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Single-Cell RNA Sequencing Reveals Endothelial 
Cell Transcriptome Heterogeneity Under 
Homeostatic Laminar Flow
Ziqing Liu (刘子青), Dana L. Ruter, Kaitlyn Quigley, Natalie T. Tanke, Yuchao Jiang, Victoria L. Bautch

OBJECTIVE: Endothelial cells (ECs) that form the innermost layer of all vessels exhibit heterogeneous cell behaviors and 
responses to pro-angiogenic signals that are critical for vascular sprouting and angiogenesis. Once vessels form, remodeling 
and blood flow lead to EC quiescence, and homogeneity in cell behaviors and signaling responses. These changes are 
important for the function of mature vessels, but whether and at what level ECs regulate overall expression heterogeneity 
during this transition is poorly understood. Here, we profiled EC transcriptomic heterogeneity, and expression heterogeneity 
of selected proteins, under homeostatic laminar flow.

APPROACH AND RESULTS: Single-cell RNA sequencing and fluorescence microscopy were used to characterize heterogeneity 
in RNA and protein gene expression levels of human ECs under homeostatic laminar flow compared to nonflow conditions. 
Analysis of transcriptome variance, Gini coefficient, and coefficient of variation showed that more genes increased RNA 
heterogeneity under laminar flow relative to genes whose expression became more homogeneous, although small subsets 
of cells did not follow this pattern. Analysis of a subset of genes for relative protein expression revealed little congruence 
between RNA and protein heterogeneity changes under flow. In contrast, the magnitude of expression level changes in RNA 
and protein was more coordinated among ECs in flow versus nonflow conditions.

CONCLUSIONS: ECs exposed to homeostatic laminar flow showed overall increased heterogeneity in RNA expression levels, 
while expression heterogeneity of selected cognate proteins did not follow RNA heterogeneity changes closely. These 
findings suggest that EC homeostasis is imposed post-transcriptionally in response to laminar flow.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Endothelial cells (ECs) drive new blood vessel forma-
tion. Once vessels form, EC line all conduits, where 
they form and maintain a barrier to solute leak, and 

participate in blood clotting and other homeostatic func-
tions.1–3 The ability to modulate the relative heterogeneity 
of an EC cohort in terms of signaling and cell behav-
iors is critical to vascular function.4 For example, during 
sprouting angiogenesis, the formation of new blood ves-
sels from preexisting vessels, it is important that some 
EC migrate while others proliferate to expand both the 
mass and complexity of the network.1 These differential 

cellular behaviors result from heterogeneous responses 
to incoming signals, accompanied by differential gene 
expression in selected signaling components within an 
EC cohort.5–7

In contrast, EC respond to remodeling cues, includ-
ing mechanical input from laminar blood flow, to synchro-
nize signaling responses, as they adopt similar cellular 
morphologies and become quiescent. This change pro-
motes homeostatic functions such as barrier formation, 
and lesions that perturb EC responses to homeostatic 
inputs are often lethal and/or lead to diseases such as 
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atherosclerosis.8,9 For example, as vessels mature, Notch 
signaling becomes arterial and relatively equalized in 
magnitude,10 while heterogeneous Notch signaling is a 
hallmark of early network sprouting.11 EC align along the 
direction of blood flow and morphologically appear more 
homogeneous under homeostatic laminar shear stress 
both in vivo and in vitro,8 suggesting a more homoge-
neous functional status of EC. However, this heterogene-
ity loss as EC transition from sprouting to homeostasis 
has not yet been quantified at the genome level.

Genome-wide expression heterogeneity of EC 
cohorts is not revealed by assays that average signals, 
such as bulk RNA or protein profiling; thus, we applied 
single-cell RNA sequencing (RNA-seq) to EC under 
homeostatic laminar flow to determine transcriptomic 
heterogeneity, and immunofluorescence with single-cell 
resolution to interrogate protein expression heterogene-
ity. Surprisingly, we found overall increased RNA expres-
sion heterogeneity under laminar flow, and that protein 
expression heterogeneity did not closely follow RNA het-
erogeneity, suggesting that flow-mediated EC homeo-
stasis is imposed post-transcriptionally.

MATERIALS AND METHODS
Data Availability
The single-cell RNA sequencing data supporting the findings 
of this study have been made publicly available at the GEO 
database under the accession number GSE151867.

