
rsob.royalsocietypublishing.org
Research
Cite this article: Marco A. 2014 Sex-biased

expression of microRNAs in Drosophila

melanogaster. Open Biol. 4: 140024.

http://dx.doi.org/10.1098/rsob.140024
Received: 11 February 2014

Accepted: 10 March 2014
Subject Area:
genomics/bioinformatics

Keywords:
evolution, sex, gene birth, demasculinization
Author for correspondence:
Antonio Marco

e-mail: amarco.bio@gmail.com
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsob.140024.
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Sex-biased expression of
microRNAs in Drosophila
melanogaster
Antonio Marco

School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
1. Summary
Most animals have separate sexes. The differential expression of gene products, in

particular that of gene regulators, is underlying sexual dimorphism. Analyses of

sex-biased expression have focused mostly on protein-coding genes. Several lines

of evidence indicate that microRNAs, a class of major gene regulators, are likely to

have a significant role in sexual dimorphism. This role has not been systematically

explored so far. Here, I study the sex-biased expression pattern of microRNAs in

the model species Drosophila melanogaster. As with protein-coding genes, sex-

biased microRNAs are associated with the reproductive function. Strikingly,

contrary to protein-coding genes, male-biased microRNAs are enriched in the

X chromosome, whereas female microRNAs are mostly autosomal. I propose

that the chromosomal distribution is a consequence of high rates of de novo emer-

gence, and a preference for new microRNAs to be expressed in the testis. I also

suggest that demasculinization of the X chromosome may not affect microRNAs.

Interestingly, female-biased microRNAs are often encoded within protein-coding

genes that are also expressed in females. MicroRNAs with sex-biased expression

do not preferentially target sex-biased gene transcripts. These results strongly

suggest that the sex-biased expression of microRNAs is mainly a consequence

of high rates of microRNA emergence in the X chromosome (male bias) or

hitchhiked expression by host genes (female bias).
2. Introduction
Sexual dimorphism is prevalent in animal species. Sexual phenotypic differences

are the consequence of a differential expression of genes between males and

females [1]. During the past decade, high-throughput transcript analyses have

identified many genes with a sex-biased expression pattern [2–4]. For instance,

the Drosophila gene paired is expressed at a higher level in adult males than in

females [5], and it encodes a transcription factor involved in the development

of male accessory glands [6]. Indeed, other transcription factors have been ident-

ified as sex-biased genes [5,7], indicating that transcriptional gene regulation is

tightly linked to sexual dimorphism. Post-transcriptional regulators may also

have an impact in sexual dimorphism. MicroRNAs are short endogenous regulat-

ory RNA molecules that are involved in virtually all studied biological processes

[8,9]. Recently, differences between male and female microRNA expression

profiles have been observed [10–12], suggesting that microRNAs have a role in

sexual differentiation.

The study of sex-biased expression of gene products in the model species

Drosophila melanogaster has produced a number of insightful observations. First,

male-biased genes evolve faster than non-biased genes [3,13–15]. Second, the

X chromosome is depleted of male-based genes and enriched for female-biased

genes [2,3]. On the other hand, evolutionarily novel genes tend to be X-linked

and highly expressed in males [16–23]. These observations suggest a movement
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Figure 1. Sex-biased microRNAs in Drosophila melanogaster. (a) Heatmap of cross-correlations of all expression datasets analysed. Different experiments are hier-
archically clustered. (b) Smear plot of mature microRNA sequences. Grey lines indicate a twofold difference in expression levels between males and females. Red dots
are microRNAs with a statistically significant differential expression. (c) MicroRNA transcripts with sex-biased expression, average fold change of their products and
their chromosomal location. (d ) Frequency plot of sex biases in expression levels for autosomes and the X chromosome.
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of male-biased genes from the X chromosome to the autosomes,

