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The review “Regulation of body weight: lessons learned from bariatric
surgery” by Albaugh et al. in the current issue of Molecular Metabolism
critically examines the available rodent and human literature on vertical
sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB). The
authors’ goal was to shed light on the mechanisms underlying bariatric
surgery’s beneficial metabolic effects. Bariatric surgery still is the most
effective therapy for severe obesity.
Bariatric surgery dates back to the early 1950’s, preceding the start of
the obesity epidemic in the United States by at least four decades [1].
Jejunoileal bypass (JIB), the first bariatric surgery to be developed, had
a clear mechanistic rationale [2]. By leading to severe malabsorption
through the establishment of a short bowel syndrome, JIB promoted
dramatic weight loss [3]. Due to an unacceptably high rate of com-
plications and mortality, JIB was eventually abandoned in favor of the
precursors of modern bariatric surgery procedures, such as VSG and
RYGB. Although VSG and RYGB are the two most performed bariatric
procedures worldwide [4], how they promote durable weight loss and
type 2 diabetes clinical improvement is incompletely understood. As
Albaugh and his co-authors point out, the classification as restrictive or
malabsorptive is rather simplistic, not fully explaining the metabolic
effects of either VSG or RYGB [5].
The authors carefully and extensively reviewed substantial evidence
that indicates that bariatric surgery promotes weight loss and blood
glucose lowering through multiple mechanisms (Figure 1). These
mechanisms include changes in GLP-1 secretion, bile acid and gut-
brain neural signaling, and gut intestinal reprogramming of glucose
metabolism. Front and center in their critical analysis is the increased
incretin response after VSG and RYGB, which acts as a driver of both
weight loss and glucose homeostasis improvement. The authors
highlight that the most effective pharmacological therapy for obesity,
the GLP-1 receptor agonists, emulates the increase in incretin
secretion observed after VSG and RYGB [6,7]. Although the review
points out that therapies based on the manipulation of bile acid
signaling have not come to fruition yet, there is compelling evidence
that changes in bile acid signaling may be involved in the weight and
glucose homeostasis effects of bariatric surgery. In preclinical studies,
both the farnesoid x receptor and the G coupled bile acid receptor
TGR5 signaling have been implicated as effectors of the changes in
circulating bile acids that occur post bariatric surgery. Whether
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through increased or reduced FXR signaling, studies have suggested
that manipulating signaling at this receptor can lead to weight loss
and improvement of glucose homeostasis [8,9]. Although TGR5
signaling was not found to contribute to weight loss in preclinical
models of bariatric surgery, increased TGR5 signaling was associated
with improved glucose tolerance and hepatic insulin signaling [10].
More importantly, to some extent, human studies have supported
these preclinical findings by revealing an association between RYGB
and increased postprandial bile acid plasma levels and FGF19 plasma
levels e FGF19 is a hormone that regulates bile acid synthesis
[11,12]. Regarding changes in sensory nerve signaling, preclinical
studies have suggested a role for changes in signaling in vagal af-
ferents in the decreased energy intake observed after RYGB [13,14].
Lastly, although one preclinical study showed that RYGB led to
increased glucose metabolism by intestinal epithelial cells through
mechanisms that involve increased GLUT1 expression, it is not clear
whether intestinal reprograming of glucose metabolism occurs in
humans or whether it important for the metabolic benefits of RYGB in
human patients [15].
An important omission by the present review is the lack of a discussion
on metabolic adaptation and weight regain in the context of bariatric
surgery. The decrease in energy expenditure that accompanies any
type of weight loss is known as metabolic adaptation [16,17]. One
striking feature of bariatric surgery is that is causes more limited
metabolic adaptation than weight loss induced by diet and exercise, as
elegantly shown in the landmark study by Kevin Hall’s group [18].
Weight regain, which has replaced the use of the negative term
‘obesity recidivism’, is estimated to affect at least 30e40% of bariatric
patients [19e22]. A recurrence or new onset of obesity co-morbidities
often accompanies weight regain.
Despite an incomplete mechanistic understanding of modern bariatric
surgery, more than 250,000 Americans undergo these procedures
annually [23]. And this number is estimated to represent only
approximately 1e2% of all individuals with obesity deemed eligible by
NIH criteria [24]. Most patients lack access to bariatric surgery. Thus,
this is a timely review that emphasizes the importance of identifying
the molecular and signaling pathways that are the gateways to bar-
iatric surgery’s durable weight loss and blood glucose lowering. Once
we understand how bariatric surgery works, effective, less-invasive or
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Figure 1: Possible mechanisms through which bariatric surgery leads to durable weight loss and glucose homeostasis improvement. GLP-1 e glucagon-like peptide 1; FGF19 e
fibroblast growth factor 19; FXR e farnesoid receptor; TGR5 -Takeda G-protein receptor. Created with BioRender.com.
non-invasive therapies can be developed to replace the surgical pro-
cedures that are needed today.
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