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Summary

Decitabine is a DNA-hypomethylating agent that has been widely applied

for the treatment of acute myeloid leukaemia (AML) patients who are

elderly or unfit for intensive therapy. Although effective, the complete

response rate to decitabine is only around 30% and the overall survival

remains poor. Emerging data support that regulation of DNA methylation

is critical to control immune cell development, differentiation and activa-

tion. We hypothesize that defining how decitabine influences the immune

responses in AML will facilitate the development of novel immune-based

leukaemia therapeutics. Here, we performed phenotypic and functional

immune analysis on clinical samples from AML patients receiving decita-

bine treatment and demonstrated a significant impact of decitabine on the

immune system. T-cell expression of inhibitory molecules was upregulated

and the ability of CD8 T cells to produce cytokines was decreased upon

decitabine treatment. Importantly, in an unbiased comprehensive analysis,

we identified a unique immune signature containing a cluster of key

immune markers that clearly separate patients who achieved complete

remission after decitabine from those who failed to do so. Therefore, this

immune signature has a strong predictive value for clinical response. Col-

lectively, our study suggests that immune-based analyses may predict clini-

cal response to decitabine and provide a therapeutic strategy to improve

the treatment of AML.

Keywords: AML, T-cell exhaustion, immune signature, CD38, decitabine.

Despite significant advances in the knowledge of the genetic

and cellular processes in leukaemia pathogenesis, successful

treatment of acute myeloid leukaemia (AML) remains chal-

lenging, with 5-year survival of only 27�4% according to the

National Cancer Institute. The prognosis for elderly patients

or patients unfit for intensive chemotherapy is especially

poor due to limited treatment options. The median age of

AML at diagnosis is 68 years. Clearly, novel effective leukae-

mia therapy is an urgent unmet need (DeSantis et al, 2014;

Noone et al, 2018).

Epigenetic changes caused by increased DNA methylation,

particularly in CpG-rich regions of the genome, are known

to be tumourigenic (Dawson & Kouzarides, 2012; Klutstein

et al, 2016). This aberrant methylation can be reversed by
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hypomethylating agents (HMA), which have achieved clinical

benefit in treating patients with haematological cancer (Kan-

tarjian et al, 2006; Yang et al, 2006). Decitabine is an impor-

tant HMA that has been widely applied for AML treatment

in clinical practice and is considered standard care as the first

line treatment of elderly patients or patients unfit for inten-

sive chemotherapy (Jabbour et al, 2008; Erba, 2015; Welch

et al, 2016; Tamamyan et al, 2017). Although effective, the

complete response (CR) rate to decitabine is only around

30–40% and even for patients responding to this treatment,

the majority develop resistance within 1 year (Blum et al,

2010; Ritchie et al, 2013; Bhatnagar et al, 2014; Khan et al,

2017). As a cytidine analogue, decitabine incorporates into

DNA and results in demethylation by covalently trapping

DNA methyltransferase (DNMT). In tumour cells, DNA

hypomethylation subsequently activates a series of molecular

and cellular processes, including upregulation of tumour

suppressor genes, cell cycle arrest and tumour apoptosis,

which eventually leads to tumour elimination (Mizuno et al,

2001; Schmelz et al, 2005; Stresemann & Lyko, 2008; Tsai

et al, 2012). However, knowledge of how decitabine influ-

ences cells or organ systems beyond tumour is limited.

Immune surveillance is a key component of the host’s

resistance to cancer. Therefore, T-cell exhaustion and

immune suppression are considered crucial mechanisms for

tumour progression (Thommen & Schumacher, 2018;

McLane et al, 2019). Emerging data support that epigenetic

regulation, particularly DNA methylation, is critical to con-

trol immune cell development, differentiation and activation

(Ladle et al, 2016; Abdelsamed et al, 2017). Therefore, we

hypothesized that defining how decitabine influences the

immune response in AML patients will reveal key mecha-

nisms involved in refractory/resistant disease and facilitate

the development of novel effective leukaemia therapeutics.

Here we defined the phenotypic and functional characteris-

tics of peripheral blood mononuclear cells (PBMCs) collected

from AML patients undergoing treatment with decitabine.

We aimed to determine (i) how decitabine influences the

immune system; and (ii) whether the immune status in AML

patients predicts the response to decitabine treatment.