a process known as demasculinization of the X [2,20,24]. There-

fore, sex-biased expression is an important factor affecting

the evolutionary fate of protein-coding genes. Likewise, sex-

biased expression should have an impact in microRNA

evolution. However, this effect may be different to that

observed for protein-coding genes as proteins and microRNAs

differ in their evolutionary dynamics. For instance, gene dupli-

cation is the main mechanism by which novel protein-coding

genes emerge, whereas a majority of microRNAs emerge by

de novo formation within existing transcripts (reviewed in

[25,26]). Consequently, novel microRNAs are more likely to

be lost than protein-coding genes in a short evolutionary

period. Although microRNAs have been extensively studied

in Drosophila [27–29], the effect of sex-biased expression in

microRNA evolution remains largely unexplored. Here, I inves-

tigate whether the sexual profile of microRNA expression

resembles that of protein-coding genes, and how sex-biased

expression affects differently the evolutionary dynamics of

protein-coding genes and microRNAs.
3. Results
3.1. Sex-biased expression of Drosophila microRNAs
To characterize which microRNAs have a sex-biased expression

pattern in D. melanogaster, 13 different small RNA sequencing
experiments (including males, females, embryos, ovaries and

testes) were cross-compared (see §5). Figure 1a shows the

correlation among the expression profiles for all experiments,

indicating that the female and male pairs of profiles are

highly correlated, despite coming from independent exper-

iments. Thus, pairs of male and female profiles were used as

biological replicates to calculate differential expression between

sexes. A total of 476 mature microRNAs (two sequences per

microRNA precursor) were analysed. Of them, 28 and 37

mature microRNAs showed a significant expression bias in

males and females, respectively (figure 1b; see §5). Table 1

includes details of sex-biased microRNAs and their fold

change. The expression levels for all analysed mature micro-

RNAs are available in the electronic supplementary material,

table S1. As only reads mapping to a single microRNA were

taken into account, removing reads mapping to multiple sites

may influence our analysis. Hence, I compared the expression

levels resulting from unique reads and from multiple matching

reads. Four microRNA families were affected by multiple

matching reads: mir-983, mir-281, mir-276 and mir-2. The first

three did not show any differential expression between sexes.

However, the fourth one included two microRNAs, mir-2a-1

and mir-13b-2, which are female-biased. To avoid biases due

to multiple matches, the mir-2 family was removed from the

subsequent analyses.

MicroRNA precursors potentially encode for two mature

products (so-called 3 prime and 5 prime products). In agree-

ment with this, many of the sex-biased microRNAs are pairs



Table 1. MicroRNA mature sequences with sex-biased expression, and fold change shown in parentheses.

female-biased male-biased

mir-989-5p (9.8) mir-995-5p (3.4) mir-13b-2-5p (1.7) mir-985-3p (8.8) mir-978-3p (4.7)

mir-994-5p (8.7) mir-313-3p (3.2) mir-314-5p (1.7) mir-976-3p (7.7) mir-959-5p (4.5)

mir-989-3p (8.7) mir-310-3p (3.1) mir-306-5p (1.6) mir-991-3p (7.2) mir-960-3p (4.2)

mir-994-3p (8.2) mir-279-5p (3.0) mir-79-3p (1.4) mir-977-5p (7.2) mir-961-5p (4.1)

mir-318-3p (8.2) mir-995-3p (2.9) mir-996-5p (1.3) mir-978-5p (6.8) mir-303-5p (4.1)

mir-310-5p (7.8) mir-79-5p (2.9) mir-308-5p (1.1) mir-4966-5p (6.6) mir-984-5p (3.4)

mir-318-5p (6.7) mir-9c-3p (2.5) mir-996-3p (1.1) mir-973-5p (5.9) mir-959-3p (3.2)

mir-92a-3p (5.7) mir-9c-5p (2.5) mir-184-3p (1.0) mir-975-5p (5.8) mir-963-5p (3.0)

mir-313-5p (5.1) mir-9b-5p (2.4) mir-279-3p (1.0) mir-982-5p (5.7) mir-303-3p (3.0)

mir-92b-3p (5.0) mir-312-5p (2.3) mir-997-5p (5.5) mir-964-5p (2.8)

mir-312-3p (4.3) mir-9b-3p (2.2) mir-972-3p (5.3) mir-960-5p (2.5)

mir-311-3p (3.9) mir-92a-5p (2.2) mir-961-3p (5.1) mir-2a-1-3p (1.5)

mir-92b-5p (3.6) mir-998-3p (1.9) mir-977-3p (5.0) mir-993-3p (1.3)

mir-311-5p (3.4) mir-2a-1-5p (1.8) mir-992-3p (4.8) mir-12-5p (1.1)
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derived from the same precursor (table 1). Additionally, micro-

