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Abstract
Background. Glioblastoma remains highly lethal due to its inevitable recurrence. Most of this recurrence is found 
locally, indicating that postsurgical tumor-initiating cells (TICs) accumulate at the tumor edge. These edge-TICs 
then generate local recurrence harboring new core lesions. Here, we investigated the clinical significance of the 
edge-to-core (E-to-C) signature generating glioblastoma recurrence and sought to identify its central mediators.
Methods. First, we examined the association of E-to-C-related expression changes to patient outcome in matched 
primary and recurrent samples (n = 37). Specifically, we tested whether the combined decrease of the edge-TIC 
marker PROM1 (CD133) with the increase of the core-TIC marker CD109, representing E-to-C transition during the 
primary-to-recurrence progression, indicates poorer patient outcome. We then investigated the specific molecular 
mediators that trigger tumor recurrence driven by the E-to-C progression. Subsequently, the functional and trans-
lational significance of the identified molecule was validated with our patient-derived edge-TIC models in vitro and 
in vivo.
Results. Patients exhibiting the CD133low/CD109high signature upon recurrence representing E-to-C transition dis-
played a strong association with poorer progression-free survival and overall survival among all tested patients. 
Differential gene expression identified that PLAGL1 was tightly correlated with the core TIC marker CD109 and was 
linked to shorter patient survival. Experimentally, forced PLAGL1 overexpression enhanced, while its knockdown 
reduced, glioblastoma edge-derived tumor growth in vivo and subsequent mouse survival, suggesting its essen-
tial role in the E-to-C-mediated glioblastoma progression.
Conclusions. E-to-C axis represents an ongoing lethal process in primary glioblastoma contributing to its recur-
rence, partly in a PLAGL1/CD109-mediated mechanism.

Tumor edge-to-core transition promotes malignancy 
in primary-to-recurrent glioblastoma progression in a 
PLAGL1/CD109-mediated mechanism
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Key Points

• Edge-to-core (E-to-C) progression is a pathobiological process contributing to 
glioblastoma lethality.

• The CD133low/CD109high signature is a novel prognostic molecular biomarker 
representing the E-to-C transition.

• PLAGL1 regulates the growth of tumor edge-located glioblastoma-initiating cells.

Glioblastoma is an incurable universally lethal disease and 
characterized by inter- and intratumoral heterogeneity.1–6 
Transcriptome-based subtyping of individual tumors is con-
sidered a milestone discovery of the past decade7,8; none-
theless, this molecular subtyping has yet to change clinical 
management, unlike other cancers that now have distinct 
treatment options instructed by particular genetic subtype 
information (eg, breast cancer, neuroblastoma).9,10 In sharp 
contrast to the accumulating experimental evidence for the 
mesenchymal shift of glioblastoma tumors being highly as-
sociated with a gain of malignancy and therapy resistance 
in various model systems, clinical data remain lacking to 
suggest that mesenchymal glioblastoma gains benefit from 
more extensive and/or different therapies. In addition, mul-
tiple independent large-scale studies have clarified that the 
transcriptomic subtype switch between primary and recur-
rent glioblastomas is simply a random event without any 
clear trend of 1 way or the other including toward the mes-
enchymal shift.11

Most glioblastomas recur within a few years as the 
main cause of its dismal prognosis in developed coun-
tries.12 A  large degree of molecular difference between 
primary and recurrent tumors has been recognized by 
various OMICs analyses including deep sequencing, 
both with tumor tissues13,14 and at the single cell level.15 
Since the brain tissues adjacent to surgical resection are 
the most frequent sites of tumor recurrence, the normal 
parenchyma-tumor core interface (termed tumor edge) 
presumably contains postsurgical tumor-initiating cells 
(TICs; also termed recurrence-initiating cells) after cra-
niotomy. Molecular and, more importantly, pheno-
typic characterization of these edge-TICs may lead to 
the identification of a means to inhibit the process of 