Materials and methods

Patient samples

Peripheral blood samples were collected from AML patients

from the tissue bank maintained by the Penn State Cancer

Institute of Penn State University College of Medicine, Her-

shey, PA. The study was approved by the Institutional

Review Board of Penn State University College of Medicine.

Full written informed consent was obtained from all patients.

Twenty-eight peripheral blood samples from 14 patients (6

males and 8 females with a median age of 70 years, range,

52–79 years) with the diagnosis of AML per World Health

Organization (WHO) classification were used (Arber et al,

2016). Clinical outcome was evaluable in 12 patients.

Response criteria is per the European LeukaemiaNet (ELN)

2017 recommendation (Dohner et al, 2017). Four patients

achieved complete remission (CR), 1 CR with incomplete

haematological recovery (CRi), 2 partial remission (PR), 3

stable disease (SD) and 2 progressive disease (PD). Clinical

characteristics of these patients are summarized in Tables S1

and S2.

Immunofluorescence staining and flow cytometric
analysis

Peripheral blood mononuclear cells (PBMCs) were incubated

with fixable viability dye eFluorTM 506 (eBioscience, San

Diego, CA) in phosphate-buffered saline for 20 min at 4°C,
followed by incubation with directly conjugated monoclonal

antibodies (mAbs) for 30 min at 4°C. Transcription factor

staining was performed after the surface incubation using

transcription factor buffer set (BD Pharmingen, San Jose,

CA) according to the manufacturer’s instructions. The cells

were washed before flow cytometric analysis. All mAbs used

for different panels are listed in Table S3. LSR Fortessa flow

cytometer (BD Biosciences, San Jose, CA) was used for data

acquisition, and the data analysis was performed using

FlowJo Software (Version 10.0, Tree Star, Ashland, OR).

In vitro stimulation and intracellular staining

PBMCs were cultured in RPMI 1640 medium (Corning) with

10% fetal bovine serum and stimulated with anti-CD3/CD28

(2 and 5 lg/ml, respectively, eBioscience), plus Golgiplug

(BD Biosciences) for 5 h. The cells were then stained with

anti-CD3-BV786, anti-CD4-BV711, anti-CD8-APC-H7 (BD

Biosciences), and fixed/permeabilized using BD cytofix/cytop-

erm kit (BD Biosciences) followed by intracellularly staining

with anti-interferon (IFN)-c-allophycocyanin (APC), anti-tu-

mour necrosis factor (TNF)-fluorescein isothiocyanate

(FITC), anti-interleukin (IL)-2 phycoerythrin-cyanin 7 (PE-

Cy7), anti-IL-10-PE-CF594 and anti-transforming growth

factor (TGF)-b-PE (BD Biosciences). Data acquisition and

analysis were as described above.

Statistical analysis

Statistical parameters and statistical significance are reported

in the Figures and Figure Legends. A P < 0�05 was consid-

ered significant. Data are presented as the median and

interquartile range (IQR). Due to small sample size, compar-

isons of patient characteristics for unpaired data were anal-

ysed using Fisher exact test (categorical variables) or

Wilcoxon-rank sum test (continuous variables). For paired

data comparisons (i.e., before-after treatment comparison),

Wilcoxon signed-rank tests were used for analysis. Spear-

man’s rank correlation coefficients were calculated to evalu-

ate the correlation. In particular, we consider multiple
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comparison correction over multiple biomarkers. The false

discovery rate (FDR) for multiple comparisons is controlled

as 0�05 by using the Benjamini and Hochberg approach for

P-value adjustment (Benjamini & Hochberg, 1995). Also,

principal component analysis (PCA) was performed using

the ggbiplot function from the ggplot2 package in R, and

hierarchical clustering and heatmaps were obtained using the

pheatmap package. GraphPad Prism (GraphPad Software

Inc., San Diego, CA) and R version 3.5.1 were used for sta-

tistical calculations and visualization.