RNAs are frequently clustered in the genome, and these clusters

of microRNAs are often transcribed in a single RNA molecule

(reviewed in reference [26]). Indeed, sex-biased microRNAs

are frequently clustered, and nearly all of the microRNAs in a

cluster show a consistent sex-biased expression (table 1 and

figure 1c). Therefore, the observed bias in mature microRNA

production is primarily a consequence of the sex-biased

expression of their transcripts.
3.2. Male-biased microRNAs are preferentially located in
the X chromosome and expressed in the testes

Figure 1c shows microRNA transcripts with sex-biased

expression and their chromosomal distribution. Contrary to

the observation for protein-coding genes, microRNAs expressed

in males tend to be located in the X chromosome. By contrast,

all female-biased microRNAs are located in autosomes, which

is again the opposite observation to that which has been

made for protein-coding genes. Figure 1d further explores the

relationship between sex-chromosome location and sex-biased

expression. The frequency distribution of fold change in

expression for autosomal microRNAs shows three peaks, one

large peak of unbiased expression and two smaller ones of

male- and female-biased expression. However, the distribution

of X-linked microRNAs is bimodal (figure 1d): they are either

unbiased or highly expressed in males. Thus, male-biased

microRNAs and the X chromosome are closely associated.

To further understand what it means to be sex-biased

expressed, the expression profile of biased microRNAs was

explored. Figure 2 plots a hierarchical tree of sex-biased

expressed microRNAs and their relative expression levels in

testes, ovaries and early embryos. Most male-biased micro-

RNAs are highly expressed in the testes. This indicates that

production of microRNAs in males is largely associated

with the germline and the reproduction function. This is con-

sistent with figure 1a in which adult samples were poorly

correlated with young samples, perhaps because young

individuals have not yet developed fully functional gonads.
3.3. Female-biased microRNAs are expressed in ovaries
and early embryos

The expression profile in figure 2 shows that female-biased

microRNAs fall into three distinct groups. First, a group of

female-biased microRNAs are expressed in the somatic stem

cells in the ovary, showing that microRNAs are important for

the maintenance of stem cells in the ovary, in agreement with

previous findings [30]. Second, some female-biased micro-

RNAs are highly expressed in ovaries. This suggests that

these microRNAs are important for the formation and matu-

ration of Drosophila eggs.

Interestingly, a third group of female-biased microRNAs

do not appear to be present in the ovary and they are

highly expressed in young embryos (figure 2). These eggs

were originally collected up to 1 h after laying [27,31], indi-

cating that these young embryos have not yet started to

have zygotic transcription [32]. This suggests that these

microRNAs may be maternally deposited by the mother

into the unfertilized eggs (oocytes). As a matter of fact,

ongoing work in the laboratory has shown that the micro-

RNAs mir-92a and mir-92b, and the mir-310/mir-311/

mir-312/mir-313 cluster are abundant in Drosophila unferti-

lized eggs [33]. From these analyses, I conclude that both

male- and female-biased microRNAs are mostly associated

with the reproductive function.

3.4. Intronic female-biased microRNAs are associated
with host gene expression

It may be possible that microRNA transcription pattern is associ-

ated with the transcription profile of their neighbouring protein-

coding genes. In general, as shown in table 2, both expression

patterns were not significantly associated (11 of 19 microRNA

transcripts have the same expression bias as their closest neigh-

bouring gene; p ¼ 0.32, binomial test). In particular, there are

eight microRNA transcripts with male-biased expression, and

only three of their respectively closest genes show a similar

bias. In the case of female-biased microRNA transcripts, eight
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Figure 2. Expression profile of sex-biased microRNAs. Hierarchical clustering and heatmap of microRNAs with sex-biased expression. Z-scores were scaled across rows.
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of 11 have their closest gene with a female-biased expression pat-

tern. A closer inspection to the data reveals that this bias is

produced mostly by microRNAs hosted within protein-coding

genes (overlapping transcripts). Indeed, all six genes hosting

microRNAs with female-biased expression are themselves

expressed more highly in females than in males ( p ¼ 0.016).