Cell Culture and Laminar Flow
Human umbilical vein ECs (HUVEC, Lonza, C2519A) were cul-
tured in endothelial growth medium (basal medium-2 (EBM-2, 
Lonza CC-3156) supplemented with Endothelial Cell Growth 
Medium (EGM)-2 Bullet Kit (CC-3162; Lonza). For flow, 
5×105 passage 4 HUVECs were seeded onto µ channel slides 
(ibidi, 80176) coated with 5 µg/mL human plasma fibronec-
tin (Roche, 11080938001) in growth medium overnight, then 
the medium was replaced with EBM-2 supplemented with 
10% fetal bovine serum (FBS, Gibco, 26140-087). At 4- to 
6-hour post medium change, static samples were collected for 
single-cell RNA-seq or fixed for immunofluorescence, and flow 
samples were exposed to 15 dyn/cm2 laminar shear stress for 
72 hours (homeostatic laminar flow, ibidi system). After flow, 
ECs were either collected for single-cell RNA-seq or fixed for 
immunofluorescence. Mouse embryo fibroblasts (MEFs) were 

isolated as previously described12 from E13.5 CD1 mouse 
embryos, plated into 0.1% gelatin-coated dishes, and cultured 
in DMEM (Gibco, 11995-065) with 10% FBS. Antibiotics 
(Gibco, 15240-062) were used in all culture media.

Immunofluorescence
HUVEC in channel slides were fixed in 4% paraformaldehyde 
in PBS for 10 minutes, permeabilized in 0.1% Triton X-100 
in PBS for 5 minutes, blocked in 5% donkey serum in PBS 
(blocking buffer) for 30 minutes, sequentially incubated with 
primary and secondary antibodies, or a mixed solution of DAPI 
and conjugated antibodies in blocking buffer for 1 hour each, 
then mounted with 80% glycerol in PBS. Cells were washed 
3× with PBS for 5 minutes each between steps, and all incu-
bations were at room temperature. Concentrations of primary 
and secondary antibodies used are in Major Resources Table. 
A control sample without primary antibody was included in each 
experiment. Z-stack images were acquired with an Olympus 
FV3000 confocal microscope (Olympus) at 60×, and total 
fluorescence intensity (sum of all slices in the Z stack) of each 
image was quantified using the Fiji version of ImageJ (NIH). 
For nuclear staining, only nuclear pixels were quantified by cre-
ating a mask using the DAPI channel. For each independent 
experiment, >100 cells from 5 images were quantified. Gini 
coefficient of total fluorescence intensity was calculated with 
the Gini function in the package ineq in R.

Single-Cell RNA-Seq
For each condition, 2 biological replicates were collected in 2 
independent experiments. HUVEC under flow or nonflow static 
conditions were digested with 0.05% trypsin-EDTA (Gibco, 
25300-054) at 37 °C for 3 minutes, neutralized with 50% new-
born calf serum (Gibco, 16010-159) in PBS, collected with a 1 
mL syringe, pelleted by centrifugation at 100×g and 4 °C for 5 
minutes, washed once with 0.04% BSA in PBS, filtered with a 
Flowmi 40 µm cell strainer (Sigma, BAH136800040), counted 
using Countess (Life Technology, AMQAX1000), diluted to 
1000 cells/µL with 0.04% BSA in PBS, mixed with 10% 
MEF in 0.04% BSA/PBS, and loaded onto 10X Genomics 
Chromium Controller for droplet generation. MEFs were added 
to HUVEC to (1) determine multiplet rate via mixed-species 
design; (2) control for technical variability in post-MEF addi-
tion steps. HUVECs from 3 ibidi channel slides were combined 
for each static or flow sample. Viability of HUVEC was >95% 
via trypan blue staining. Four thousand cells (3600 HUVECs, 

Nonstandard Abbreviations and Acronyms

EC endothelial cell
HUVEC human umbilical vein endothelial cell
RNA-seq RNA sequencing
CV coefficient of variation
MEF mouse embryo fibroblast

Highlights

• Endothelial cells exposed to homeostatic laminar 
flow showed overall increased heterogeneity in 
RNA expression levels via single-cell profiling.

• Expression heterogeneity of selected cognate pro-
teins did not follow RNA heterogeneity changes 
closely.

• Results indicate that gene expression homeo-
stasis in endothelial cells under flow is imposed 
post-transcriptionally.
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400 MEFs) per sample were loaded. Reverse transcription 
and library preparation were performed with the Single Cell 3′ 
Library & Gel Bead Kit v2 according to 10X Genomics’ stan-
dard protocol, except that 13 cycles were used for cDNA ampli-
fication. Libraries of 2 flow experiments (Flow1 and Flow2) and 
2 nonflow experiments (Static1 and Static2) were combined 
and sequenced in one NextSeq500 run using the high output 
kit at the UNC Translational Genomics Lab (TGL) core. Each 
sample provided ≈1 to 1.5×108 150 bp paired-end reads. See 
experimental workflow in Figure IA in the Data Supplement.