Results

Frequencies of peripheral immune cell subsets are
minimally altered upon decitabine treatment in AML
patients

To determine how decitabine treatment influences the

immune composition of patients with AML, we analysed cry-

opreserved PBMC samples from a cohort of 14 elderly

patients with AML collected before and 1 month after initia-

tion of treatment with decitabine. All samples were stained

with 9 separate and partially overlapping panels of antibodies

(Table S3) followed by flow cytometry analysis. In total, 46

leucocyte markers were used to identify the immune cell

populations and dissect the differentiation, phenotypic and

functional status of each immune component. As expected,

we observed a decrease in blast frequency upon decitabine

treatment (data not shown). Among the non-blast PBMCs,

we gated CD4 T cells, CD8 T cells, regulatory T (Treg), natu-

ral killer (NK) cells, NKT cells, B cells, dendritic cells (DCs),

monocytes and myeloid-derived suppressor cells (MDSCs)

based on well-recognized marker patterns (Table S4). We

found comparable frequencies of these major immune cell

components prior to and following decitabine treatment (Fig

1). Therefore, treatment with decitabine did not significantly

affect the frequency of major immune components in AML.

Decitabine treatment significantly impacts the
differentiation, phenotype and function of T cells in
AML patients

T cells represented the majority cell population in non-blast

PBMCs from AML patients. Decitabine did not significantly

alter CD4 or CD8 T cells frequencies (Fig 1). We further

examined the effect of decitabine on T cell differentiation.

Based on the expression of CD45RA and CCR7, T cells are

divided into four subsets: CCR7+CD45RA+ na€ıve cells (TN),

CCR7+CD45RA� central memory (TCM) cells,

CCR7�CD45RA� effector memory (TEM) cells and

CCR7�CD45RA+ terminally differentiated effector (TEMRA)

cells. The majority of CD4 T cells were TN, TCM or TEM,

with only a small frequency of TEMRA detected. No signifi-

cant difference was observed among these CD4 subsets prior

versus post-decitabine treatment (Fig 2A). In contrast, TEMRA

represented the largest subset of CD8 T cells, and we found a

significant decrease of CD8 TEMRA cells (median = 56�10%
vs. 43�00%) upon decitabine treatment (Fig 2B).

We next performed comprehensive phenotypic and func-

tional analysis of CD8 T cells. A large number of T cell phe-

notypic markers including activation molecules, co-

stimulatory or inhibitory receptors, and transcriptional fac-

tors were assessed. Significant increase of CD38 expression

on CD8 T cells upon decitabine treatment was detected (me-

dian = 10�83% vs. 26�77%, Fig 2C). Of note, we didn’t

observe statistically significant alteration in programmed cell

death 1 (PD-1, also termed PDCD1) expression (Fig 2C).

The functional status of T cells was evaluated by cytokine

release assays upon in vitro stimulation with anti-CD3 and

anti-CD28 antibodies. We observed significantly lower num-

bers of CD8 T cells producing intracellular IFN-c in samples

of patients post-decitabine treatment compared with that of

paired samples from the same individuals at initial diagnosis

(Fig 2D). Notably, there was a strong negative correlation of

CD38 expression on CD8 T cells to their production of IFN-

c (Spearman’s r = �0�6574, P = 0�0001, Fig 2E), indicating

an inhibitory regulation of CD38 to T cell function. Of note,

we performed analyses of blasts for the surface markers (PD-

L1 [CD274], CD155, V-set immunoregulatory receptor

[VISTA, VSIR], HLA-A/B/C and HLA-DR). Significant dif-

ferences were not observed in samples between prior to ver-

sus post-decitabine treatment (Figure S1).

Taken together, these data demonstrate that decitabine

treatment is associated with increased T cell expression of

inhibitory receptors and reduced T cell function indicated by

decreased cytokine production.

AML patients who responded to decitabine have a
distinct immune signature from those who failed
decitabine treatment

Given the strong impact of decitabine on T-cell activity in

AML, we hypothesized that the immune status of AML

patients associates with clinical response to decitabine. To

test our hypothesis, we chose PBMC samples from 12

patients whose clinical outcome was evaluable. Based on

ELN 2017 criteria for clinical response (Dohner et al, 2017),

5 patients achieved complete remission (CR) or CR with

incomplete haematological recovery (CRi) after decitabine

treatment, whereas the other 7 patients failed to achieve CR/

CRi, and were defined as responders (CR/CRi) versus non-re-

sponders (no CR/CRi). Two samples were collected from

each patient (at initial diagnosis and 1-month post-decita-

bine treatment), so that a total of 24 samples (10 responders

and 14 non-responders) were used in this study. Flow

cytometry based immunophenotypic and functional assays

were applied to each sample. In an unsupervised PCA for

comprehensive immune markers, we observed a distinct pat-

tern between the responders and non-responders (Fig 3).

