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ABSTRACT

While phospho-proteomics studies have shed light
on the dynamics of cellular signaling, they mainly
describe global effects and rarely explore mechanis-
tic details, such as kinase/substrate relationships.
Tools and databases, such as NetworKIN and Phos-
phoSitePlus, provide valuable regulatory details on
signaling networks but rely on prior knowledge.
They therefore provide limited information on less
studied kinases and fewer unexpected relationships
given that better studied signaling events can mask
condition- or cell-specific ‘network wiring’.

SELPHI is a web-based tool providing in-depth
analysis of phospho-proteomics data that is intu-
itive and accessible to non-bioinformatics experts.
It uses correlation analysis of phospho-sites to ex-
tract kinase/phosphatase and phospho-peptide as-
sociations, and highlights the potential flow of sig-
naling in the system under study. We illustrate SEL-
PHI via analysis of phospho-proteomics data ac-
quired in the presence of erlotinib––a tyrosine ki-
nase inhibitor (TKI)––in cancer cells expressing TKI-
resistant and -sensitive variants of the Epidermal
Growth Factor Receptor. In this data set, SELPHI
revealed information overlooked by the reporting
study, including the known role of MET and EPHA2
kinases in conferring resistance to erlotinib in TKI
sensitive strains. SELPHI can significantly enhance
the analysis of phospho-proteomics data contribut-
ing to improved understanding of sample-specific

signaling networks. SELPHI is freely available via
http://llama.mshri.on.ca/SELPHI.

INTRODUCTION

Protein phosphorylation is the major driver of cellular sig-
naling in cells, leading to dynamic and complex network re-
sponses. Deregulation of these pathways is a major cause in
many diseases including cancer, driving our need to under-
stand them at the molecular interaction level.

Quantitative, large-scale phospho-proteomics studies
(1,2) have uncovered signaling responses to a variety of en-
vironmental conditions and cell types. Typically, they infer
global signaling changes using GO term/ Pathway enrich-
ment analysis (3–5), identify over-represented motifs (6),
use clustering to identify co-modulated sets of phospho-
peptides, and map the modulated peptides onto known pro-
tein interactions networks (7). However, this type of analysis
leaves a wealth of mechanistic information unexplored.

Several tools and databases, such as PhosphoSitePlus (8),
NetworKIN (9) and KinomeXplorer (10) have been devel-
oped to extract regulatory details from high throughput
data sets (Supplementary Table S1). Because these tools rely
on existing knowledge, they provide valuable details on net-
works involving well-studied kinases or pathways. For ex-
ample, NetPhorest (11) was used in the work of Olsen et al.
(12) to predict kinase/substrate connections on a dynamic
phospho-proteome map of the cell cycle. Reliance of this
analysis on prior knowledge, however, makes these meth-
ods less able to reveal less studied pathways and unexpected
condition-specific events, such as a novel kinase substrate
recognition motif.
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Network representations of phospho-profile correlations
(13) can visualize co-changing phospho-peptides in a global
phospho-proteomics data set, highlighting potential co-
functioning groups and kinase-substrate relationships rel-
evant to the conditions studied. In combination with meth-
ods described above that can predict kinase-substrate rela-
tionships and model networks (14), they can provide spe-
cific insights into the signaling network of interest.

Here we present SELPHI (Systematic Extraction of
Linked PHospho-Interactions), a tool that aims to make the
analysis of global phospho-proteomics data readily avail-
able to the non-bioinformatics expert. SELPHI performs
a data-driven correlation analysis that focuses on relation-
ships between kinases, phosphatases and other phospho-
peptides in order to better understand the flow of cell sig-
naling. The resulting correlation networks are applicable
to any phospho-proteomics data set, and can be readily
grasped intuitively. Because it integrates information from
a wide range of databases and generates global correlation
networks, SELPHI also provides an excellent starting point
for bioinformaticians, allowing them to focus on more ad-
vanced or application-specific modeling.