Bioinformatic Analysis
Raw reads were mapped to the merged genome of mm10 
(mouse) and hg38 (human) using Cell Ranger (10X Genomics). 
Reads containing the same unique molecular identifier were 
collapsed, then assigned to individual cells via barcodes and 
analyzed in R. The following quality control steps were imple-
mented: (1) mouse-human multiplets containing both mouse 
and human reads were excluded (Figure IB in the Data 
Supplement). Total multiplet rate including cross-species multi-
plets and intraspecies multiplets were ≈0.34% based on %MEF 
and observed cross-species multiplets/sample (Figure IC in 
the Data Supplement). (2) Outliers with <200 detected genes/
cell were excluded as low-quality or debris. (3) Outliers with 
low (<0.6%) or high (>10%) levels of mitochondria-encoded 
genes were excluded as cell debris (low) or dying cells (high). 
(4) Genes whose expression was undetectable in any HUVEC 
were also excluded, resulting in 20 722 genes in the dataset. 
A total of 5251 high-quality HUVEC passed all filters, with 
≈10 000 unique molecular identifier counts/cell. Gene expres-
sion normalization was performed with the LogNormalize func-
tion in Seurat13 in R: unique molecular identifier counts were 
normalized to 10 000 total counts/cell before the logarithm 
was taken with an added pseudo-count. Principle compo-
nent analysis (Figure ID and IE in the Data Supplement) and 
t-distributed Stochastic Neighbor Embedding (tSNE, Figure IF 
in the Data Supplement) analysis of MEF collected from all 
4 samples was performed with Seurat13 in R, and cells were 
well mixed in the low-dimensional representation, suggesting 
minimal technical batch effect during droplet generation, library 
preparation, and sequencing.

Boxplots and violin plots of normalized gene expression 
were generated by R with the geom_boxplot function of ggplot2 
and the VlnPlot function of Seurat, respectively. Curated gene 
expression level fold change between static and flow conditions 
was exported from Seurat for bar plots. Gene ontology analy-
sis was performed with DAVID v6.8.14 Dimension reduction by 
Uniform Manifold Approximation and Projection and graph-
based clustering of HUVEC were performed with Seurat15 in 
R. Data from the 2 replicates were integrated using the canoni-
cal correlation analysis by Seurat. Complete overlap of cells 
from the 2 replicates on Uniform Manifold Approximation and 
Projection indicates good reproducibility.

Statistical Analysis
Differential tests of Gini coefficient (Gini) and coefficient of 
variation (CV) were performed with DESCEND.16 DESCEND 
is a statistical framework specifically designed to recover 
the true cross-cell gene expression distribution in single-cell 
RNA-seq data. The integer-valued single-cell RNA-seq read 

counts do not follow a normal distribution. DESCEND models 
the complex gene-specific expression distribution with a point 
mass at zero and a nonzero component belonging to an expo-
nential family of distributions, with the zero-inflated Poisson 
as a special case. This deconvolved expression distribution 
allows unbiased estimates of distributional properties such as 
dispersion (CV and Gini coefficient) and nonzero fraction. The 
noise model and estimation accuracy of DESCEND has been 
validated in the original DESCEND article with 9 previously 
published single-cell RNA-seq datasets including one side-by-
side single-cell RNA-seq and RNA fluorescence in situ hybrid-
ization study. To confirm that DESCEND has proper type I error 
(false positive) control in our dataset, we randomly split cells in 
experiment 1 into 2 sets and ran DESCEND to compare gene 
expression heterogeneity in these 2 sets. DESCEND found 
no genes showing significantly different Gini or CV between 
the 2 sets of cells, confirming good type I error control and no 
false positives by DESCEND. To accurately recover the true 
gene expression distribution, genes with overall low expres-
sion were filtered out based on: fraction of nonzero counts 
<5%, number of nonzero counts <20, or mean unique molecu-
lar identifier <0.15. 5370 genes passed the filters, and their 
true expression distribution in each replicate was deconvolved 
by DESCEND. Permutation-based differential tests were 
then performed for Flow1 versus Static1 and Flow2 versus 
Static2, followed by multiple hypothesis testing correction with 
the Benjamini & Hochberg method in the R package stats to 
obtain FDR-adjusted P. In parallel, differential tests of Gini and 
CV between the flow and the static population as a whole were 
also performed by including batch as a covariate.

Differential tests of gene expression levels between static 
and flow conditions were performed with the FindMarkers func-
tion in Seurat using the Wilcoxon rank-sum test with default 
settings (log fold change threshold of 0.25 and Bonferroni cor-
rected P threshold of 10−6). Protein expression data are repre-
sentative of multiple independent experiments. Statistical tests 
were 1-way ANOVA followed by Tukey multiple comparison 
correction, paired t test and ratio paired t tests in Prism 8.0.1. 
Due to the small sample size, the normality and variance were 
not tested to determine whether the applied parametric tests 
were appropriate.