tumor recurrence after failure of the current therapies for 
glioblastoma.16,17

Diffuse infiltrative gliomas, when they recur, are detected 
by the propagation of new tumor core lesions, indicating 
the edge-to-core (E-to-C) transition is likely a critical step 
toward patient lethality. Nonetheless, these lethal seeds 
for tumor recurrence are mostly, if not entirely, surgically 
untouchable due to the presence of intermingled normal 
functional brain cells including neurons. In fact, despite re-
cent advances in surgical technology increasing the extent 
of resection of the tumor core lesions to up to over 99%, 
the improvement of postsurgical patient survival surpris-
ingly remains marginal. Therefore, further attention needs 
to be placed on the characterization and targeting of the 
remaining edge lesions (T2/FLAIR abnormality without 
Gadolinium enhancement on MRI), the cause of E-to-C 
progression and lethal tumor recurrence. In order to un-
cover the functional roles of tumor cells within this edge 
microenvironment, our recent clinical practice has under-
taken an advanced program to isolate and characterize 
regionally distinct tumor cell populations by the supra-
total resection during awake surgery to obtain reasonable 
amounts of edge tissues without harming patients. This 
has allowed us to functional identify CD133 and CD109 as 
the representative molecules of the edge-located and ac-
quired core-associated TICs, respectively.3,16,18,19

In this study, we investigated this presumptive conver-
sion of CD133high/CD109low cells to CD133low/CD109high 
cells as representative of highly lethal E-to-C dynamics 
by using 37 pairs of samples from matched primary and 
recurrent glioblastoma tumors. We then postulated that 
the decline of CD133 expressing TICs and the increase of 
CD109-expressing TICs indicates active E-to-C progression, 

Importance of the Study

Very few studies have sought to longitudinally 
characterize the transition of molecular land-
scapes from primary to recurrent glioblastoma. 
Postsurgical edge-located TICs are presumably 
the predominant source of tumor recurrence, 
yet this cellular composition remains largely 
uncharacterized. This study evaluates the sig-
nificance of glioblastoma edge-derived core 
(E-to-C) transition signature for lethal tumor 
recurrence with a paired primary-recurrent 

patient cohort. We elucidate a prognostically 
significant shift in molecular and cellular pheno-
types associated with E-to-C by the CD133low/
CD109high dynamics. Moreover, our results pro-
vide a set of clinical and experimental evidence 
that the oncogenic transcription factor PLAGL1 
represents an E-to-C determinant for glioblas-
toma development by the direct transcriptional 
regulation of the core TIC marker CD109.



3Li et al. Tumor edge-to-core transition in glioblastomas
N

eu
ro-O

n
colog

y 
A

d
van

ces

worsening patient prognosis. To test this idea, we seg-
regated our longitudinal sample set into 4 groups based 
on the CD133/109 expression changes. A set of integrated 
multimodal analyses was performed, followed by the pre-
clinical validation of the identified molecular target as a 
functional key determinant for E-to-C-related glioblastoma 
aggressiveness.

Materials and Methods

Patients, Specimens, and Ethics

All 37 longitudinal glioblastoma cases were treated at 
Samsung Medical Center and Seoul National University 
Hospital and the tumor tissues were collected for re-
search under the approved institutional review boards. 
Detailed methods are described in the previous study16 
and Supplementary Material. For the preclinical studies, 
4 patient-derived glioma sphere models were used, in-
cluding 3 pair of tumor core- and edge-derived ones (1051E 
and C, 1053E and C, and 0573E and C) as well as one tumor 
edge-derived sphere line (101027E), which were established 
and described elsewhere.3,16,18–22 In short, with the signed 
patient consent, the senior author (I.N.) performed supra-
total resection of glioblastoma tumors under the awake 
setting and resected both tumor core (T1-Gadolinium(+) 
tumors) and edge (T1-Gadolinium(-)/T2-FLAIR abnormal 
tumors in the noneloquent deep white matter) to achieve 
maximal tumor cell eradication without causing any per-
manent major deficits in the patients (Supplementary 
Figure 1A). After the confirmation of enough tumor tissues 
from both lesions secured for the clinical diagnosis, re-
maining tissues were provided to the corresponding scien-
tists following de-identification of the patient information. 
Both the core-derived and edge-derived glioma spheres 
were established in the same culture condition3,16,18–24 and 
their spatial identities, termed core-ness and edge-ness, 
were confirmed by a set of xenografting experiments 
into mouse brains (details described in ref. 16). Only those 
that passed this confirmation were used in this study. 
The other patient-derived glioma sphere models without 
spatial information were established as “core-associated 
glioma spheres” using the same protocol and reported 
elsewhere.16–23 All these patient-derived glioma models 
were periodically checked with the mycoplasma test and 
the short tandem repeat analysis. All work related to pre-
clinical data was performed under an Institutional Review 
Board-approved protocol (N150219008) compliant with 
guidelines set forth by National Institutes of Health (NIH).