This encouraging finding suggests a strong association of
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immune signature with clinical response to decitabine treat-

ment in AML patients.

High functional T cell status associates with good clinical
response to decitabine in AML

We further dissected the association of each immune mar-

ker with the clinical response to decitabine. Frequencies of

each immune component were compared between respon-

ders versus non-responders. We observed no statistically sig-

nificant difference in NK, NKT, Treg, B cells, DCs and

monocytes (Figure S2A). No difference was detected in the

proportion of CD4 or CD8 T cells either. However, when

the T cell differentiation status was analysed, we found

more TN and TCM but less TEMRA in responders compared

with that of non-responders (Fig 4A). Phenotypic studies

showed that responders had a significantly higher frequency

of co-stimulatory molecule inducible T cell costimulatory

(ICOS)-expressing CD8 T cells, whereas the frequency of

CD8 T cells expressing inhibitory molecules, such as T cell

immunoreceptor with Ig and ITIM domains (TIGIT) and

CD38, were trending lower in these patients (Fig 4B). Inter-

estingly, PD-1 expression on T cells was comparable

between responders and non-responders (Fig 4B). We also

examined the expression of Eomesodermin (EOMES), a key

transcription factor governing CD8 T-cell exhaustion, and

observed a trend of higher frequency of EOMES-expressing

CD8 T cells in non-responders (Fig 4C). Importantly, when

functional status of T cells was measured by cytokine release

upon in vitro stimulation with anti-CD3 and anti-CD28,

significantly higher IFN-c production by CD8 T cells was

observed in responders compared with non-responders (Fig

4D). We did not observe significant difference of other

cytokine release, such as TNF-a and IL-2 by CD8 T cells

(Fig 4D) or CD4 T cells (Figure S2B).

Collectively, our data demonstrate a correlation between

phenotypically and functionally active T cells and positive

clinical response to decitabine in AML.
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Fig 1. Frequencies of peripheral immune cell subsets are minimally altered upon decitabine treatment in AML patients. Flow-cytometry analysis

was performed on peripheral blood mononuclear cells (PBMCs) collected from patients with acute myeloid leukaemia (n = 14) before and after
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individual patient (total n = 14). P-values were calculated using Wilcoxon signed-rank tests and were corrected for the multiple comparison using
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Identification of the immune signature that predicts
clinical response to decitabine in AML patients

To identify immune markers that may predict clinical

response to decitabine, we evaluated data from samples of

the 12 AML patients at initial diagnosis (prior to decitabine

treatment). Comprehensive immune analyses were per-

formed to identify differences between responders versus

non-responders. In addition to analysing bulk CD4 and

CD8 T cells, we further assessed the expression of pheno-

typic and functional markers on T cells at each differentia-

tion stage (TN, TCM, TEM, and TTERMA). Markers showing a

different expression pattern between responders and non-re-

sponders were selected for further analysis. We then per-

formed hierarchical clustering on normalized expression

levels of the selected immune markers for each patient. Two

major clades were identified by this analysis: one consisted

of samples from all the 5 responders; while the other was

that from all the 7 non-responders (Fig 5). This unbiased

clustering approach adequately segregated the responders

from non-responders based on the study of samples prior to

decitabine therapy, suggesting that the immune signature,

composed of a cluster of immune markers, may have impor-

tant predictive value for the clinical response to decitabine

treatment in AML.

Discussion

In our current study, we demonstrated a significant impact

of decitabine on the immune system of AML patients. T-cell

expression of inhibitory molecules was upregulated and the

ability of CD8 T cells to produce cytokines was decreased

upon decitabine treatment. Importantly, in an unbiased com-

prehensive analysis, we identified a unique immune signa-

ture, containing a cluster of key immune markers that clearly

separate patients who achieved CR/CRi after decitabine from

those who failed to do so. Therefore, this immune signature
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has a strong predictive value for clinical response to

decitabine.

Elegant studies in a mouse model of chronic viral infec-

tion demonstrate a critical role for DNA methylation in T-

cell effector function and exhaustion (Scharer et al, 2013;

Ahn et al, 2016; Abdelsamed et al, 2017; Ghoneim et al,

2017). Persistent antigen stimulation induces DNA methyla-

tion of exhaustion-associated genes such as IFNG, MYC,

TCF7, TBX21 and EOMES in T cells. T cells eventually

become fully exhausted, a stage which is not reversible by

immune-check point blockade. Importantly, inhibition of

DNA methylation successfully overcomes this barrier in that

decitabine followed by PD-1 blockade effectively reinvigorates

the function of exhausted CD8 T cells (Ghoneim et al, 2017).