MATERIALS AND METHODS

Interface input and analysis customization

SELPHI provides a user-friendly interface with extensive
documentation. At minimum it requires two types of input:
(i) the user’s phospho-proteomics data, in the form of one
or more ExcelTM or tab-delimited text files. The required
columns include the proteins identified, the modified pep-
tide sequence and the (normalized) fold-change ratios of the
phospho-peptide ion intensities in the samples. Optionally,
users can specify the peptide intensity or score, which is then
used to calculate a weighted mean of the fold-change ratios
when merging identical peptides. (ii) Information about the
proteins and sequence sites to which peptides map, either
as a sequence database (in FASTA format), which SEL-
PHI will use to extract this information, or if this is un-
available as (a) an ExcelTM or tab-delimited text file with
the ids listed in the ‘Proteins’ column of their input file fol-
lowed by columns labeled UniprotID (listing the Unipro-
tKB ID) and/or GeneID (listing the Entrez GeneID) and
(b) a file mapping phospho-peptides to their corresponding
sequence (e.g MAPK1 VADPDHDHTGFLpTEpYVATR
MAPK1 Y187). We have developed a tool called SELPH-
Convert to help the users convert their data reports to
SELPHI-useable files (Supplementary Note 1). Several pa-
rameters (Table 1 and Supplementary Table S2) can be
tuned to customize the analysis. For example the user can
restrict the interactions integrated from STRING (15) or
GeneMania (16) to only those that are supported by exper-
imental, database (STRING) or physical interaction (Gen-
eMania) evidence as opposed to all types of evidence, which
would include e.g. text-mining.

Web server workflow and output

SELPHI’s workflow is presented in Figure 1. If the user has
provided protein sequences, SELPHI first pre-processes the
input data to identify the associated UniprotKB ID (17)

and phosphosite positions in the sequence and filters the
data according to the fold change cutoff defined (default is
3-fold). Duplicate peptide identifications are merged using
either their weighted average (if there is an intensity or score
column available) or the value that represents the maximum
change, according to the preferred user settings. Combined
input data sets with less than two data points, defined as a
ratio or intensity value acquired by a single sample, replicate
and condition, are not processed by SELPHI, while the user
can restrict their data to only peptides that appear in a min-
imum number of samples/conditions through the submis-
sion interface. There is no limit to the number of peptides
in a data set. KEGG pathway (18) and GO Term (FuncAs-
sociate 5) enrichment for the changed peptides is then cal-
culated. The results are plotted as a clustered matrix of the
over-represented pathways/GO terms against the samples
(Figure 2A, B), colored by the additive (pathways) or aver-
age additive (GO terms) log-ratio of intensity for peptides
belonging to that term for each sample and demonstrating
the enrichment’s effect size (log odds ratio) via the size of
the box.

When clustering the phospho-peptides, SELPHI uses ei-
ther k-means clustering (19) to split the peptides into k
groups (where k is defined by principal component analy-
sis) or Normal Mixture Modeling (20). It subsequently per-
forms GO term enrichment analysis, on each of these sub-
clusters using FuncAssociate (5), plots the phospho-profiles
of these clustered groups (Figure 2C), and then hierarchi-
cally clusters phospho-profiles to uncover additional groups
of interest within these sub-clusters.

Correlation analysis, using a user-defined mea-
sure (Table 1), is then performed between all pairs of
kinases/phosphatases in the set and the set of changed pep-
tides (using R functions cor and cor.test). The kinases and
phosphatases are defined as having at least one SMART
(21) or Pfam (22) kinase domain in their sequence. SELPHI
only performs a correlation analysis if there are three or
more input data points for the phospho-peptides and uses
the Pearson correlation coefficient if there are fewer than
six. The Spearman correlation is used by default other-
wise. These data points can be ratios (recommended) or
normalized intensities, however they have to be consistent,
i.e. the user can’t mix both types of data. In the event that
there are multiple replicates of the samples, the user can
either treat them as separate data sets, or upload a file
that defines which data points comprise replicates of the
same sample and SELPHI will merge these points using
either the average change or maximum change, according
to the user’s choice. Each correlation pair is then filtered by
P-value (Table 1; Supplementary Note 2) and annotated
with information integrated from external databases (Table
2) (6,8–10,15–16,18,23–27). If there is evidence supporting
the pair and/or if the correlation meets the defined cutoff,
then the pair is kept. The result is a heatmap (Figure 2D)
of co-changing kinase/phosphatase phospho-peptides and
other modulated phospho-peptides. These networks are
provided both as files in text format and visualized in a
Cytoscape web-app (28).