This shows that female-biased expression of microRNAs is

highly associated with the production of microRNAs from

introns of sex-biased expressed protein-coding genes.

3.5. Evolutionary origin of sex-biased microRNAs
There are two possible ways a gene may become sex-biased.

First, a gene can acquire sex-biased expression. Second, a new

gene appears (either de novo or by the duplication of an exist-

ing gene) having from the very beginning a sex-biased

expression. Figure 3 shows the evolutionary origin of sex-

biased microRNAs. Most male-biased microRNAs emerged

within the Drosophila lineage, with only two exceptions:
mir-993 and mir-283/304/12. These are indeed the least

biased of all of the microRNAs. Thus, microRNAs with a

strong male bias are evolutionarily young. By contrast, the

evolutionary origin of female-biased microRNA families is

diverse, and there are both old and young microRNAs.

Among the old microRNAs, we have the mir-92, mir-184

and mir-9 families, which are conserved even in chordates.

Interestingly, there are no D. melanogaster-specific microRNAs

with a clear female-biased expression (contrary to the case of

male-biased microRNAs). There are, however, two female-

biased microRNAs which appeared in the Drosophila genus

lineage: mir-314 and the mir-310–mir-313 cluster.

3.6. Targets of sex-biased microRNAs
Do sex-biased microRNAs also target sex-biased expressed gene

transcripts? To explore this question, three different target pre-

diction algorithms were used: TargetScan, miRanda and

DIANA-microT (see §5). MicroRNAs were binned by their



Table 2. Sex-biased microRNA transcripts and their closest neighbouring genes.

microRNA/cluster fold changea distance to closest geneb closest gene fold changea

mir-972 – mir-979 25.2 overlapping Grip84 2.3

mir-982 – mir-984 23.5 overlapping CG3626 0.4

mir-959 – mir-964 22.8 overlapping CG31646 22.6

mir-283 – mir-12 21.1 overlapping Gmap 20.3

mir-985 26.7 19 344 disco 21.5

mir-997 25.3 737 D1 1.2

mir-2498 – mir-992 24.7 817 CG32532 0.0

mir-993 21.2 11 072 Ama 2.0

mir-92a – mir-92b 4.6 overlapping jigr1 2.6

mir-995 3.0 overlapping cdc2c 3.9

mir-9c – mir-9b 2.2 overlapping grp 3.1

mir-184 1.1 overlapping CG44206 0.0

mir-308 1.0 overlapping RpS23 1.2

mir-998 – mir-11 0.4 overlapping E2f 1.4

mir-989 8.6 2739 Rcd1 0.9

mir-994 – mir-318 8.3 249 Irp-1B 20.3

mir-310 – mir-313 4.1 1624 gsm 20.7

mir-279 – mir-996 1.1 2892 Ef1gamma 1.4

mir-314 0.2 182 Tim13 27.5
aLogarithm of fold change between male and female expression levels.
bIn nucleotides.
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bias level, and the expression bias of their targets was plotted in

figure 4. These boxplots show that there is no tendency of sex-

biased microRNAs to target sex-biased transcripts, at least not

as a global pattern. I further explored the targets of seven mela-

nogaster-subgroup-specific male-biased microRNAs. For two of

them, two of the three prediction algorithms detected a signifi-

cant association with sex-biased transcripts: mir-985 has a

tendency to target female-biased genes, whereas mir-997 signifi-

cantly targets male-biased genes (electronic supplementary

material, table S2). The other associations were not significant

and/or supported by only one prediction algorithm. Finally, I

investigated whether recently emerged male-biased microRNAs

also target evolutionarily young genes. I calculated the ratio

between Drosophila-specific and conserved targeted genes for

the targets predicted for the three above-mentioned algorithms.

