents and that bind to AAG to different extents (including fu = 1). HSA, human serum
albumin; AAG, alpha-1 acid glycoprotein; AS0.75 +MFPBPK_liver, AS0.75 in combination with a maturation function expressed in percentage of
adult unbound intrinsic clearance per gram of liver; AS0.75 +MFPBPK_microsomes, AS0.75 in combination with a maturation function expressed
in percentage of adult unbound intrinsic clearance per microgram of microsomes. Colours indicate the PE category, with PE range for all
hypothetical drugs lying within ± 30% in green, within ± 50% in orange and including absolute values higher than 50% in red.
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and plasma protein abundance into account, but results show
that accounting for isoenzyme maturation is sufficient for
accurate hepatic metabolic CLp scaling of drugs with a low or
intermediate ER in adults. When isoenzyme maturation is
expressed as percentage of adult intrinsic clearance per gram
of liver (MFPBPK-liver), this method leads to PE of all
hypothetical drugs between ± 30 and ± 50% for drugs with
a low or intermediate ER in adults, respectively, except for
drugs bound to AAG in term neonates of 1 day. This is due to
the decreasing variability in relative paediatric CLp with
decreasing ER values, because isoenzyme maturation is the
main driver of relative paediatric CLp for drugs that have a
low or intermediate ER in adults. The lack of accuracy in one
day term neonates for drugs binding to AAG is due to the
steep increase in AAG concentration in the first days of life,
leading to a wide variation in relative paediatric CLp for
different hypothetical drugs binding to this plasma protein to
varying extents (19). For drugs that have a high ER in adults,
the ER decreases in children with decreasing enzyme
maturation, and, as a result, the impact of hepatic blood flow
on CLp will decrease as well (20). This shift in the
contribution of hepatic blood flow is not accounted for in
the scaling method. As such, for AAG-bound drugs and for
drugs with a high ER in adults, PBPK models are required for
accurate CLp scaling from adults to neonates of one day and
to children younger than 5 years, respectively.

In scaling hepatic metabolic CLp with the AS0.75 +MFPBPK
method, the choice of the PBPK function that is used is of high
importance. While both MFPBPK-liver and MFPBPK-microsomes

account for isoenzyme maturation, only MFPBPK-liver also ac-
counts for age-related changes in MPPGL (microsomal protein
per gram of liver). Expressing isoenzyme maturation as percent-
age of adult intrinsic clearance per microgram of microsomes
(MFPBPK-microsomes) leads to inaccurate CLp predictions regard-
less of drug properties in children under five years of age. Until
2008, MPPGL maturation had not been characterized and,
therefore, isoenzyme maturation was expressed as percentage of
adult intrinsic clearance per gram of liver (MFPBPK-liver) (21).
Afterwards,MPPGLmaturationwas implemented in commercial
PBPK software packages, and isoenzyme maturation functions
were adapted accordingly to be expressed in percentage of adult
intrinsic clearance per microgram of microsomes. As the units of
isoenzyme maturation functions are not always reported in
literature (22) and because selecting the appropriate MFPBPK is
of utmost importance when using AS075 +MFPBPK, reporting
these units for enzyme maturation functions should be
encouraged.

In those cases where after scaling plasma clearance with
body weight using a fixed 0.75 allometric exponent, a maturation
function is estimated from clinical PK data instead of using
enzymematuration functions as implemented in PBPKmodels, it
is often assumed that the estimated maturation function reflects
isoenzyme maturation for drugs undergoing hepatic metabolism.
Fromour results as depicted in Fig. 2, it can be deduced that this is
not always the case, as there is only limited overlap between the
‘true’ relative paediatric CLp and the AS0.75 +MFPBPK scaled
predictions. The explanation may be that these estimated
maturation functions also aggregate the impact of drug properties
on clearance maturation that are not properly accounted for. This
is in line with previous finding from Strougo et al. (4,23).

The application of the PBPK-based framework was an
essential part of the current investigation as a clean and
systematic evaluation on the impact of individual drug-specific
and system-specific parameters is not possible with real data. In
a clinical situation, elimination pathways and the impact of
changes in individual drug-specific and system-specific parame-
ters cannot be studied in isolation. Moreover, the total number
of drugs prescribed in the paediatric population is far too limited
to be able to perform a systematic assessment that can support
generalizable conclusions for all current and future small
molecule drugs. Finally, values of ‘true’ hepatic metabolic CLp
from real data are at best approximated by deriving them from
observed concentration values that are inevitably obtained with
experimental error. The current analysis identifies the theoret-
ical boundaries in PE and ‘true’ allometric exponents for hepatic
metabolic CLp between which all current and future small
molecular drugs can be predicted to lie a priori.

Because isoenzyme maturation was studied as a near
continuous variable within the range of reported enzyme matura-
tion values for each age, this analysis covers all possible combina-
tions of hepatic metabolism bymultiple isoenzymes contributing to
hepatic metabolic CLp to various extents. However, the analysed
scenarios do assume thematuration profile of the isoenzymes to be
known without bias. For drugs with low or intermediate ER that
are metabolized by multiple isoenzymes, scaling hepatic metabolic
CLp therefore requires knowledge on the fraction metabolized by
each isoenzyme in adults and the MFPBPK-liver of each isoenzyme
involved in the drug clearance.

CYP3A7 is an example of isoenzyme often found to be
involved in drug metabolism in the paediatric population when
other isoenzymes are highly immature. As this isoenzyme is not
functionally present in adults, CLp values could not be scaled
from adult values based on the maturation profile of this
isoenzyme. Although clinically observed total CLp values
cannot be directly compared to the hepatic metabolic CLp
studied in isolation in the current work, we accounted for the
observation that in clinical situations when elimination routes
are highly immature other elimination routes take over, by
setting a lower limit of 5% isoenzyme maturation.

The scaling accuracy of ADE and AS0.75 +MFPBPK for
other elimination routes, including renal excretion, and for
scenarios involving multiple elimination mechanisms remains
subject of further investigation. Finally, information on
maturation of most system-specific parameters in preterm
neonates is currently still lacking. Similarly, there is a lack of
information on transporter ontogeny in the entire paediatric
population. Therefore, further investigation on the systematic
accuracy of CLp scaling for all drugs in preterm neonates and
for substrates of transporters on hepatocytes in all paediatric
ages remains to be performed once the required information
for these assessments becomes available.

In conclusion, when scaling CLp from adults to children
younger than five years, solely accounting for age and body
weight without taking drug properties and enzyme maturation
into consideration, will likely not yield systematically accurate
scaling for hepatic metabolic CLp. All paediatric CLp values for
low and intermediate ER drugs can be scaled with a PE of
± 50% using AS0.75 +MFPBPK except for drugs binding to
AAG in neonates of one day, provided the MFPBPK-liver is used
thereby accounting for both isoenzyme and MPPGL
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maturation. For other drugs, no simple scaling method is
systematically accurate and their CLp should be scaled using
PBPK models.
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