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Recurrent triple-negative breast cancer (TNBC) needs new therapeutic tar-

gets. Src homology region 2 domain-containing phosphatase-1 (SHP-1) can

act as a tumor suppressor by dephosphorylating oncogenic kinases. One

major target of SHP-1 is STAT3, which is highly activated in TNBC. In

this study, we tested a sorafenib analogue SC-60, which lacks angiokinase

inhibition activity, but acts as a SHP-1 agonist, in TNBC cells. SC-60

inhibited proliferation and induced apoptosis by dephosphorylating STAT3

in both a dose- and time-dependent manner in TNBC cells (MDA-MB-

231, MDA-MB-468, and HCC1937). By contrast, ectopic expression of

STAT3 rescued the anticancer effect induced by SC-60. SC-60 also

increased the SHP-1 activity, but this effect was inhibited when the N-SH2

domain (DN1) was deleted or with SHP-1 point mutation (D61A), imply-

ing that SHP-1 is the major target of SC-60 in TNBC. The use of SC-60 in

combination with docetaxel synergized the anticancer effect induced by

SC-60 through the SHP-1/STAT3 pathway in TNBC cells. Importantly,

SC-60 also displayed a significant antitumor effect in an MDA-MB-468

xenograft model by modulating the SHP-1/STAT3 axis, indicating the anti-

cancer potential of SC-60 in TNBC treatment. Targeting SHP-1/p-STAT3

and the potential combination of SHP-1 agonist with chemotherapeutic

docetaxel is a feasible therapeutic strategy for TNBC.

Abbreviations

SHP-1, src homology region 2 domain-containing phosphatase-1; STAT3, signal transducer and activator of transcription 3; TNBC, triple-

negative breast cancer.
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1. Introduction

Triple-negative breast cancer (TNBC), a heterogeneous

breast cancer subtype, is known for its poor prognosis

and high rate of metastasis. In addition, a considerable

proportion of patients with TNBC are also associated

with BRCA gene mutation (Lehmann et al., 2011).

Despite the discovery of the poly (ADP-ribose) poly-

merase (PARP) inhibitors that interfere with DNA

damage repair and their implications in BRCA-defi-

cient TNBCs, currently there are no approved targeted

therapies for TNBC (Mayer et al., 2014).

Signal transducer and activator of transcription 3

(STAT3) mediates a plethora of cellular functions in

response to cell stimuli by cytokines (such as inter-

leukin 6; Darnell et al., 1994) and growth factors (such

as epidermal growth factor; Song and Grandis, 2000).

Upon phosphorylation at tyrosine 705 residue, STAT3

transcriptionally regulated genes involved in cell

growth, division, cell movement, apoptosis, and so on

(Fukada et al., 1996; Kalluri, 2003; Zhang et al.,

2005). In cancers, including TNBC, STAT3 is constitu-

tively activated and frequently associated with poor

prognosis and tumor resistance to anticancer therapy

(Banerjee and Resat, 2015; D’Anello et al., 2010; Mar-

otta et al., 2011; Real et al., 2002; Wei et al., 2014).

The tumor resistance to anticancer therapy can be

attributed to the participation of STAT3 in antiapop-

tosis by upregulating antiapoptotic proteins (bcl-2,

Mcl-1, survivin, etc.; Banerjee and Resat, 2015; Ber-

ishaj et al., 2007; Diaz et al., 2006; Gritsko et al.,

2006; Hartman et al., 2013) or by activating cell cycle

mediators (such as cyclin D1) and many other STAT3-

regulated genes involved in prosurvival signaling and

self-renewal of cancer stem cells (Rajendran et al.,

2012; Tan et al., 2014; Yao et al., 2011). Increased

STAT3 activity has also been linked to the develop-

ment of chemoresistance in TNBC (Gariboldi et al.,

2007), as well as associated with metastasis promotion

in TNBC (Lee et al., 2011). Moreover, newly identified

cancer-promoting functions of STAT3 – its role in

mitochondria, epigenetic regulation, cancer stem cells,

obesity, and premetastatic niches – further highlight

the importance of targeting STAT3 in cancers (Yu

et al., 2014). Taken together, these findings suggest

that targeting STAT3 has therapeutic potential and

might offer clinical benefits for patients with TNBC.