RESULTS
ECs Have Increased Transcriptomic 
Heterogeneity Under Laminar Flow
EC become more homogeneous when exposed to 
homeostatic laminar flow, such as is found in the larger 
arteries of the body, based on the morphological appear-
ance of EC as they align to the shear stress gradient, 
and the fact that some signaling (ie, Notch) is less het-
erogeneous under laminar flow. We hypothesized that 
flow-stimulated EC morphological changes were accom-
panied by homogenization of the transcriptome. To exam-
ine the relative heterogeneity of EC at the RNA level with 
homeostatic laminar flow, we applied 15 dyn/cm2 lami-
nar shear stress to HUVEC for 72 hours, which leads to 
strong EC alignment and morphological homogeneity 
(Figure 1A). We then performed single-cell RNA-seq on 
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Figure 1. Single-cell RNA-seq shows endothelial cell (EC) transcriptomic heterogeneity under homeostatic laminar flow.
A, Human umbilical vein ECs (HUVEC) under indicated conditions labeled for cell-cell borders (PECAM1 [platelet and endothelial cell adhesion 
molecule 1], white) and nuclei (DAPI, blue). White arrow, direction of flow; Scale bar, 50 µm. B–P, Single-cell RNA-seq of HUVEC under indicated 
conditions. B, Distribution of normalized gene expression of KLF2 (Kruppel-like factor 2) and KLF4 (Kruppel-like factor 4). C, Heatmap showing 
normalized expression of top 30 upregulated and downregulated genes (ranked by fold change) in flow vs static cells. D, Variance formula. 
E, Intercellular variance of HUVEC transcriptome under indicated conditions. Statistics, 1-way ANOVA then Tukey multiple comparisons test. 
****P<0.0001. F, Gini coefficient formula. G–K, Gini was calculated for each gene with DESCEND (deconvolution of single-cell expression 
distribution),16 and differential test of Gini between conditions was performed. G, Each gene’s Gini change plotted against adjusted P. Red dots, 
significant genes (P adj <0.1); black dots, nonsignificant genes. H, Venn plots showing gene overlaps of significant Gini change in 2 independent 
experiments. I, Each gene’s Gini change plotted against mean expression. J, Number of genes showing Gini change in each experiment. Statistics, 
ratio paired t test. K, Venn plots showing overlap of genes with significant Gini (overlapping genes in H) vs coefficient of variation (overlapping 
genes in Figure IIIG in the Data Supplement) changes. L, Heatmap of Gini coefficient of genes showing significantly increased or decreased Gini 
(overlapping genes in H). M and N, Box plots of overall expression levels of representative genes with Gini increase (M) or decrease (N). Hinges 
correspond to first and third quartiles of expression levels. Gini is indicated by the width of box plots relative to y axis. Differential tests of gene 
expression levels performed with the Wilcoxon rank-sum test (P adj <10−6). O, Bar plot showing percentage and direction of gene expression level 
changes of genes showing Gini change. P, Representative gene ontology (GO) terms enriched in genes showing Gini increase/decrease with flow.
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flowed HUVEC and nonflowed HUVEC controls (called 
static) using the 10x Genomics platform (Figure IA in the 
Data Supplement). Over 20 000 genes were detected 
in 5251 high-quality HUVEC, with a low doublet rate 
(<0.5%) and good sequencing depth (≈3000 detected 
genes/cell, Figure IB through IF and IIA in the Data Sup-
plement, see Methods for quality control). Correlation 
analysis of pseudo-bulk samples assembled from single-
cell RNA-seq data showed a much higher correlation 
between biological replicates than across different con-
ditions, suggesting minimal batch effects and high repro-
ducibility (Figure IIB and IIC in the Data Supplement). 
Significant expression of the EC markers PECAM1 and 
CDH5 (VE-cadherin) was detected, while expression of 
markers of several other lineages were low or undetect-
able, confirming the EC identity of the analyzed cells 
(Figure IID in the Data Supplement). Upregulation of 2 
known flow-responsive genes, KLF2 and KLF4,17 was 
seen in HUVEC exposed to homeostatic laminar flow 
(Figure 1B), confirming appropriate transcriptional flow 
responses under these conditions. Additionally, 70% or 
more of the top 30 flow upregulated genes and flow 
downregulated genes in our dataset (Figure 1C) corre-
late with trends in at least one other published dataset of 
flow-regulated genes.18–22