Public Microarray Data Processing

Three RNA sequencing datasets were downloaded from 
the Gene Expression Omnibus database (https://www.
ncbi.nlm.nih.gov/geo/), including GSE63035, GSE67089, 
and GSE113149.19,21,25 RNA sequencing data of 29 longitu-
dinal samples were derived from GSE63035, and 8 longi-
tudinal samples were newly added; all the samples were 
IDH-wild type. The GSE67089 datasets contained gene ex-
pression data of MES, PN glioma sphere cells, and Neuron 

progenitor cells. The GSE113149 included the microarray 
data for sh-NT versus sh-CD109 in glioblastoma sphere 
267. The RNA sequencing data of TCGA database were ac-
quired from the TCGA Research Network (https://www.
cancer.gov/tc-ga) and visualized by Gliovis26 (http://gliovis.
bioinf o.cnio.es/).

In Vitro Experiments

Detailed methods are described in the Supplementary 
Material.

In Vivo Mouse Experiments

All animal experiments were performed under the 
Institutional Animal Care and Use Committee (IACUC)-
approved protocol according to NIH guidelines. Detailed 
methods are described in the Supplementary Material.

Statistical Analysis

All data are presented as mean ± SD. The number of rep-
licates for each experiment was stated in Figure legends. 
Statistical differences between 2 groups were evaluated by 
2-tailed t-test. The statistical significance of Kaplan–Meier 
survival plot was determined by log-rank analysis. A statis-
tical correlation was performed to calculate the regression 
R2 value and Pearson’s correlation coefficient. Statistical 
analysis was performed by Prism 8 (GraphPad Software), 
unless mentioned otherwise in figure legend. P < .05 was 
considered as statistically significant.

Results

Patients in CD133low/CD109high Group Exhibit 
Worse Prognoses With a Trend Toward an 
Increased Mesenchymal Signature

To expand upon our previous studies,16,19 we used CD133 
and CD109 mRNA expression profiles to indicate edge-
ness and core-ness, respectively, a concept that we valid-
ated with 19 paired glioblastoma edge- and core-samples 
(Supplementary Figure 2). We reasoned that the loss of 
CD133 mRNA (CD133low) and gain of CD109 (CD109high) 
were indicative of the E-to-C progression in glioblas-
toma. Based on the differential RNA expression profiles 
as determined by RNA sequencing (seq) of 37 primary 
and recurrent glioblastoma pairs, 15 patients were as-
signed to the CD133low/CD109high group as representative 
of E-to-C transition, while the other 22 patients were as-
signed as control arms (Others, either CD133low/CD109high, 
CD133high/CD109low, or CD133high/CD109low) for comparison. 
Both groups displayed similar average age, sex, distant 
recurrence profiles, and postsurgical therapy regimens 
(Table 1, Supplementary Table 1). We then investigated the 
progression-free survival and overall survival in these 4 
groups. The CD133low/CD109high group exhibited a substan-
tially worse progression-free survival (P = .024) and overall 
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survival (P  =  .043) compared with others (Figure  1A). 
Consistent with recent studies, both primary and recur-
rent tumors showed no significant difference in propor-
tion among the 3 transcriptomic subtypes.6 However, there 
was a trend that CD133low/CD109high group was enriched 
in tumors of the mesenchymal subtype upon recurrence 
(P = .028; Figure 1B). Importantly, in this patient cohort, the 
mesenchymal-ness of either primary or recurrent tumors 
did not show statistically significant differences in prog-
nosis. These findings suggested a significant association 
between the CD133low/CD109high signature representing 
E-to-C progression and poorer patient prognoses, associ-
ated moderately with increase of the mesenchymal sub-
type in the primary-to-recurrent glioblastoma progression.