A number of agents and natural compounds have

been reported to inhibit STAT3 using various strategies

(Chai et al., 2016; Furtek et al., 2016). Common

STAT3-targeting approaches include inhibiting

upstream tyrosine kinases that phosphorylate/activate

STAT3 (such as JAKs), and small molecules blocking

functional STAT3 dimerization via interfering with the

SH2 domains of STAT3 (Furtek et al., 2016). Notably,

ruxolitinib, a JAK1/2 tyrosine kinase inhibitor, is cur-

rently being tested in phase II trials for solid tumors

such as HER-2-negative metastatic breast cancers

(NCT02120417) and pancreatic cancers (Hurwitz et al.,

2014). In addition, compounds suppressing STAT3

phosphorylation independently of JAK inhibition are

also attracting attention. Another emerging strategy tar-

geting is the negative regulation of STAT3 signals (Fan

et al., 2014; Liu et al., 2013, 2014; Tai et al., 2011,

2014a,b). Src homology region 2 domain-containing

phosphatase 1 (SHP-1), a nonreceptor protein tyrosine

phosphatase, is one of the negative regulators of phos-

phorylated STAT3 (p-STAT3; Lopez-Ruiz et al., 2011).

SHP-1 is composed of two SH-2 domains (N-SH2 and

C-SH2) and one catalytic PTP domain (Yang et al.,

1998). Studies have shown that the activity of SHP-1 is

also regulated by the conformational rearrangement

upon substrate/chemical binding: The N-SH2 domain is

released from the interaction with the PTP domain

exposing the catalytic site of the PTP domain, thereby

enhancing SHP-1 activity (Qin et al., 2005; Wang et al.,

2011; Yang et al., 2003). Interestingly, we identified that

multiangiokinase inhibitor sorafenib also acts as a direct

enhancer of SHP-1 (Tai et al., 2011, 2014b). Accord-

ingly, we developed a series of sorafenib derivatives that

are devoid of angiokinase (VEGFR/PDGFR) inhibition

and demonstrated that they inhibited p-STAT3 via

increasing SHP-1 activity (Chen et al., 2011, 2012c; Su

et al., 2012). We previously demonstrated the in vitro

and in vivo anticancer activity of a SHP-1 agonist, SC-

43, in TNBC cells (Liu et al., 2013). More recently, we

showed a chemical dimeric sorafenib derivative, SC-60,

with survival benefits compared with sorafenib in a hep-

atocellular carcinoma orthotopic model (Fan et al.,

2014). In the current study, we report the effects of SC-

60 in TNBC cells.

2. Materials and methods

2.1. Reagents and antibodies

SC-60 was synthesized by Hinova Pharmaceuticals Inc.

(Chengdu, China), the MW of SC-60 is 473, and its

structure and solubility are described in Fig. S1. For

in vitro studies, SC-60 at various concentrations was

dissolved in dimethyl sulfoxide (DMSO) and added to

cells in Dulbecco’s modified Eagle’s medium (Invitro-

gen, Carlsbad, CA, USA). The final DMSO concentra-

tion was 0.1% after addition to the medium. For
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in vivo studies, SC-60 was dissolved in 50% (v/v)

propylene glycol and 50% (v/v) Solutol� HS-15. The

SHP-1 inhibitor PTP inhibitor III (CAS 29936-81-0)

was purchased from Cayman Chemical (Ann Arbor,

MI, USA). Plasmids of human wild-type STAT3 were

encoded by pCMV6 vector with myc-tag. The mutant

SHP-1 constructs (DN1 and D61A) have been gener-

ated to mimic the open-form structure of SHP-1 as

previously described (Tai et al., 2014b). Antibodies for

immunoblotting such as p-VEGFR2, VEGFR2, p-

PDGFRb, PDGFb, p-JAK1, JAK1, p-JAK2, JAK2,

p-SRC, SRC, p-STAT3, STAT3, and survivin were

from Cell Signaling (Danvers, MA, USA). SHP-1,

cyclin D1, and Mcl-1 antibodies were purchased from

Abcam (Cambridge, MA, USA). Other antibodies

such as poly (ADP-ribose) polymerase (PARP) and

cleaved caspase 3 were obtained from Cell Signaling

Technology.