Finally, SELPHI calculates motif enrichment (29)
amongst peptides associated with each kinase. The
phospho-peptides are centered at the modified residue and
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Table 1. Main analysis customization input parameters and their default values (Full table of input options is presented in Supplementary Table S1)

Parameter Default Description

Clustering method NONE Cluster phospho-peptides using either PCA & k-means (19) or
mclust (20)

Ratio Cutoff 3 Threshold for phospho-peptide intensity ratio
Correlation Method Spearman Choose correlation index among Spearman, Pearson and Kendall tau.
Correlation Cutoff 0.8–0.9 Correlation coefficient threshold. Default 0.9 for Pearson, 0.8 for

Spearman or Kendall tau
Correlation P-value Cutoff 0.05 Threshold for significance of correlation of phospho-peptide profiles

Figure 1. Workflow of SELPHI. SELPHI first identifies the UniprotKB IDs and sequence location of the input phosphosites. The data are then fil-
tered according to the input cutoff and clustering, KEGG pathway/GO term enrichment analysis and correlation analysis is applied on the input
data. The result is an exploratory representation of the global effects relating to cell pathways and functions, a network view of potentially relevant
kinase/phosphatase/substrate associations with the likely flow of signaling, as well as motifs enriched in the data set.

Table 2. Databases used to integrate information for annotation and filtering

Database/Tool Description

GeneMania (16) Database of functional association networks
PhosphoSitePlus (8) Database of phospho-sites, including kinase-substrate information and role of phosphorylation on

function
PhosphoELM (23) Database of phospho-sites and kinase-substrate relationships
KEGG Pathways (18) Database of curated pathways
Animal TFDB (24) Database of animal transcription factors and binding sites
nTFdb (25) Database of worm transcription factors
YEASTRACT (26) Database of yeast transcription factors and binding sites
ELM (6) Database of Eukaryotic Linear Motifs
NetworKIN (9,10) Tool to predict kinase/substrate relationships
STRING (15) Database of protein associations and interactions
ProteoConnections (27) Data integration tool for proteomics data (SELPHI uses the motifs list)

± 5 amino acids from the protein sequence surrounding
the residue are included. The background sequences
relative to which enrichment is calculated comprise 10000
random peptides, 11 amino acids long, centered at a
serine/threonine or tyrosine, and extracted from the
corresponding proteome (human, mouse or yeast) after
redundancy reduction at 40% sequence identity using
cd-hit (17,30). No bias for specific residues was found
when using random vs in silico digested tryptic peptides as
background. The results are presented as logos (31).

All the clustered matrices are leaf-order-optimized using
R package cba (v.0.2-14) and all output files remain down-
loadable for at least one week (Supplementary Table S3).

Web server implementation

SELPHI is mounted through a custom Node.js (http://
nodejs.org/) webserver. After the data are uploaded through
the web form, the server submits child processes that launch
SELPHI (perl and R). The output association networks are
converted into a JSON object using an R script, allowing
their seamless integration into the Cytoscape.js (28) library
and the creation of a webpage (linked through the results
page) with dynamic functions (zooming, moving nodes, col-
oring according to phospho-profiles).

RESULTS

Sample data set: epidermal growth factor receptor case study

The Epidermal Growth Factor Receptor (EGFR) is a re-
ceptor tyrosine kinase, involved in cell adhesion, migration

http://nodejs.org/


Nucleic Acids Research, 2015, Vol. 43, Web Server issue W279

Figure 2. (A) Signaling Pathway and (B) Disease pathway enrichment in the modulated peptides of the case study data set comprising samples collected
from adenocarcinoma cells expressing tyrosine kinase inhibitor (TKI) resistant and sensitive EGFR in the presence and absence of the TKI erlotinib (33).
The size of the boxes represents the odds ratio of pathway enrichment and the color represents the sum of log(ratios) of the phospho-peptide in each
condition shown in the x axis. Clustering was done according to the latter measure. (C) (i) Phospho-profile changes for the peptides in each cluster (ii) GO
terms enrichment (5) for each cluster. (D) Heatmaps of correlations between tyrosine kinases and phosphatases and their associated phospho-peptides. (E)
Logo (31) of significantly (P-value < 0.05) over-represented residues in the phospho-peptides associated with MAPK1 (Supplementary Table S6) in the
case study against a background of 10000 random S/T/Y centered peptides from the non-redundant (at 40% sequence identity) human proteome.