Four of seven studied microRNAs showed a tendency to
target more conserved genes than expected by chance for at

least two algorithms (electronic supplementary material, table

S3), among them mir-985. The results here described rely

heavily on target prediction algorithms and, therefore, should

be taken with caution. However, they suggest that newly

emerged microRNAs can potentially target conserved genes,

altering regulatory relationships that have been conserved

throughout evolution.
4. Discussion
In this study, I have shown that sex-biased microRNAs are

mainly associated with the reproductive function: male micro-

RNAs are expressed in testes, and female microRNAs are

abundant in ovaries and oocytes. However, their evolutionary
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origin is different. Male-biased microRNAs tend to be evolutio-

narily young (dipteran/Drosophila-specific; figure 3) and they

often emerge in the X chromosome. Contrary to microRNAs,

male-biased protein-coding genes appear to be generally

under-represented in the X chromosome in flies [2,3], and a

movement of male genes out of the X, or demasculinization

of the sex chromosome, has been suggested [2,20]. However,

novel genes tend to be X-linked, and male-expressed and

older genes may have moved outside the X chromosome

[2,3,17,21]. An enrichment in the X chromosome for micro-

RNAs with male-biased expression has also been reported in

mammals [12,34–36].

A careful dissection of the evolutionary origin of male-

biased genes in Drosophila demonstrated that de novo origi-

nated genes tend to be X-linked and male-biased, and that

there may also be an ongoing demasculinization process in

the X chromosome [23]. In addition the study suggested that

this demasculinization may also be happening in microRNAs.

Their analysis showed that there is about a 12-fold enrichment

of evolutionarily young microRNAs in the X chromosome with

respect to autosomes. For conserved microRNAs, the enrich-

ment is less than twofold. However, when taking into

account that multiple microRNAs may come from the same

transcript (figure 1c), the figures are different: 3.5- and

1.8-fold enrichment for young and conserved microRNAs,

respectively. These differences are small, and evidence for

demasculinization in microRNAs is not supported.

There is an ongoing debate in the scientific literature about

sex chromosome demasculinization. Although demasculiniza-

tion has been generally considered one of the prominent

features of Drosophila X chromosome evolution, recent work

shows that the observed paucity of male-biased genes in the

X chromosome may be artefactual [37–39]. Indeed, several

groups suggest that demasculinization does not happen in

Drosophila and propose that there is no global meiotic sex

chromosome inactivation (MSCI) [40,41]. The movement of

male-biased genes out of the X chromosome is often explained

as a response to MSCI. This discussion is not settled, and evi-

dence both for demasculinization and for MSCI is still

reported [23,42–44]. Interestingly, most X-linked microRNAs

escape MSCI [45]. These observations imply that X-chromosome

demasculinization caused by MSCI might not happen during

microRNA evolution. Even if there is an ongoing demasculiniza-

tion process affecting protein-coding genes, microRNAs seem

not to be affected.

Female microRNAs are generally older than male-

biased microRNAs, and they are frequently encoded within

other female-expressed genes. For instance, mir-995 is highly

expressed in females (figure 1) and it is associated with oocytes
(figure 2). This microRNA is encoded within the first intron of

cdc2c, a gene involved in cell proliferation during development

[46]. Hence, the presence of mir-995 in oocytes may be a by-

product of the host gene expression. In addition, mir-995 can

be identified in the same intron of the orthologous cdc2c gene

in other insects [47], showing a deep conservation of the micro-

RNA/host gene association. Interestingly, mir-92a is encoded

within a gene ( jigr1) whose product is maternally deposited in

the oocyte [48], and the microRNA is highly expressed in oocytes

(figure 2) and detected in unfertilized eggs [33]. The presence of

mir-92a in the developing egg may be a by-product of being

intronic to a sex-biased expressed gene. As a matter of fact,

mir-92a is associated with leg morphological differences

between Drosophila species [49], a role (in principle) unrelated

to any function in the early developing egg.

Among the microRNAs with a female-biased expression

pattern, there are microRNAs associated with the gametic

function. Recently, mir-989 has been discovered to be involved

in cell migration in the ovary [50]. Indeed, the 3’ arm of mir-989

is highly expressed in ovaries (figure 2). The analysis of female

mutants also reveals that mir-9c (present in ovaries; figure 2) is

somewhat involved in the control of the number of germ

cells [51]. Predictably, other female-biased microRNAs here

reported, such as mir-994/318, could have a role in game-

tic function. Strikingly, the mir-310/311/312/313, which is

female-expressed (and probably maternally deposited in the

egg), is involved in the development of male gonads [52].