2.2. Cell culture and western blot analysis

The MCF10A human breast epithelial cell line, MCF7

luminal breast cancer cells, and TNBC (MDA-MB-

231, MDA-MB-468, and HCC-1937) cell lines were

obtained from American Type Culture Collection

(Manassas, VA, USA). All breast cancer cells were

maintained in Dulbecco’s modified Eagle’s medium

supplemented with 10% fetal bovine serum, 0.1 mM

nonessential amino acids, 2 mM L-glutamine,

100 U�mL�1 penicillin G, 100 lg�mL�1 streptomycin

sulfate, and 25 lg�mL�1 amphotericin B in a 37 °C
humidified incubator and an atmosphere of 5% CO2

in air. Lysates of breast cancer cells treated with drugs

at the indicated doses and times were prepared for

immunoblotting of p-STAT3, STAT3, and other cells.

Western blot analysis was performed as previously

reported (Lehmann et al., 2015; Liu et al., 2013).

2.3. DNA fragmentation and apoptosis analysis

Cytoplasmic histone-associated DNA fragments were

determined as a measurement of apoptotic cells by the

Cell Death Detection ELISAPLUS Kit (Roche, Indi-

anapolis, IN, USA) according to the manufacturer’s

instructions. Drug-induced apoptotic cell death was

assessed using sub-G1 analysis of propidium iodide-

stained cells by flow cytometry and western blot analy-

sis of PARP cleavage.

2.4. Real-time quantitative PCR

Total RNA was extracted from cultured cells using

TRIzol reagent (Invitrogen), and real-time quantitative

PCR was performed in a LightCycler 480II instrument

(Roche Diagnostics) using a LightCycler 480 SYBR

Green I Master Kit (Roche Diagnostics), using specific

primers for human cyclin D1 (forward primer, 50-
GGATGCTGGAGGTCTGCGA-30; reverse primer,

50-AGAGGCCACGAACATGCAAG-30; 146 bp),

human Mcl-1 (forward primer, 50-GGTGCCTTTGTG

GCTAAACA-30; reverse primer, 50-ACCCATCCC

AGCCTCTTTGT-30; 133 bp), human survivin (for-

ward primer, 50-AGAACTGGCCCTTCTTGGAG

G-30; reverse primer, 50-CTTTTTATGTTCCTCTA

TGGGGTC-30; 170 bp), and the glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) gene was chosen

as an internal control (forward primer, 50-CGACCA

CTTTGTCAAGCTCA-30; reverse primer, 50-AGGG

GTCTACAT GGCAACTG-30; 228 bp).

2.5. Gene knockdown using small interfering

RNA

Smart-pool small interfering RNAs (siRNAs) includ-

ing the control (D-001810-10) and SHP-1 (PTPN6,

L-009778-00-0005) were purchased from Dharmacon

(Chicago, IL, USA). The knockdown procedure was

as described previously. Cells were transfected with

siRNA (final concentration of 100 nM) in six-well

plates using the liposome transfection reagent Lipofec-

tamine 2000 (Invitrogen) according to the manufac-

turer’s instructions. After 72 h, the medium was

replaced and the breast cancer cells were incubated

with nintedanib, harvested, and separated for western

blot analysis and apoptosis analysis by flow cytometry.

2.6. In vitro STAT3 Activity Assay

A Cignal Stat3 Reporter Kit (SABiosciences, Valencia,

CA, USA) was used to measure the in vitro Stat3

activity. Cells were seeded in a 96-well plate and trans-

fected with reference pCMV-Renilla luciferase plasmid

with a plasmid driven by the promoter region contain-

ing STAT3-specific binding sites and the constitutively

expressing Renilla construct encodes the Renilla luci-

ferase reporter gene and acts as an internal control for

normalizing transfection efficiencies. After incubation

for 48 h, the cells were treated with SC-60 for 6 h and

lysed with passive buffer. The lysates were transferred

to a glass tube, and promoter activity was determined

by Dual Luciferase Reporter Assay System (Promega,

Madison, WI, USA) according to the manufacturer’s

instructions. Luciferase activities were measured on a

GloMax 20/20 Luminometer (Promega). All the luci-

ferase activities of samples were normalized with cells

treated with DMSO.
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2.7. SHP-1 phosphatase activity

A RediPlate 96 EnzChek Tyrosine Phosphatase Assay

Kit (R-22067) was used for SHP-1 activity assay

(Molecular Probes, Carlsbad, CA, USA). The method

was as described previously (Liu et al., 2013). Briefly,

the protein extracts of breast cancer cells were incu-

bated with anti-SHP-1 antibody in immunoprecipita-

tion buffer overnight. Then, the Protein G-Sepharose 4

Fast Flow (GE Healthcare, Piscataway, NJ, USA) was

added to each sample followed by incubation for three

hours at 4 °C with rotation and then assayed for phos-

phatase activity.