and proliferation. EGFR has been extensively studied due
to its high mutation rates in lung and other cancers (32).
Here we use a global phospho-proteomics data set reported
by Zhang and coworkers (33) to illustrate the use of SEL-
PHI. In this data set, lung adenocarcinoma cells express-
ing EGFRL858R or EGFRL858R/T790M variants––which are
respectively sensitive and resistant to tyrosine kinase in-
hibitors (TKI)––were exposed to the TKI erlotinib with and
without EGF stimulation. We submitted these data sets to

SELPHI, using as cutoff the same fold-change ratio (1.5) as
the authors.

First, SELPHI performs pathway enrichment analysis,
finding ErbB, Insulin Receptor, mTOR signaling, and other
pathways (Figure 2A) to be enriched amongst the changed
phospho-peptides, consistent with the results of the orig-
inal publication (33). The SELPHI-based visualization of
the enrichment highlights the differences between the TKI-
resistant and -sensitive strains. For example, as shown in
Figure 2B, erlotinib was identified as having an effect on the
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KEGG (18) ‘Non small cell lung cancer pathway’ for sen-
sitive strains, but clearly not for resistant EGFR-mutated
strains. The TKI-resistant EGFRL858R/T790M mutant is a
frequent adaptation to prolonged treatment of non small-
cell lung cancer with erlotinib (34). We observe a similar
result for prostate cancer and other cancer types. Similar re-
sults are also obtained with the GO term enrichment anal-
ysis (Supplementary Figure S1).

Next, the peptides were grouped into four clusters (19).
Figure 2C shows the changes in the phospho-peptides in
these groups for each condition. GO term enrichment anal-
ysis was performed in each of the clusters uncovering the
subgroups enriched in functions such as cytoskeletal orga-
nization or RNA processing and transport. Clusters 1 and 2
yielded significant (P-value 0.002 and 8.2*10−9 respectively)
over-representation of proteins that are known to interact
(15), suggesting functional relevance of the clusters.

SELPHI identifies phospho-peptides with correlated log-
ratios of phospho-peptide intensity (see Methods section).
Among 40421 potentially correlated pairs, 641 are either
known interactions or have a known (35) or predicted (36)
kinase-substrate relationship (NetworKIN cutoff = 2.5).
We were able to recover 90 of the known relationships
within our 3656 (correlation P-value < 0.05) significantly
correlated pairs. This represents a significant enrichment of
known interactions in the filtered set (Fisher’s Exact test
P-value 1.5e-05, odds ratio = 1.6), supporting the use of
phospho-profile correlation analysis to extract association
information between kinases/phosphatases and modulated
phospho-peptides, even when the available data points are
very few, like in our example, thus reducing the statistical
power of the approach (Supplementary Note 2, Supplemen-
tary Figure S3). Using the entire SELPHI pipeline the final
data set included 119 of the known or predicted interac-
tions, representing an even higher enrichment (Fisher’s Ex-
act test P-value < 2.2e-016, odds ratio = 2.6). The remain-
ing known relationships were missed, perhaps due in part
to the experimental conditions used or due to strict filter-
ing, which is user-adjustable.