We tested our hypothesis that laminar flow leads 
to reduced heterogeneity of RNA transcript levels by 
assessing EC transcriptomic heterogeneity using 3 dif-
ferent measurements: variance, CV, and Gini coefficient 
(Gini). We first calculated the intercellular variance (Fig-
ure 1D) of each gene in each sample. Surprisingly, a 
higher overall variance was observed for genes in both 
replicates of HUVEC under flow compared with static 
controls (Figure 1E), suggesting that EC have increased 
transcriptomic heterogeneity under homeostatic laminar 
flow. However, since variance can be influenced by gene 
expression levels, we additionally tested our hypothesis 
with CV (Figure IIIA in the Data Supplement) and Gini 
(Figure 1F), both of which are unitless and do not suf-
fer from mean-variance dependence. Since Gini is more 
robust to extreme outliers than CV,23 we focused on Gini 
but also tested CV to determine congruence between 
the 2 measurements. We calculated Gini for each gene 
and performed differential tests with DESCEND,16 a 
statistical framework specifically designed for single-
cell RNA-seq data (Figure 1G). We used 2 strategies to 
ensure that true biological variation was measured with-
out batch effect as a confounding issue. We first tested 
each replicate separately and found highly consistent 
results between replicates, showing largely overlapping 
lists of genes with significant Gini changes between 
flow and static conditions (Figure 1H), suggesting good 
reproducibility of our data. The second strategy tested 
the replicates together but with batch as a covariate, and 
this comparison also led to highly consistent results (Fig-
ure IIIB and IIIC in the Data Supplement), suggesting 

that true equality (Gini) change of RNA expression was 
measured. We then plotted Gini change between flow 
and static HUVEC against mean gene expression lev-
els or nonzero fraction; these comparisons suggested 
that significant Gini changes were not driven by large 
changes in gene expression or “dropout” effect of single-
cell RNA-seq, since the number of genes with signifi-
cant Gini change was not biased towards the top of the 
y axis (Figure 1I, Figure IIID in the Data Supplement). 
Similar to the variance measurement, a higher number of 
genes have more heterogeneous expression under flow 
(178 genes increased Gini) than genes that have more 
uniform expression under flow (63 genes decreased 
Gini, Figure 1H and 1J), also suggesting increased EC 
transcriptomic heterogeneity under homeostatic lami-
nar flow. Finally, we calculated CV and performed a dif-
ferential test as for Gini (Figure IIIE through IIIJ in the 
Data Supplement). The results showed that more genes 
exhibited increased transcriptomic heterogeneity under 
flow (184 genes increased CV) than decreased tran-
scriptomic heterogeneity (59 genes decreased CV, Fig-
ure IIIG in the Data Supplement). Moreover, the lists of 
genes showing significant CV changes between flow and 
static conditions largely overlap with those showing Gini 
changes (Figure 1K, Figure IIIJ in the Data Supplement). 
In summary, results from 3 heterogeneity measurements 
consistently indicate an overall increased transcriptomic 
heterogeneity of EC under homeostatic laminar flow. 
These findings refute our hypothesis that loss of het-
erogeneity at the morphological level is accompanied by 
homogenization of the RNA transcriptome.

To further examine EC transcriptional heterogeneity 
in response to laminar flow, we ranked individual genes 
showing significant Gini changes under flow (Figure 1L). 
Top-ranked genes showing increased Gini under flow 
were individually plotted by experiment and condition to 
confirm Gini increase in flow experiments, as evidenced 
by increased spread along the y axis (Figure 1M). Like-
wise, top-ranked genes with decreased Gini showed 
decreased spread along the y axis in EC exposed to 
laminar flow (Figure 1N). We next calculated the per-
centage of genes whose Gini change are accompanied 
by expression level changes (Figure 1O). This analy-
sis showed that a majority (58%) of the genes show-
ing significant Gini changes had no overall expression 
changes. When we further broke down by the direction 
of Gini change, genes showing Gini increase with flow 
were less correlated with overall expression changes 
than genes showing Gini decrease, with 63% percent of 
Gini increase genes showing no significant expression 
change. Overall, this analysis indicates that the increased 
flow-induced transcriptomic variance in EC resulted from 
changes unlinked to overall expression level changes. 
Gene Ontology analysis of the genes showing significant 
Gini change under flow revealed that protein translation, 
oxidative metabolism, and cell-cell adhesion categories 
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were enriched in the genes with upregulated Gini, while 
protein processing and cell-cell adherens junctions cat-
egories were enriched in genes with downregulated Gini 
(Figure 1P), suggesting that some categories of genes 
may harbor more Gini changes under flow, and that cell 
adhesion and adherens junctions may be differentially 
affected, although the overall limited number of genes in 
this category preclude drawing strong conclusions from 
this analysis.