The observation that demethylation improves CD8 T cells

response by reversing T-cell exhaustion is in contrast to our

finding that T-cell function was decreased manifested by

reduced production of cytokines upon decitabine treatment
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Fig 4. High functional T cell status associates with good clinical response to decitabine in AML. Cell components, phenotypes and functions were

compared between the responders (R, n = 10) versus non-responders (NR, n = 14). (A) Shown are the frequencies of TN, TCM, TEM, TEMRA sub-

sets among CD8 T cells. The pie charts represent the mean values of each subset. The box-and-whiskers plots depict the summary of data from

all patients. Each spot represents an individual patient. (B) Surface expression of co-stimulatory or co-inhibitory molecules on CD8 T cells are
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CD8 T cells upon in vitro stimulation with anti-CD3 and anti-CD28 antibodies. For A, P-values were calculated using Wilcoxon rank-sum tests.

For (B–D), total of 26 immune markers, including activation molecules, co-stimulatory or inhibitory receptors, and transcriptional factors, were

tested on CD8 T cells (Table S5). P-values were calculated using Wilcoxon rank-sum tests and were corrected for the multiple comparison using

the Benjamini-Hochberg adjustment. The numbers shown here indicate adjusted P-values. No statistical significance was detected in other mark-

ers. TCM, CCR7
+CD45RA� central memory T cells; TEM, CCR7

�CD45RA� effector memory T cells; TEMRA, CCR7
�CD45RA+ terminally differen-

tiated effector T cells; TN, CCR7
+CD45RA+ na€ıve T cells.
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in AML patients. DNA methylation is a complex molecular

process and highly context-specific (Schultz et al, 2015). The

different regulation under each individual model system or

disease status, e.g. mouse model of chronic viral infection

versus patients with AML, may explain the discrepancy. In

addition, multiple studies have demonstrated that DNA

methylation is altered as we age (Issa, 2014; Field et al,

2018). Our study was focused on elderly AML patients who

received decitabine as they were unfit for intensive

chemotherapy. The average age of patients in our study was

70 years old. The DNA methylation status and regulation

might be unique to this population. These observations sug-

gest that understanding the disease or clinical setting-specific

molecular regulation is crucial for the optimal clinical appli-

cation of novel therapeutic strategies.

We made a striking observation that the frequency of

CD38-expressing T cells was significantly enhanced upon

decitabine treatment. This increase was universal among all
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Fig 5. Identification of the immune signature that predicts clinical response to decitabine in AML patient. Flow cytometry analysis was performed

on peripheral blood mononuclear cells collected from patients at initial diagnosis (prior to decitabine treatment). Shown is the heat map of

immune markers that were normalized to a mean of 0 and standard deviation of 1. Relative over-expression and under-expression are assigned

here as red and blue colour, respectively. Each column represents one patient sample and each row represents an immune marker that was exam-

ined. The dendrograms for markers (rows) and samples (columns) were constructed by hierarchical clustering (Euclidean distance, complete link-

age). By clustering, patient responses to decitabine are separated as indicated by the bars at the top [purple and orange for non-responders (NR)

and responders (R), respectively].
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the different stages of CD4 and CD8 T cells examined (Fig-

ure S3). CD38 is expressed on the surface of a variety of

immune cells, but its effect on T cells is controversial. Earlier

work showed that CD38 is mainly expressed on activated

and memory T cells, and engagement of CD38 initiates an

intracellular signalling cascade involved in T-cell activation

and proliferation which enhances T-cell function (Deaglio

et al, 2001; Malavasi et al, 2008). Therefore, CD38 has been

considered an activation marker for T cells. Most recently,

emerging evidence suggests a role for CD38 in T cell exhaus-

tion. In a study of samples collected from human immunod-

eficiency virus (HIV) patients, Hoffmann et al (2016)