Longitudinal RNA-seq Analysis Identifies the 
Differential Expression Profile Associated With 
E-to-C Including PLAGL1 and CD109

Next, we pursued a stepwise approach to identify a mo-
lecular target or targets that could mediate the observed 
molecular and phenotypic E-to-C dynamics. First, we estab-
lished a data analysis pipeline using all expressed genes in 
the RNA-seq data of the 37 longitudinal cases (n = 22,255; 
Figure  2A). Differential gene expression analysis identi-
fied 26 genes distinctively associated with the CD133low/
CD109high changes (Supplementary Table 2). Unsupervised 
hierarchical clustering of those genes (n = 155) segregated 
our cohort sample (n = 37) into 2 distinctive subgroups (up- 
and down-regulated) (Figure 2B and C). In order to further 
elucidate the E-to-C-associated essential molecules, we 
designed an integrated second step approach to evaluate 
the expression of these 26 upregulated genes in our well-
characterized glioma sphere models treated with either 
shRNA-based gene silencing of CD109 or flow cytometry 
to isolate CD109(+) cells. To this end, we used our recently 
published RNA-seq data with 2 well-characterized tumor 
core-derived glioma sphere models; g267 for shRNA and 
g1005 for flow cytometry.19 As a result, PLAGL1 was identi-
fied as being the gene whose expression most strongly cor-
related with that of CD109 (FC>1.5, P < .05; Figure 2A and D, 
Supplementary Figure 3A and B). Consistently, Pearson’s 
correlation analysis of the 37 glioblastoma paired samples 

indicated a strong linear relationship between CD109 and 
PLAGL1 relative expression (r = 0.7, P < .05; Figure 2E). This 
CD109-PLAGL1 expression correlation was also observed 
in 4 clinical datasets (TCGA, Rembrandt, CGGA, and CGGA 
GBM datasets; Figure 2F). qRT-PCR with 2 additional edge- 
and core-derived glioma sphere models (Edge- and Core-
derived g1053 spheres and g0573 spheres) showed that 
both PLAGL1 and CD109 were higher in the core-derived, 
yet CD133 was up in the edge-derived, glioma spheres in 
vitro (Figure 2G).

To prospectively assess PLAGL1 localization in experi-
mental tumors, we injected edge- or core-derived glioma 
spheres from 3 patients into immunodeficient mice. 
PLAGL1 showed its preferential expression in the tumor 
core-derived lesions (Figure 2H). In the patient tumor data 
in TCGA, PLAGL1 mRNA expression was markedly ele-
vated in glioblastomas compared to lower grade gliomas 
(Figure 2I). In glioblastoma, PLAGL1 mRNA was relatively 
higher in mesenchymal tumors (Figure 2J). As expected, 
glioblastoma patients with higher PLAGL1 expression ex-
hibited shorter survival in the TCGA database (Figure 2K).