We next asked whether there are EC subpopulations 
whose gene expression heterogeneity differs in response 
to laminar shear stress. We first analyzed EC binned by 
flow-responsiveness via upregulation of KLF2, KLF4, 
or both genes. We compared gene expression hetero-
geneity of these subsets to EC under static conditions 
and found that more genes showed increased Gini than 
showed decreased Gini, regardless of the gating criteria 
(Figure 2A). The relationship is similar to the initial com-
parison of the entire populations, suggesting that EC flow-
responsiveness does not significantly change the Gini 
relationships. The list of genes showing significant Gini 
changes in the flow-responsive subpopulation are also 
highly overlapping with the original gene lists ungated for 
flow-responsiveness (Figure 2B). Both of these relation-
ships were reproduced when CV was analyzed (data not 
shown). These comparisons suggest that EC subpopula-
tions with different flow responses do not have different 
Gini or CV relationships based on this distinction.

Second, we performed dimension reduction and 
clustering with Seurat to interrogate flow-induced EC 
subpopulation heterogeneity. Dimension reduction with 
Uniform Manifold Approximation and Projection showed 
that homeostatic laminar flow induced significant tran-
scriptome changes, and 9 clusters with distinct gene 
expression profiles were identified: Stat1-4, Flow1-4, 
and a cluster termed “Mix” that contained cells from 
both stat (nonflow) and flow conditions (Figure 2C, Fig-
ure IVA in the Data Supplement). KLF2 and KLF4 were 
highly expressed in all Flow clusters but not Stat clusters 
(Figure 2D), suggesting that all flowed subpopulations 
responded to shear stress. Stat1 and Flow1 contained 
the highest cell numbers, and highly expressed genes in 
these clusters are also highly expressed by other static 
or flow clusters (Figure 2E), suggesting that they are 
the “ground state” for nonflow (static) and flowed EC. 
Further analyses of cluster markers and enriched Gene 
Ontology terms (Figure 2F) suggest that Stat2, Flow2 
and Mix clusters are likely proliferating and clustered as 
described because of this property. Differences in cell 
cycle activity are reported as primary drivers of transcrip-
tional heterogeneity in published scRNA-seq studies24–26 
and progression through the cell cycle has been found to 
correlate with total transcript level per cell.27 Therefore, 
to focus on flow-induced gene expression heterogeneity 
and not cell cycle-related heterogeneity, we excluded the 
3 cell-cycle active clusters from further analysis.

We then performed the same DESCEND analysis 
used for the total populations to compare clusters: Stat1, 
3, 4 and Flow1, 3, 4. Comparison via Gini (Figure 2G) 
revealed more genes with increased expression hetero-
geneity than with decreased heterogeneity when each 
Flow cluster was compared with ground state cluster 
Stat1. Stat1 contains the majority (≈70%) of nonflowed 
EC, supporting our overall conclusion that EC transcrip-
tional heterogeneity increases under homeostatic lami-
nar flow conditions. However, Stat3 and Stat4 clusters 
had higher gene expression heterogeneity than Stat1 
and the analyzed Flow clusters, suggesting a higher 
level of inter-cluster heterogeneity among some non-
flowed (static) EC, and increased Gini in these clusters 
relative to flow. Stat3 markers suggest that this cluster 
contains pro-inflammatory EC, while Stat4 EC have ele-
vated expression of actin cytoskeleton-related and focal 
adhesion genes and are likely migratory. These findings 
suggest that structural and signaling changes in small 
subsets of nonflowed EC affect transcriptome expres-
sion heterogeneity in a context of overall decreased tran-
scriptional heterogeneity in nonflow conditions. The Flow 
cluster Ginis were much closer to each other, and they 
were all more heterogeneous than Stat1. Flow 4 con-
tained EC with a more activated “angiogenesis” profile 
and had a slightly more heterogeneous Gini compared 
with Flow1, while Flow 3 was characterized by oxidative 
metabolism and perhaps immune functions and had a 
slightly less heterogeneous Gini compared with Flow 1 
(Figure 2F and 2G).