Annotation and filtering of
kinase/phosphatase––phospho-peptide pairs based on
data integrated from public databases (see Methods) result
in 3285 candidate relationships. For easier interpretation
SELPHI focuses on the peptides associated with tyrosine
kinase phospho-peptides, which are likely to occur up-
stream in the pathway and might represent kinase-substrate
relationships or direct consequences of the EGFR phos-
phorylation. The sites with most associations clearly stand
out in this representation indicating phospho-sites that
are potential drivers of pathway progression, rather than
random effects from downstream pathways or sample
preparation. In this case study (Figure 2D), we observe that
SELPHI correctly associates EGFR with its known effector
SHC1 (37), and with MAPK1, MAPK3 and MAPK14,
in agreement with activation of the MAP kinase pathway
known to result from EGF stimulation. All three identified
EGFR phospho-sites are known to activate its kinase
activity (8). The Y1197 site is also associated with the
phosphatase PTPN14. The Hippo pathway protein YAP,
knock-down of which sensitizes cancer cells to erlotinib,
is known to be negatively regulated via the PPxY motif of

PTPN14 (38). The results of the SELPHI analysis suggest
a cancer-cell relevant feedback mechanism with PTPN14
reducing EGFR activation, perhaps through crosstalk with
the Hippo pathway.

MET and EPHA2 receptor tyrosine kinases seem to be
strongly anti-correlated with MAPK1, and MAPK14. The
MET phospho-peptide is reduced in all conditions except
in the presence of erlotinib and EGF stimulation in the
TKI sensitive strain. MET activity is increased in non-small
lung cell carcinomas that are being treated with erlotinib
(39,40), potentially conferring resistance to this drug. This
is supported by the negative correlation of this kinase with
the main signaling branches that are down regulated by
erlotinib treatment. EPHA2 is also stabilized by kinase-
inhibited EGFR contributing to TKI cancer cell resistance
(40). Similar information can be extracted from the down-
stream serine/threonine phospho-network (Supplementary
Note 3, Supplementary Table S4, Figure S2) and the asso-
ciation of kinases with phospho-peptides of transcription
factors is also available (Supplementary Table S5; Supple-
mentary Note 4).

Finally SELPHI searches for enriched motifs that have
functional significance suggesting the overall kinase speci-
ficity and the generation of phospho-binding sites for a spe-
cific protein target in these conditions. For example, we
identify the known MAPK recognition site XXX(ST)PXX
(6)(Figure 2E).

DISCUSSION

We have developed SELPHI to enable accessible, au-
tomated analysis and interpretation of global phospho-
proteomics data for non-bioinformaticians. Beyond the
analysis of novel data, this also allows the analysis and in-
tegration of data sets published in the literature to uncover
previously overlooked information on a signaling system.
For example, the role of EGF signaling on RNA processing
has been reported in other studies (41), but was not reported
in the work we re-analyzed as a case study. Another previ-
ously overlooked observation was that MET and EPHA2
are negatively correlated with the phosphorylation of the
SHC1 and MAPK1 phospho-peptides. SELPHI highlights
such dependencies and presents them in a way that allows
for the straightforward suggestion of candidate signaling
component relationships.

The intuitive submission form of SELPHI enables the
user to apply a default analysis to their data but also pro-
vides control over most major parameters, giving flexibility
to customize the analysis according to the data and purpose,
e.g. exploratory analysis or formation of testable hypothe-
ses.

SELPHI’s correlation analysis displays
kinases/phosphatases and associated phospho-peptides
in easily interpretable heatmaps and networks. Although
suggested kinase networks do not necessarily represent
direct kinase/substrate relationships and may have many
false positives, they provide an important starting filter for
a user to further apply their own domain knowledge and
discover condition-specific kinase-substrate relationships.
Phospho-modifications of kinases that potentially alter
activity should exhibit stronger and more abundant cor-
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relations with other phospho-peptides, and it is therefore
possible through SELPHI to identify potential information
flows from receptor tyrosine kinases all the way to tran-
scriptional factors. Moreover, in combination with all the
annotation provided by SELPHI, modeling of signaling
pathways can be greatly simplified and accelerated. Toward
interaction modeling, identification of enriched sequence
patterns can provide insights into kinase specificity and
substrate preferences.

We expect that SELPHI will contribute to enhanced use
of published and novel phospho-proteomics data, facilitat-
ing more detailed visualization, modeling and understand-
ing of cell type- and condition-specific cellular signaling.

AVAILABILITY

SELPHI is freely available at http://llama.mshri.on.ca/
SELPHI.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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