Since the PLAGL1 gene encodes for C2H2 zinc finger (ZF) 
transcription factors (TFs),27 we sought to further confirm 
our results by cross-referencing them to our previously es-
tablished cDNA microarray dataset with the sphere lines 
established from either human neonatal brains (neural 
progenitors [NPs]) or glioma patients with mesenchymal 
or core-associated signature.21 Among 2,766 human TFs,28 
12 TFs, including PLAGL1, were highly overexpressed (fold 
change >15) in mesenchymal or core-associated glioma 
sphere lines as opposed to NP counterparts (P < .001; 
Figure  2L), moreover, PLAGL1 was the second highest 
C2H2-ZF TFs in mesenchymal tumor cells (Supplementary 
Figure 4). Consistently, a volcano plot displayed PLAGL1 
as a significantly upregulated gene in mesenchymal or 
core-associated glioma spheres (Figure 4M). Gene set en-
richment analysis (GSEA) using the 26 upregulated genes 
identified their correlation with “HDAC1 targets” and “UV 
response DNA damage,” both of which our recent studies 
have identified as pathways downstream of the CD109-
driven signals in glioblastoma tumors and their TIC models 
(Figure  4N).16,19 Finally, we explored the expression of 
PLAGL1 in primary glioblastoma edge, core lesions as well 
as their subsequent recurrent core tissues, which showed 

  
Table 1. Demographics and Clinical Characteristics of the Patients in This Study

CD133low/CD109high Others P-value

No. of patients 15 22  

Age 54.0 ± 10.2 48.2 ± 9.3 NS

Sex (M/F) 8/7 13/9 NS

% of distant recurrence 33.3% (5/15) 27.3% (6/22) NS

Radiotherapy between first and second surgery (%) 100% (15/15) 95.5% (21/22） NS

Chemotherapy between first and second surgery (%) 80% (12/15) 95.5% (21/22) NS

Delta-CD133 −1.19 ± 0.98 0.21 ± 0.85 5.02E−5

Delta-CD109 0.93 ± 0.76 −0.20 ± 0.77 9.58E−5

NS, not significant.
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Figure 1. CD133low/CD109high group exhibits worse prognoses accompanied by an increase in mesenchymal signature. (A) Kaplan–Meier 
analysis of overall survival (left) and progression-free survival (right) of glioblastoma patients in CD133low/CD109low, CD133high/CD109low, 
CD133high/CD109high, and CD133low/CD109high (red, top to bottom) with each collected remaining cases (Others, blue). (Log-rank test). (B) 
River-plot analysis of the molecular subtype shifts from primary to recurrence in CD133low/CD109high (upper) and others (lower) (P = .028, 
chi-square test).
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PLAGL1 higher in the core lesions in both primary and re-
current tumors (Figure 4O). Collectively, these clinical and 
experimental data suggested PLAGL1 is one key regu-
lator in the edge-TICs to cause tumor core development in 
glioblastoma.

Genetic Perturbation of PLAGL1 Reveals Its 
Role in Glioblastoma Tumorgenicity in the 
Edge-TIC Models

Following the identification of PLAGL1 as a potential 
candidate regulating the E-to-C-mediated glioblastoma 
malignancy, we investigated the function of PLAGL1 in 
our glioblastoma edge-TIC models to understand if its 
targeting holds any translational significance. To this 
end, we used the 2 tumor edge-derived glioma sphere 
models (1051E and 101027E) for lentivirus-mediated gene 
overexpression (PLAGL1-OE) and knockdown by shRNA 
(sh#1 and #2). As the control, we used the nontargeting 
lentiviral construct (Ctrl). Western blotting confirmed 
both induced overexpression and gene silencing in 
cells harboring the shRNA construct, with more effi-
cient targeting of PLAGL1 by sh#2 than sh#1 (Figure 3A, 
Supplementary Figure 5A). In both models, PLAGL1-OE 
displayed significantly higher in vitro growth rates, while 
their growth was largely attenuated by gene silencing 
of PLAGL1 (Figure  3B). Using clonal sphere formation 
as a surrogate in vitro indicator of tumor initiating ca-
pacity, we found that PLAGL1-OE glioma spheres rela-
tively increased, whereas its gene silencing reduced 
it with a greater inhibitory effect of sh#2 compared to 
sh#1 (Figure  3C and D, Supplementary Figure 5B). In 
vivo injection of PLAGL1-OE glioma spheres into brains 
of immunocompromised mice resulted in higher lumi-
nescent intensity indicative of their larger tumor sizes 
by edge-TIC-derived tumor establishment, whereas the 
shRNA-carrying xenografts displayed significantly lower 
signals in both of these 2 glioblastoma edge sphere-
derived tumor models (Figure 3E). Mice with PLAGL1-OE 
glioma sphere-derived tumors exhibited significantly 
worse survival due to higher tumor burden, while their 
gene silencing groups displayed improved overall sur-
vival by lower tumor burden compared to the control 