2.8. Xenograft tumor growth

The animal experiments were approved by the Institu-

tional Animal Care and Use Committee of Taipei

Veterans General Hospital. All experimental proce-

dures using mice were performed in accordance with

protocols approved by the Institutional Animal Care

and Use Committee of Taipei Veterans General

Hospital. Female NCr athymic nude mice (5–7 weeks

of age) were obtained from the National Laboratory

Animal Center (Taipei, Taiwan, Republic of China).

The mice were housed in groups and maintained in a

specific pathogen-free environment. Each mouse was

inoculated subcutaneously in the dorsal flank under

isoflurane anesthesia with 2 9 106 breast cancer cells

suspended in 0.1 mL of serum-free medium contain-

ing 50% Matrigel (BD Biosciences, San Jose, CA,

USA). Tumors were measured using calipers, and

their volumes were calculated using a standard for-

mula: width2 9 length 9 0.52. When tumors reached

around 100 mm3, mice were administered SC-60

(20 mg�kg�1 oral) three times a week. Controls

received vehicle (50% (v/v) propylene glycol and 50%

(v/v) Solutol� HS-15). Upon termination of

treatment, mice were sacrificed and xenografted

tumors were harvested and assayed for subsequent

experiments.

2.9. Statistical analysis

Data are expressed as mean � SD or SE. Statistical

comparisons were based on nonparametric tests, and

statistical significance was defined as a P value of less

than 0.05. For survival analysis, progression-free sur-

vival curves of patients were generated using the

Kaplan–Meier method and compared by performing a

log-rank test. All statistical analyses were carried out

using SPSS for Windows software, version 12.0 (SPSS,

Chicago, IL, USA).

3. Results

3.1. SC-60 shows a growth inhibitory effect in

human breast cancer cells

To evaluate the efficacy of SC-60 on human TNBC

cells, we treated three human TNBC lines with differ-

ent doses of SC-60 for 72 h, and the cell viability was

analyzed by MTT assay. As shown in Fig. 1A, SC-60

dose dependently inhibited cell growth of MDA-MB-

468, HCC1937, and MDA-MB-231 cells. In addition,

flow cytometry assay revealed that SC-60 treatment

resulted in increases in the percentage of apoptotic

cells in the aforementioned cell lines in a dose

(Fig. 1B)- and time (Fig. 1C)-dependent manner. In

accordance with the above results, SC-60 treatment

also led to increased DNA fragmentation in human

breast cancer cells in a dose-dependent manner

(Fig. 1D). To further test the cytotoxic effect of SC-60

on normal MCF-10A human breast epithelial cells and

MCF-7 luminal breast cancer cells, we also performed

the MTT assay and flow cytometry analysis. As shown

in Fig. S2A, SC-60 showed antiproliferative effect on

MCF-10A as well as MCF-7 cells. In addition, SC-60

induced mild apoptosis-inducing effect on MCF-10A

at 5 lM and MCF-7 at 2 and 5 lM compared to that

of TNBC cell lines (Figs 1B and S2B). Our results

showed that SC-60 had more cytotoxic effects on

breast cancer cells than on normal breast MCF-10A

cells.

3.2. SC-60 enhanced cell apoptosis through

p-STAT3 inhibition

To investigate the mechanisms by which SC-60

inhibited cell growth and induced cell apoptosis in

TNBC, we analyzed the protein expressions of p-

STAT3 and its downstream proteins that have been

demonstrated to be involved in cancer cell prolifera-

tion and survival. We found that SC-60 inhibited

the expression of p-STAT3 and its downstream

effectors including Mcl-1, cyclin D1, and survivin in

TNBC cells in a dose- and time-dependent manner.