This emphasizes that genes with sex-biased expression can

also have other functions, even in the opposite sex.

We recently characterized sex-biased microRNAs in the

parasitic Schistosoma mansoni and reported that one of

the microRNA clusters (mir-71/mir-2) has two copies, one

in the sexual chromosome with no detectable bias and

another copy in an autosome with sex-biased expression.

The duplication of the cluster happened more or less at

the same time as sexual dimorphism appeared in this

genus (Schistosoma). We suggested that this may be a case

of escaping sex conflict, in which genes involved in sex

dimorphism tend to be out of the X chromosome [10,53].

However, this is likely to be an exception to the rule in micro-

RNAs, as their evolutionary dynamics is primarily

dominated by high levels of emergence and a low probability

of non-tandem duplication.

In summary, I conclude that sex-biased expression of

microRNAs is a consequence of a high rate of microRNA

de novo emergence. Novel microRNAs tend to appear in

the X chromosome and to be expressed in the testes. Conver-

sely, male-biased microRNAs are evolutionarily young and

also show a high rate of loss. On the other hand, many
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female-biased microRNA emerged within the intron of

female-biased host genes. They are generally conserved

suggesting that the female gametic function may be more

constrained, and purifying selection could eliminate emer-

ging microRNAs impairing ovary/oocyte development.

This scenario suggests that positive/adaptive selection may

have no more than little contribution to determining the

sex-biased expression of microRNAs.
hing.org
Open

Biol.4:140024
5. Methods
Drosophila melanogaster microRNA sequences are from miRBase

version 19 [54]. Expression datasets were downloaded from

Gene Expression Omnibus at http://www.ncbi.nlm.nih.gov/

geo/, with accession numbers: GSM286602 and GSM399107

(adult males); GSM286603 and GSM399106 (adult females);

GSM280082 (ovaries); GSM909277 and GSM909278 (testes);

GSM385822 and GSM385744 (ovary somatic sheet);

GSM180330 and GSM286613 (early embryos); GSM609223

and GSM609224 (young males and females) [31,55–59].

Reads from these experiments were mapped to D. melanogaster
microRNA hairpins with BOWTIE v. 0.12.7 [60], allowing no mis-

matches nor multiple matches. Differential expression of

microRNAs was estimated with EDGER [61]. In short, read

counts were first normalized with the trimmed mean of

M-values (TMM) method [62]. Then, the variation within

samples was estimated by fitting the expression pattern to a nega-

tive binomial distribution. Sex-biased microRNAs were detected

by an exact test controlling the false discovery rate [63]. Addition-

ally, the analysis was repeated with a more general method

implemented in DESEQ [64], but the results remained overall

the same. Expression data for Drosophila genes were obtained
from modENCODE, available at www.flybase.org [58,65].

All statistical analyses and figures 1 and 2 were done with R [66].

Evolutionary age of microRNAs and microRNA families

was estimated as previously described [67]. In brief, I com-

piled microRNA sequences with detectable similarity to

D. melanogaster microRNAs with BLAST [68], using a sensitive

set of parameters to detect homologous microRNAs (–w 4,

–q –3, –r þ 2). I also included additional sequences descri-

bed elsewhere to ensure that all known microRNA families

with a common evolutionary origin are taken into account

[54,67,69–71]. MicroRNA hairpins were aligned with CLUSTALX

v. 2.0 [72], manually refining the alignments with RALEE [73],

and phylogenetic trees were reconstructed using the neighbour-

joining and maximum-likelihood routines with default

parameter as implemented in MEGA 5 [74]. MicroRNA age esti-

mates were also compared with those obtained by Mohammed

et al. [75] using a different approach: they analysed whole

genome alignments of 12 Drosophila genomes [76]. Age

estimations were fully congruent between both datasets.

MicroRNA targets were retrieved from our previous

study [77]. In short, 3’-UTRs were downloaded from FlyBase

(genome version BDGP 5.25), and the microRNA targets

were predicted with three different programs based on differ-

ent algorithmic approaches: TargetScan [78], DIANA-microT

[79] and miRanda [80], with default parameters. The evol-

utionary conservation of targeted genes was inferred from

the gene family tree available at TreeFam 9 [81].
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