group (Figure 3F, Supplementary Figure 6). As expected, 
immunoreactivity to CD109 was strongly correlated with 
the expression of PLAGL1 in both models (Figure  3G). 
Collectively, these data suggested that PLAGL1 regulates 
the in vitro clonality and in vivo tumor development 
originally derived from edge-TICs in glioblastoma.

PLAGL1 Binds to the Promoter Region for CD109 
to Regulate Its Transcriptional Activity

Lastly, we sought to determine the molecular mechanisms 
connecting PLAGL1 and CD109. Specifically, we tested if 
PLAGL1 as a TF binds to the promoter region for the CD109 
gene in glioblastoma edge-derived cells. Using g1051E 
spheres, we performed chromatin-immunoprecipitation 
with the PLAGL1 antibody, followed by qRT-PCR for the 
CD109 genetic regulatory element that we previously iden-
tified as its active promoter.19 A band was detected that is 
indicative of the direct transcriptional regulation of CD109 
by PLAGL1. This result was also validated with g101027E 
cells (Figure 4A). As expected, overexpression of PLAGL1 
elevates, while its silencing decreases, the expression of 
CD109 protein, determined by western blotting in both 
sphere models (Figure 4B). Collectively, the tightly associ-
ated co-expression of PLAGL1-CD109 was, at least in part, 
mediated through the direct transcriptional regulation of 
CD109 via the TF, PLAGL1.

Discussion

Patients with glioblastoma gain only limited benefit from 
craniotomy due to inability to completely eliminate tumor 
cells from the brain.29,30 The lethal seeds for tumor recur-
rence (recurrence-initiating cells) reside predominantly, 
yet not entirely, at the tumor edge surrounding the resec-
tion cavity. In this study, we used CD133 and CD109 mRNA 
expression dynamics as a reference to indicate the E-to-C 
progression in glioblastoma. The rationale for this inves-
tigation included our previous findings that both CD133 
and CD109 are preferentially expressed within the TIC 
subpopulations, selectively within glioblastoma edge- and 
core-tissues, respectively.19 While the expression of CD109 