Because STAT3 has been reported as a transcription

factor, therefore, we also checked whether SC-60

affected the mRNA levels of its downstream mole-

cules. As shown in Fig. S3, SC-60 indeed decreased

the mRNA levels of STAT3 downstream target

genes, cyclin D1, Mcl-1, and survivin in MDA-MB-

231 cells. Furthermore, the levels of apoptosis-

related proteins were also activated by SC-60 in a

dose- and time-dependent manner in TNBC cells

(Fig. 2A,B). To analyze whether the activity of
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STAT3 is affected by SC-60, luciferase assays were

performed using the Cignal STAT3 Reporter Assay

Kit. TNBC cells were transfected with reference

pCMV-Renilla luciferase plasmid with a plasmid dri-

ven by the promoter region containing STAT3-

specific binding sites and treated with SC-60. Results

showed that SC-60 dose dependently decreased the

activity of STAT3 in TNBC cells (Fig. 2C). To fur-

ther validate the role of STAT3 in SC-60-induced

apoptosis in TNBC cells, we established stable

Fig. 1. SC-60 shows antiproliferative effects in human triple-negative breast cancer cells. (A) Cells were exposed to SC-60 at the indicated

doses for 72 h, and cell viability was assessed by MTT assay. (B,C) Flow cytometry assay revealed that SC-60 treatment resulted in

increased percentage of apoptotic cells in the aforementioned cell lines in a dose (B)- and time (C)-dependent manner. (D) SC-60 treatment

led to increased DNA fragmentation in TNBC cells in a dose-dependent manner. Means of at least three independent experiments

performed in triplicate are shown. Data are shown as mean � SD.
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STAT3-overexpressing MDA-MB-468 cells. As

shown in Fig. 2D, constitutively expressing STAT3

reversed SC-60-mediated p-STAT3 inhibition and

suppressed the apoptotic effect of SC-60 on MDA-

MB-468 cells, indicating that STAT3 mediates SC-

60-induced apoptosis in TNBC cells.

As there are other molecular events that typically

modulate STAT3 activity, such as VEGFR2,

PDGFRb, JAK1, JAK2, and ERK1/2 (Schreiner

et al., 2002; Tian and An, 2004; Yu et al., 2014), we

also examined the effects of SC-60 on these mole-

cules and found that SC-60 did not affect VEGFR2,

PDGFRb, JAK1, JAK2, and ERK1/2 (Fig. S4).

3.3. SHP-1 mediates effects of SC-60 on p-STAT3

inhibition in TNBC cells

To further determine the mechanism by which SC-60

inhibits STAT3 phosphorylation, we analyzed the

activity of its phosphatase, SHP-1, in SC-60-treated

cells. As shown in Fig. 3A, SC-60 increased SHP-1

activity significantly in three TNBC cell lines. We then

added a specific SHP-1 inhibitor, an a-haloacetophe-
none derivative PTP inhibitor III that acts as a cova-

lent inhibitor of PTPs and binds the catalytic domain

of SHP-1 (Arabaci et al., 1999), in MDA-MB-468 cells

and found that it significantly reduced SC-60-induced

Fig. 2. SC-60 enhances apoptosis and reduces p-STAT3 signaling in TNBC cells. (A,B) The effects of SC-60 on p-STAT3 and its downstream

molecules (Mcl-1, cyclin D1, and survivin) were analyzed by western blot. Cells were treated with SC-60 at the (A) indicated doses for 48 h

or (B) treated with SC-60 (5 lM) at the indicated times. (C) Cells were transfected with inducible STAT3-responsive firefly luciferase

construct and constitutively expressing Renilla luciferase construct as internal control for 48 h; then, the cells were treated with SC-60 at

indicated dose for 6 h. The activities of STAT3 were measured by dual luciferase assay. The activities of STAT3 of tested samples were

normalized with cells treated with DMSO. (D) Overexpression of STAT3 reversed the apoptotic effect of SC-60. MDA-MB-468 cells were

transfected with STAT3-expressing vector with myc-tag for 24 h and then treated with DMSO or SC-60 at 5 lM for another 24 h. DNA

fragmentation was measured, and the effect on p-STAT3 was analyzed by western blot. Means of at least three independent experiments

performed in triplicate are shown. *P < 0.05. Data are shown as mean � SD.
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Fig. 3. SC-60 induces cell apoptosis by SHP-1/p-STAT3 signaling in TNBC cells. (A) The activities of SHP-1 were measured at the indicated

doses for 48 h in MDA-MB-468, HCC1937, and MDA-MB-231 TNBC cell lines. (B) The protective effects of SHP-1 inhibitor on SC-60-induced

apoptosis in MDA-MB-468 cells. Cells were pretreated with 50 lM SHP-1 inhibitor (PTP inhibitor III) for 1 h and then treated with SC-60 at