demonstrated a strong correlation between expression of

CD38 and PD-1 on CD8 T cells; CD38+ T cells displayed an

exhausted functional phenotype by expressing a TBX21 (or

T-bet)dim EOMEShi phenotype; additionally, high expression

of CD38 on CD8 T cells was associated with poor viral con-

trol in AIDS. In another report, using mouse models of can-

cer, Chen et al (2018) discovered that CD38 is a novel

immune checkpoint in that upregulation of CD38 in the

tumour microenvironment significantly inhibits CD8 T-cell

function via adenosine signalling. Consistently, we found a

negative impact of CD38 on T cells in AML. Expression of

CD38 negatively correlated with cytokine production by CD8

T cells (Fig 2E). In addition, compared with CD38� cells,

CD38+ CD8 T cells expressed significantly higher levels of

co-inhibitory molecules including PD-1, TIGIT, lymphocyte

activating 3 (LAG-3), and CD244 (or 2B4) (Figure S4). Fur-

thermore, high expression of CD38 on both CD8 and CD4 T

cells was strongly associated with failure of response to deci-

tabine treatment and thus poor clinical outcome (Fig 4E).

These significant findings, together with our observation that

decitabine treatment upregulated CD38 on T cells, argue

strongly for a novel AML therapeutic approach by adding

CD38 inhibition to the decitabine-based regimen. In fact,

given that a portion of AML patients express CD38 on their

blasts, targeted treatment by anti-CD38 antibody may have

direct anti-leukaemia effects in addition to improving

immune response.

Targeting PD-1 for immunotherapy of cancer has achieved

great success. Several blockade antibodies to PD-1 or PD-L1

have been approved by the US Food and Drug Administra-

tion for treatment of a variety of solid tumours. Recent stud-

ies demonstrated that expression of molecules in the PD-1

pathway are enhanced after hypomethylating agent treatment

in MDS and AML patients (Yang et al, 2014; Orskov et al,

2015). These observations form a strong rationale for combi-

national treatment of hypomethylating agents and PD-1 inhi-

bition in cancer therapy. Several clinical studies, including

our own investigator-initiated trial adding blockade antibod-

ies against PD-1 to the hypomethylating agents (either deci-

tabine or azacitidine) in treatment of AML, are currently

ongoing (NCT02397720, NCT02845297, NCT02953561,

NCT03395873). Daver et al. (2018) have recently reported a

promising result from an early clinical study treating patients

with relapse/refractory AML using combination of azacitidine

and nivolumab, a widely used PD-1-targeting agent. Interest-

ingly, we observed no statistically significant impact of deci-

tabine on T-cell expression of PD-1 in our AML patients,

which might be due to the limited sample size in our study.

Alternatively, different hypomethylating agents may have dis-

tinct effects on PD-1 expression. Most AML patients in the

studies reported by Orskov et al (2015) and Yang et al

(2014) received azacitidine, whereas decitabine was applied

to all patients in our study.

Upon a comprehensive analysis of immune markers in

patients prior to decitabine treatment and their correlation

to clinical outcome, we identified an immune signature

that predicts complete response to decitabine in AML

patients. This is highly significant for clinical practice.

Although hypomethylating agents, including decitabine,

have been standard care as first line treatment for elderly

AML patients who are unfit for intensive chemotherapy,

the CR rate is only around 30%. Many patients do not

benefit from this single agent treatment. Defining features

predicting clinical response is crucial to identify this

patient population and triage them to novel or combina-

tional therapy. In fact, there was a trend of higher expres-

sion of several immune checkpoints (e.g. CD38, PD-1, and

TIGIT) whereas co-stimulatory molecules [TNF receptor

superfamily member 18 (TNFRSF18, also termed GITR)

and ICOS] were lower in non-responders (Fig 5), indicat-

ing that immunotherapy targeting these pathways may be

beneficial. Our data is limited by the small sample size, so

validation in a large cohort of clinical samples is warranted

before clinical applications. Nevertheless, our study pro-

vides new insight into the impact of decitabine on the

immune response, which will be key for the design of

novel clinical trials aiming to improve decitabine-based

treatment in AML.

In summary, our study identified a unique immune signa-

ture predicting clinical response to decitabine in AML

patients. We demonstrated that high functional CD8 T-cell

status associates with good clinical outcome. In addition,

decitabine treatment downregulated T-cell response. Data

from this study not only form a strong rationale for integrat-

ing immunotherapy into decitabine treatment, they also pro-

vide a practical approach to identify specific patient

populations that will probably benefit from this therapeutic

strategy.
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