in g267 (n = 3) with shNT and shCD109 is represented along the y-axis (down- and up-ward, respectively). (E) Scatterplot displaying the linear 
correlation between CD109 and PLAGL1 expressions in the 37 longitudinal cases. Pearson correlation coefficient (r) = 0.70 and P = 1.43E−06. 
(F) Scatterplot displaying the linear correlation between CD109 and PLAGL1 expressions in 4 public databases (TCGA, Rembrandt, CGGA, and 
CGGA GBM), based on Pearson correlation test. (G) Bar graph displaying qRT-PCR results for the expression of CD109, PLAGL1, and CD133 
within edge- and core-derived sphere culture models of 2 glioblastoma patients (g1053 and g0573). Data are means ± SD (n = 3). ***P < .001. (H) 
Representative images of immunohistochemistry (IHC) for PLAGL1 in mouse orthotopic xenografts with tumor core- (C) and edge(E)-derived 
glioma sphere models from 3 patients (g0573, g1053, and g1051). Scale bar 100 µm. (I) Boxplot diagram demonstrating PLAGL1 relative mRNA 
expression profiles from TCGA database across different gliomas subtypes. *P < .05, **P < .01, and ***P < .001. (J) Boxplot diagram comparing 
relative expression profiles of PLAGL1 among the 3 molecular subtypes (classical, mesenchymal [MES], and proneural) of glioblastoma within 
TCGA database. ***P < .001. (K) Kaplan–Meier survival curve of glioblastoma patients in the TCGA database. Patients were categorized into a 
“high” or “low” expression group based on the median PLAGL1 expression in the Agilent 4502 microarray. (L) Heatmap of displaying expression 
profiles of transcription factors (TFs) (n = 2,766) across 4 MES glioma sphere lines compared with the neural progenitor sphere line (NP) (n = 3 
for each cell line). (M) Volcano plot comparing TF gene expressions (n = 2,766) across MES and NP lines, highlighting PLAGL1. (N) Upregulated 
pathways in recurrent glioblastomas in CD133low/CD109high group. (O) Representative IHC images for CD109 and PLAGL1 in primary edge and core, 
and recurrent core tumor tissues. Scale bar 100 µm.
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Figure 3. PLAGL1 overexpression enhances, while its silencing diminished, glioblastoma growth in vivo, leading to prolong mouse survival in 
the edge-TIC models. (A) Western blotting of 2 patients’ tumor edge-derived glioma sphere lines (g1051E and g101027E) after transducing with 
overexpression vector (OE) or shRNA targeting PLAGL1 (sh#1 or sh#2) or a nontargeting control (Ctrl). (B) Line charts of in vitro growth of the indi-
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.001. (G) IHC of indicated tumors in immunocompromised mice for CD109 and PLAGL1. Scale bar 100 µm.
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and CD133 within individual cells in tumors appears to be 
mutually exclusive, the expression of these markers ap-
pears to represent a dynamic molecular state.16,19 One 
means of promoting E-to-C transition is through radiation, 
which induces the conversion of edge-associated CD133(+)/
CD109(-) TICs to the core-associated CD133(-)/CD109(+) 
TICs, thereby developing therapy-resistant tumors in vivo.19 
On the other hand, core TICs themselves respond to radia-
tion by secreting factors that promote the radio-resistance 
of edge-located TICs in vitro and in vivo.16 Furthermore, 
core- and edge-TICs are dependent on distinct metabolic 
and kinomic pathways for their survival and growth.18,31 
Thus, only by targeting both core- and edge-TICs would 
presumably enable to achieve better outcomes of glioblas-
toma patients. However, recent advances in surgical tech-
nique, including the imaging-assisted fluorescence-guided 
surgery in the awake setting, have allowed us to increase 
the proportion of surgical cases of total or near-total resec-
tion of the tumor core lesions. Yet, even with the attempt 
for supra-total resection of glioblastoma tumors (Figure 5), 
edge-located tumor cells undoubtedly remain, where the 
recurrence-initiating cells are hidden.

In this study, we used 37 paired primary-recurrent glio-
blastoma samples—the largest matched cohort published 
thus far—to examine E-to-C transition, resulting in vali-
dation of its association with poorer patient prognoses. 
It is important to note that both tumor edge and core are 
composed of tumor cells in all 3 transcriptomic subtypes, 
albeit the ratios are slightly different (Figure 5).16 Our find-
ings suggest, yet do not definitely prove, relatively weaker 

correlation of mesenchymal-ness, in comparison to the 
E-to-C signature, to patients’ poorer prognosis, at least in 
this patient cohort. This interpretation needs further vali-
dation with more clinical evidence, ideally with prospec-
tive measurement, from multiple independent groups. The 
E-to-C axis could be more clinically relevant but it remains 
poorly understood how similar to, or different from, the 
transcriptomic proneural (and classical)-mesenchymal axis 
it is. In addition, in some craniotomies, small residual core 
lesions are inevitably unresectable by surgery, depending 
on the proximity/invasion to functional brain areas. There 
is no doubt that these core tumor cells also contribute 
both directly and indirectly to glioblastoma recurrence, 
as our recent study suggested.16 Therefore, we need to be 
cautious that E-to-C progression does not explain all the 
clinical cases of the primary-to-recurrent glioblastoma pro-
gression. More extensive molecular characterization with 
additional longitudinal case cohorts is warranted.