5 lM for 36 h. DNA fragmentation was determined by the Cell Death Detection ELISAPLUS Kit. (C) Knockdown of SHP-1 reversed the

biological effects of SC-60 on apoptosis (left) and p-STAT3 inhibition (right). MDA-MB-468 cells were transfected with control siRNA

(scrambled) or SHP-1 siRNA for 24 h and then treated with SC-60 at 5 lM for another 24 h. The protein levels of p-STAT3, STAT3, SHP-1, and

actin (as loading control) were analyzed by western blot, and DNA fragmentation was measured by Cell Death Detection ELISAPLUS Kit. (D)

Schematic representation of wild-type SHP-1 (autoinhibited), deletion and single mutants of SHP-1 (mimic activated SHP-1). (E,F) MDA-MB-

468 cells were transfected with mutant SHP-1 (DN1 or D61A) for 24 h and then treated with SC-60 at 5 lM for another 24 h. (E) The protein

levels of p-STAT3, STAT3, SHP-1, and actin (as loading control) were analyzed by western blot. (F) The SHP-1 activity was assessed by SHP-1

phosphatase activity (left) and DNA fragmentation (right) was measured by Cell Death Detection ELISAPLUS Kit as described in Materials and

methods. Means of at least three independent experiments performed in triplicate are shown. *P < 0.05. Data are shown as mean � SD.
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downregulation of p-STAT3 and apoptosis (Fig. 3B).

Similarly, silencing SHP-1 with small interfering RNA

(siRNA) in MDA-MB-468 cells inhibited the effects of

SC-60 on p-STAT3 inhibition and cell apoptosis

induction (Figs 3C and S5). Previous studies have indi-

cated that the autoinhibitory structure from the N-

SH2 domain to PTP domain is the major regulator of

SHP-1 activity (Wu et al., 2003; Yang et al., 1998,

2003). The mutant SHP-1 constructs (DN1 and D61A)

shown in Fig. 3D have been generated to mimic the

open-form structure of SHP-1 (Tai et al., 2014b),

which showed higher SHP-1 activities than wild-type

SHP-1. Therefore, these two mutants would show

more potent inhibition on p-STAT3 expression due to

higher SHP-1 activities (Fig. 3E,F, left). Moreover, it

is expected that SC-60 would interfere the open/close

structures of SHP-1, thereby increasing the SHP-1

activity. Indeed, when the SHP-1 was maintained as

open structure (DN1 and D61A mutants), the effects

of SC-60 on p-STAT3 inhibition (Fig. 3E) and apop-

tosis were reduced (Fig. 3F, right).

3.4. SC-60 inhibits MDA-MB-468 tumor growth

in vivo

To investigate the clinical therapeutic options, we com-

bined SC-60 with docetaxel in MDA-MB-231 cells.

This combination increased apoptosis (Fig. 4A,

upper), DNA fragmentation (Fig. 4A, middle), and

strongly reduced STAT3 phosphorylation (Fig. 4A,

lower) in comparison with SC-60 treatment alone.

These results suggest that the combination of a lower

Fig. 4. Combination of SC-60 and docetaxel increases cell apoptosis by reducing p-STAT3, and SC-60 diminishes xenograft tumor growth of

TNBC cells. (A) Cells were treated with docetaxel (0.1 lM) for 24 h, then treated with SC-60 at the indicated doses (0, 2.5, and 5 lM) for

another 24 h. Effect of docetaxel/SC-60 combination on cell apoptosis (upper), DNA fragmentation (middle), p-STAT3 and its downstream

signaling (lower) were measured. Means of at least three independent experiments performed in triplicate are shown. Data are shown as

mean � SD. (B–D) MDA-MB-468-bearing mice were treated with vehicle or SC-60 orally at 20 mg�kg�1 three times a week. (B) Mice

images (upper left), growth curves (lower left), tumor weight (upper right), body weight (lower right), (C) SHP-1 activity, and (D) western

blot analysis of p-STAT3, STAT3, and Mcl-1 were measured. Data of growth curve (n = 5) are shown as mean � SE. Data of tumor weight,

body weight, and SHP-1 activity (n = 5) are shown as mean � SD. *P < 0.05. ***P < 0.001.
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dose of SC-60 with docetaxel provides new therapeutic

option in the treatment of patients with TNBC. To

determine whether the effect of SC-60 on TNBC cells

is potentially clinically relevant, we tested the in vivo

effect of SC-60 on tumor growth in a xenograft mouse

model. We found that SC-60 treatment showed

reduced tumor weight and suppressed tumor growth

(Figs 4B and S6), increased SHP-1 activity (Fig. 4C),

and decreased p-STAT3 and Mcl-1 expressions in

xenografted tumors (Figs 4D and S6). These results

indicated that SC-60 inhibited tumor growth through

STAT3 inactivation.