EC Protein Expression Becomes More 
Homogeneous Under Flow
To investigate EC protein expression heterogeneity 
changes with homeostatic laminar flow, we performed 
antibody staining for selected EC proteins at single-cell 
resolution. We tested nuclear-localized proteins to pro-
vide more accurate quantification on a per-cell basis, 
and the selected genes included some with significant 
heterogeneity (Gini) change at the RNA level with flow, 
and others whose Gini was not significant. Representa-
tive images showed that some genes exhibited more uni-
form fluorescence intensity via antibody staining under 
flow compared with static controls (Figure 3A and 3B), 
suggesting decreased protein expression heterogeneity 
under flow. Quantification of total fluorescence inten-
sity/nucleus, followed by a Gini coefficient calculation, 
showed decreased protein expression heterogeneity 
under flow for 4/5 genes with significant RNA expres-
sion heterogeneity, while 1/5 genes showed unchanged 
protein heterogeneity under flow (Figure 3C). Genes 
whose RNA Gini was not significant but trended down-
ward (3/5) had little protein Gini, while one tested gene 
had decreased RNA Gini and significantly decreased 
protein Gini (Figure IVB in the Data Supplement), 
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suggesting that EC protein heterogeneity under flow 
is uniform regardless of the RNA Gini. In contrast, the 
overall expression level changes between static and flow 
were more concordant for RNA and protein (Figure 3D, 
Figure IVC in the Data Supplement), although the sample 
size for protein data was small and some of the protein 
level changes were not significant.

DISCUSSION
The responses of ECs to laminar flow are crucial to 
establishing and maintaining vascular homeostasis and 
quiescence; yet, whether the homogenization of mor-
phology and signaling is reflected in global homogeniza-
tion of transcription profiles was not known. Here, we use 

Figure 2. Subpopulation analysis of endothelial cell (EC) under homeostatic laminar flow.
A and B, Human umbilical vein ECs (HUVEC) flow samples gated based on expression of KLF2, KLF4, or both; differential Gini test 
performed between static and indicated flowed EC with DESCEND (deconvolution of single-cell expression distribution). A, Genes with 
significant Gini changes under flow by each gating criteria. B, Venn diagrams showing gene list overlap from gated vs ungated analysis (A). 
C–G, Subpopulation analyses. C, UMAP (Uniform Manifold Approximation and Projection) plots of HUVEC colored by condition (left) or 
subpopulations (right). D, Violin plots showing distribution of normalized KLF2 and KLF4 expression by subpopulation. E, Heatmap showing 
expression of top 10 cluster markers ranked by fold change. Left, representative genes for each cluster. F, Representative gene ontology terms 
for genes highly expressed in each cluster. G, Differential test of Gini performed between HUVEC subpopulations with DESCEND; ratio of 
genes showing increased Gini over genes showing decreased Gini for each pairing. Red bars, ratio >1. Blue bars, ratio <1.
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genome-wide single-cell RNA-seq analysis to show that 
a subset of RNA transcripts becomes more heteroge-
neous in expression among a cohort of EC undergoing 

morphological homogenization in response to flow, while 
a smaller subset becomes less transcriptionally hetero-
geneous under flow. In contrast, a sampling of heteroge-
neity in protein expression levels indicates that protein 
expression tends to become less heterogeneous under 
homeostatic laminar flow, regardless of the RNA expres-
sion heterogeneity. Taken together, these findings sug-
gest that EC expression heterogeneity under flow is 
complex, and that RNA expression heterogeneity does 
not always follow morphological homogenization as EC 
respond to homeostatic laminar flow.

Differential gene expression is well-documented 
between different cell types, but intercellular gene 
expression heterogeneity within a cell type is relatively 
understudied due to technical challenges. The recent 
development of single-cell OMICS and other single-cell 
techniques have enabled interrogation of global regula-
tion of intercellular heterogeneity, although most studies 
query expression level changes. Among the few studies 
focusing on gene expression variation, one provided evi-
dence that regulated heterogeneity but not gene expres-
sion levels correlated with epithelial cell differentiation 
to fiber cells during ocular lens development.28 DNA 
methylation heterogeneity across cells was linked to 
splicing variability during differentiation of induced plu-
ripotent stem cells in another study.29 Multiplexed RNA 
in situ hybridization revealed high spatial heterogeneity 
of biomarker gene expression in tumor tissues, suggest-
ing the potential application of spatial heterogeneity as 
a complementary approach for breast cancer subtype 
differentiation.30 Thus intercellular/ interregional gene 
expression heterogeneity has functional consequences 
and clinical applications, underscoring its importance.

ECs are highly specialized in structure and function 
and remarkably heterogeneous in different tissues and 
organs.4 EC transcriptomes and proteomes also vary dra-
matically across vascular beds.31,32 Single-cell RNA-seq 
has revealed new EC subpopulations defined by distinct 
gene expression patterns from a variety of tissues.32–34 
Our cluster analysis of EC exposed to homeostatic lami-
nar flow compared with nonflowed controls revealed 
that each condition had 4 clusters plus one that was 
shared between stat and flow EC. This indicates that 
while homeostatic laminar flow imposes morphological 
homogeneity on EC, there exist different subtypes of EC 
exposed to flow, as defined by expression level profiling 
of gene sets. This is consistent with other studies that 
analyzed freshly isolated aortic EC.34,35 Most of our top 
significant changes in EC gene expression under flow 
are shared with published data,18–22 suggesting that EC 
flow responses are similar when flow parameters are 
similar, and that species differences or use of primary 
EC from a particular source (ie, arterial versus venous) in 
culture do not affect the outcomes. Gene ontology anal-
ysis of transcriptome expression heterogeneity changes 
with flow revealed that protein translation and oxida-
tive metabolism pathways are associated with elevated 