For the phenotypic characterization associated with 
tumor edge and core in glioblastoma, we believe that the 
recently established tumor edge- and core-derived glioma 
spheres represent valuable models, as their xenografts 
faithfully recapitulate their spatially distinct tumor lesions 
in mouse brains.3,16,18,31,32 These models enable the inves-
tigation of glioblastoma recurrence from post-surgical 
residual diseases with varying populations of the mixed 
tumor edge and core cells. Needless to say, the accuracy 
and validation of the resected tissue locations within the 
brain is critical for these spatially identified models and a 
number of potential hurdles have to be overcome in order 
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to ascertain their reliability (eg, brain shift, patient safety). 
In particular, glioblastomas tend to infiltrate into the deep 
white matter, where a number of functional neuronal fi-
bers run throughout the brain. Obtaining tumor edge tis-
sues from these regions without harming the patients is 
a critical step for surgeons to cooperate with scientists 
to establish models that faithfully recapitulate their spa-
tially distinct pathobiology. Further characterization of 
our models and developing other tumor edge-reflective 
models would help facilitate the molecular and phenotypic 
analyses to identify therapeutic targets in the recurrence-
initiating cells at tumor edge that subsequently cause pa-
tient lethality.

Regarding the molecular mechanism, our data indicated 
the significance of targeting PLAGL1 to attenuate, yet not 
completely eliminate, tumor initiation and propagation, 
accompanied by an impact on survival of tumor-bearing 
mice. This TF directly regulates the E-to-C-associated gene 
CD109 in tumor edge-derived cells. CD109 was previously 
found to drive E-to-C transition,16,19 and, thus, by inference, 
PLAGL1 would be expected to do the same. Nonetheless, 
the role of PLAGL1 in cancer has been controversial. Prior 
studies have shown that PLAGL1 is a tumor suppressor 
gene encoding an inducer of apoptosis and cell cycle arrest 
in various cancers33–35 (eg, breast cancer, hepatoma, and 
colon cancer). Even in glioma, one study has demonstrated 
the frequent loss of PLAGL1 in their clinical samples.36 On 

the other hand, another study paradoxically demonstrated 
a pro-tumorigenic function of PLAGL1 driven by SOX11.37 
Here, using the preclinical models, we provide a set of ex-
perimental evidence to support the tumorigenic function 
of PLAGL1 in glioblastoma TICs. In addition, the analysis of 
clinical samples using public and our own databases sup-
ported our experimental findings. The PLAGL1-mediated 
signaling might be context dependent among various 
cancer cells, or even within gliomas. We previously found 
that HDAC1 is a positive transcriptional regulator that 
drives CD109 gene expression via a protein complex for-
mation with an oncogenic TF C/EBPβ,16 even though HDAC1 
is recognized to modulate the compact chromatin structure 
leading to widespread repression of transcriptional activi-
ties in cancers and developmental somatic cells.38–40 It re-
mains unknown if PLAGL1 forms a larger protein complex 
with HDAC1 and C/EBPβ in glioblastoma and other can-
cers. In addition, the upstream regulator(s) for the PLAGL1 
signaling in the E-to-C process needs further investigation. 
Given that microenvironmental cues take critical roles par-
ticularly at the tumor edge (eg, neuronal BDNF41 and vas-
cular endothelium-derived endocan17), both extra-cellular 
and cell-intrinsic signals may cooperatively orchestrate 
the PLAGL1-driven activation of the E-to-C progression in 
tumors. As the molecular and cellular complexity of glio-
blastoma is increasingly recognized as a challenging road 
block to prolong survival of patients, successful removal of 
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tumor core is certainly the mandated first step, yet it still re-
quires us to learn how to manage the tumor edge in better 
ways. Further phenotypic characterization of edge-located 
recurrence-initiating cells is among key tasks ahead of us 
to develop effective therapies for glioblastoma.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.
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