4. Discussion

In the current study, we demonstrated the in vitro

effectiveness of SC-60 in three TNBC cell lines MDA-

MB-468, HCC1937, and MDA-MB-231, and its in vivo

antitumor efficacy in a MDA-MB-468 xenograft

mouse model. We confirmed that SC-60 exhibits its

efficacy via the SHP-1/p-STAT3 pathway (Fig. 3).

Moreover, the potential combination with docetaxel

was shown by enhanced apoptosis in vitro (Fig. 4).

Our study further reinforces the notion that targeting

p-STAT3 by enhancing SHP-1 activity may be a useful

anticancer therapeutic approach, and also provides a

new chemical entity with pharmacological potential.

At present, there are no clinically approved STAT3-

targeted agents. One possible hindrance may be that

direct inhibition of STAT3 dimerization requires total

inhibition of STAT3 molecules in the cell, which may

need high drug concentrations (Chai et al., 2016; Fur-

tek et al., 2016). In contrast, kinase inhibitors or

enzyme activators may be feasible approaches (Zhang

et al., 2015; Zhong et al., 2015). JAK kinase inhibi-

tors, the so-called jakinibs, were originally designated

as therapy for myeloproliferative diseases (Kontzias

et al., 2012). Recently, the therapeutic implication of

these jakinibs has moved toward cancer and autoim-

mune diseases such as rheumatoid arthritis (Kontzias

et al., 2012). Indeed, the JAK inhibitor ruxolitinib is

currently in clinical trials for solid cancers (Hurwitz

et al., 2014) and is closer to clinical approval for can-

cer therapy compared with other STAT3-targeting

agents. As mentioned earlier, agents aiming to inhibit

STAT3 phosphorylation other than JAK inhibitors are

also an interesting field of drug development. Previ-

ously, we demonstrated that a SHP-1 enhancer, SC-43,

is effective for TNBC cells (Liu et al., 2013). A num-

ber of compounds or drugs have been reported to be

capable of enhancing SHP-1 activity (Fig. 5). Sorafe-

nib analogues with a urea-based structure (SC agents

such as SC-1, SC-49, SC-43, SC-60, and SC-78) have

been tested as SHP-1 enhancers for anticancer activity

in preclinical settings (Chen et al., 2012c; Fan et al.,

2014; Liu et al., 2013; Su et al., 2016; Tai et al., 2011).

Among these agents, SC-60 has been found to form

the hydrogen bonding with N280 of the PTP domain

through a docking model (Fan et al., 2014). Another

class of SHP-1 enhancer is obatoclax analogue, SC-

2001, increasing SHP-1 expression through transcrip-

tion factor RFX-1 (Chen et al., 2012b; Liu et al.,

2014; Su et al., 2012, 2014a,b). The core structure of

obatoclax and SC-2001 includes a pyrrole and indole

ring. Nintedanib has been found to elevate SHP-1

activity through interacting with SHP-1 at Glu524

through hydrogen bonding in a docking model (Tai

et al., 2014c). Although many SHP-1 activators have

been identified (Chen et al., 2012a,b,c; Liu et al., 2014;

Su et al., 2014a,b, 2016; Tai et al., 2012), the structure

and activity relationship still needs to be further inves-

tigated.

It is clear that many solid cancers have aberrant and

activated JAK/STAT signaling (Roxburgh and McMil-

lan, 2016; Sansone and Bromberg, 2012). Despite

STAT3 signaling not being specific for TNBC, target-

ing STAT3 activation in TNBC is feasible for several

reasons: First, currently there are no single pathways

specific for therapy for all subtypes of TNBC (Mayer

et al., 2014). Given the heterogeneity of TNBC

revealed by molecular profiling (Lehmann et al., 2011;