Figure 3. Endothelial cell (EC) transcriptomic heterogeneity 
compared with EC protein expression heterogeneity under 
homeostatic laminar flow.
Human umbilical vein ECs (HUVEC) immunostained for genes showing 
significant Gini change under flow vs static in single-cell RNA-seq 
data. Representative images of HMGA1 (high mobility group AT-hook 
1; A), ANKRD1 (ankyrin repeat domain 1; B) staining, with DAPI (blue, 
nucleus), and PECAM1 (platelet endothelial cell adhesion molecule 1; 
gray, cell borders). White arrow, direction of flow; scale bar, 50 µm. C, 
Gini change for tested nuclear genes at the RNA (single-cell RNA-
seq) and protein level (immunostaining). Error bars, mean±SEM from 
multiple replicates. Statistics for mRNA, DESCEND (deconvolution of 
single-cell expression distribution), **P<0.01, *P<0.05. Statistics for 
protein, paired t test, *P<0.05. D, Mean expression level fold change 
for tested genes at the RNA (single-cell RNA-seq) and protein level 
(mean fluorescence intensity from 3 independent experiments). Dotted 
lines, Fold change=1.5. Statistics for mRNA, Wilcoxon rank-sum test, 
***P<0.001. Statistics for protein, ratio paired t test, *P<0.05.
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variance while protein processing is associated with 
reduced variance, and cell-cell interactions are found in 
both categories, suggesting complexity in these catego-
ries in response to flow.

Our findings reveal that the relationship between 
RNA and protein expression heterogeneity in response 
to flow is complex. With the caveat that the protein 
data were limited in scope relative to the RNA data, we 
asked whether a subset of genes with significant Gini 
change at the RNA level showed a similar trend in pro-
tein and found little correlation, suggesting divergence 
in RNA and protein expression heterogeneity regulation. 
However, similar analysis of another small gene subset 
not chosen on the basis of Gini change showed little 
overall change in RNA Gini and a trend in the same 
direction for overall RNA and protein levels. Thus, we 
conclude that RNA expression heterogeneity does not 
strongly correlate with protein expression heterogene-
ity changes under flow. In contrast, overall expression 
levels of the same genes were more correlated, sug-
gesting that regulation of expression heterogeneity may 
be distinct from regulation of expression levels under 
flow. Although most single-cell EC profiling bins by gene 
expression levels, one recent report revealed the vari-
ability of VCAM1 gene expression at both RNA and 
protein levels in HUVEC after TNFα stimulation,36 indi-
cating that transcriptional heterogeneity reflects protein 
heterogeneity under these conditions. This heterogene-
ity was linked to preexisting heterogeneity of VCAM1 
promoter methylation rather than stochastic TNFα sig-
naling or histone modification. von Willebrand factor is 
also expressed heterogeneously at both the RNA and 
protein levels, and promoter methylation was linked to 
control of heterogeneity in VWF expression.37

Here, we interrogated the entire transcriptome of a 
cohort using 3 measures of variance as EC responded 
to homeostatic laminar flow, and we found that over-
all transcriptional heterogeneity increased, and was 
unlinked to morphological homogenization. However, 
when transcriptional heterogeneity was assessed in dif-
ferent EC subtypes within the nonflow and flow popu-
lations, a large cluster in each condition mirrored the 
total set for that condition in Gini relationships, while 
some nonflowed clusters with smaller cell numbers had 
higher heterogeneity than the flow clusters. The asso-
ciation of these clusters with inflammation and migra-
tion suggests that activation of these pathways may be 
a stimulus for increased transcriptional heterogeneity. 
Several smaller flow clusters also varied slightly from 
the main flow cluster in RNA expression heterogeneity, 
suggesting that EC RNA Gini responses to flow vary 
within a small range.

These findings have implications for EC dysfunction 
and disease. For example, atherosclerotic lesions form 
preferentially in areas of vessels that experience dis-
turbed rather than laminar flow, such as vessel branch 

points, and EC in these areas do not exhibit the mor-
phological homogeneity of EC in laminar areas.8,38 Based 
on our findings, we predict that important regulation of 
EC responses to homeostatic laminar flow may include 
homogenization of expression post-transcriptionally for 
some genes. Thus, therapies that target pathways post-
transcriptionally may be more effective in mitigating the 
effects of disturbed flow on EC function.
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