Mayer et al., 2014), the general applicability of STAT3

signaling in cancer cells provides an alternative strat-

egy to traditional chemotherapy. Moreover, we also

demonstrated the potential combination of chemother-

apeutics with SHP-1 agonists (Fig. 4), suggesting the

possibility of combining p-STAT3 inhibitors with

chemotherapy in the future. Furthermore, we recently

discovered a VEGF-A-dependent autocrine/paracrine

loop in TNBC which could be disrupted by SHP-1

enhancers, suggesting that the SHP-1/p-STAT3/

VEGF-A axis is a potential therapeutic target for

metastatic TNBC (Su et al., 2016). Interestingly, our

results showed that SC-60 had more cytotoxic effects

on breast cancer cells than on normal breast MCF10A

cells, and it seemed that TNBC cells might be more

sensitive than hormone receptor-positive MCF-7 cells

in terms of apoptotic effects (Figs 1 and S2). Estrogen

is a growth factor for hormone receptor-positive breast

cancer cells and may contribute to chemoresistance

(Jiang et al., 2012). Moreover, estrogen receptor (ERa)
can bind to STAT3 and JAK2, resulting in enhanced

JAK2 activity upstream of STAT3 in response to stim-

ulation which might lead to an increased (ERa)-depen-
dent cell viability (Binai et al., 2010). However, it

remains speculative and more studies are necessary to
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address possible mechanisms for the differential apop-

tosis sensitivities among TNBC and hormone receptor-

positive breast cancer cell lines.

Notwithstanding, the prognostic role of p-STAT3 in

cancer patient outcome seems to be conflicting among

various solid cancers (Thomas et al., 2015). A recent

review summarizing studies on the relationship between

JAK/STAT activation and prognosis suggested that

most studies have utilized immunohistochemistry to

determine p-STAT3 signaling (Thomas et al., 2015). In

several cancers such as prostate, non-small-cell lung

cancers, cervical cancers, renal cell carcinoma, and

glioblastoma, activation of STAT3 or STAT5 is associ-

ated with a worse prognosis; conversely, STAT3 is

associated with favorable prognosis in breast cancer

and in some studies in colorectal cancer and head and

neck squamous cell carcinoma (Thomas et al., 2015).

This difference in prognosis prediction may be partly

due to different tumor biology among cancers, and by

the various regulatory mechanisms upstream of p-

STAT3 signaling, for example, endogenous negative

regulators such as the suppressor of cytokine signaling

family, protein inhibitor of activated STAT (PIAS)

proteins and the PTP family, or post-translational

modifications (Chai et al., 2016).

In this study, we showed that SC-60 acts as a SHP-1

agonist. SC-60 increased SHP-1 activity, thereby

decreased p-STAT3, and subsequently decreased cyclin

D1 expression. However, SC-60 seemed to affect cyclin

D1 expression more prominently compared to p-

STAT3 expression (Fig. 2). Cyclin D1 can be regulated

by numerous effectors, such as STAT3 (Leslie et al.,

2006), ERK1/2 (Balmanno and Cook, 1999), and

SRC/PI3K/AKT (Xing et al., 2008) pathways. This

may indicate that p-STAT3 is not the only effector in

SC-60-mediated cyclin D1 suppression. There might be

other STAT3-independent effects of SC-60 on cyclin

D1. Moreover, previous studies have shown that SHP-

1 also regulates MAPK/ERK pathway by dephospho-

rylating ERK (Cai et al., 2006) and that lack of SHP-

1 prevents phosphorylation of the active site (Tyr416)

on Src (Okenwa et al., 2013). In contrast, our data

Fig. 5. Chemical structures of compounds or drugs that have been reported to enhance SHP-1 activity.
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showed that SC-60 did not significantly alter the phos-

phorylation of ERK1/2 (Fig. S4), whereas the phos-

phorylation of Src on Try416 was found to be mildly

decreased with SC-60 treatment (Fig. S5). However,

why SC-60 (as a SHP-1 agonist) could affect p-Src

(Try416) is not clearly understood; we suggest that

SC-60 may exert other than SHP-1 agonist activity

(off-target effect) that decreases p-Src (Try416) or may

through other effectors to decrease the expression of

cyclin D1. Nevertheless, further studies are necessary.

In summary, our study demonstrates the preclinical

activity of a SHP-1 agonist SC-60 in TNBC, the thera-

peutic implication of targeting SHP-1/p-STAT3, and

the potential combination of a SHP-1 agonist with

chemotherapeutic docetaxel as a feasible therapeutic

strategy for TNBC.
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Fig. S6. SC-60 diminishes xenograft tumor growth of

MDA-MB-468 cells.
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