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Brain aging is characterized by progressive loss of neurophysiological functions that is
often accompanied by age-associated neurodegeneration. Calorie restriction has been
linked to extension of lifespan and reduction of the risk of neurodegenerative diseases in
experimental model systems. Several signaling pathways have been indicated to underlie
the beneficial effects of calorie restriction, among which the sirtuin family has been
suggested to play a central role. In mammals, it has been established that sirtuins regulate
physiological responses to metabolism and stress, two key factors that affect the process
of aging. Sirtuins represent a promising new class of conserved deacetylases that play
an important role in regulating metabolism and aging. This review focuses on current
understanding of the relation between metabolic pathways involving sirtuins and the
brain aging process, with focus on SIRT1 and SIRT3. Identification of therapeutic agents
capable of modulating the expression and/or activity of sirtuins is expected to provide
promising strategies for ameliorating neurodegeneration. Future investigations regarding
the concerted interplay of the different sirtuins will help us understand more about the
aging process, and potentially lead to the development of therapeutic approaches for the
treatment of age-related neurodegenerative diseases and promotion of successful aging.
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INTRODUCTION
The brain, similar to other organs, undergoes a gradual decline in
energy metabolism during aging (Drew and Leeuwenburgh, 2004;
Navarro and Boveris, 2007; Boveris and Navarro, 2008; Swerd-
low, 2011). Since neurons require large amounts of energy for
the firing of action potential, neurotransmission, and other pro-
cesses, the age-related decline in metabolism contributes to the
cognitive declines associated with aging (Biessels and Kappelle,
2005; Boveris and Navarro, 2008). Aging is also a risk factor for
age-associated diseases such as neurodegenerative disorders. These
diseases may occur when neurons fail to respond adaptively to an
age-related decline in basal metabolic rates and in energy-driven
tasks, such as neuromuscular coordination, cognitive perfor-
mance, and environmental awareness (Swerdlow, 2007). In the
past decade, the function of mammalian sirtuins, evolutionarily
conserved nicotinamide adenine dinucleotide (NAD)-dependent
protein deacetylases/ADP-ribosyltransferases, has been investi-
gated in greater detail, and we now have a much better molecular
understanding of the multiple roles that this unique family of
enzymes plays in aging and seemingly every biological process.
There is little doubt that sirtuins have emerged as critical mod-
ulators of metabolic adaptive responses, and their activities have
been linked to multiple diseases, from metabolic abnormalities to
neurodegeneration.

Sirtuins were originally identified as one of the genes that
regulate the mating types of budding yeast, Saccharomyces cere-
visiae, and named silent information regulator 2 (Sir2) in lower
organisms (Klar and Fogel, 1979). Following the first publi-
cation describing a role for yeast Sir2 in promoting longevity

(Kaeberlein et al., 1999), many investigations focused on elucidat-
ing whether sirtuins might play similar roles in other organisms.
Sirtuins have been shown to regulate lifespan in lower organ-
isms, including yeast, nematodes, and fruit flies (Haigis and
Guarente, 2006), although their role in worm and fly lifespan
has recently been debated (Burnett et al., 2011; Viswanathan and
Guarente, 2011). Most of these studies have described a key role
for SIRT1 in regulating the metabolic response to calorie restric-
tion (CR; Canto and Auwerx, 2009), a dietary intervention that
robustly extends life span across numerous species. However,
whole body overexpression of SIRT1 in mice does not affect life
span (Herranz et al., 2010). Nevertheless, SIRT1 does appear to
promote healthy aging by protecting against several age-related
pathologies, such as facilitating insulin sensitivity, elevating glu-
cose production, reducing oxidative stress, potentiating activity of
brain-derived neurotrophic factor (BDNF) transcriptional factor
cAMP response element-binding protein (CREB; Guarente and
Franklin, 2011).

Mammals have seven sirtuins (SIRT1–7) which are found in dif-
ferent subcellular locations, including the nucleus (SIRT1, SIRT6,
and SIRT7), cytosol (SIRT2), and mitochondria (SIRT3, SIRT4,
and SIRT5). Most of the studies have described a key role for SIRT1
in regulating the metabolic response to CR (Canto and Auwerx,
2009), a dietary regimen involving reduced 30–40% calorie intake
compared to normal calorie intake, that resulted in extended lifes-
pan and reduced development of morbidity with aging (Jiang et al.,
2000; Masoro, 2000; Sinclair, 2002; Koubova and Guarente, 2003).
Calorie restriction is the only intervention that has consistently
been shown to delay the onset, slow the progression of age-related
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disease, and extend lifespan in short-lived species, as well as in
long-lived non-human primates, suggesting that similar mecha-
nisms would be operative in humans. Whole body overexpression
of Sirt1 in mice does not affect lifespan (Herranz et al., 2010).
Nevertheless, SIRT1 promotes healthy aging by preventing age-
associated pathologies (Guarente and Franklin, 2011). Another
strong link between mammalian sirtuins and the anti-aging effects
of CR was provided by SIRT3, which mediates the prevention of
age-related hearing loss (Someya et al., 2010). SIRT3 is required for
the CR-mediated reduction of oxidative damage in multiple tis-
sues via regulation of the glutathione antioxidant system (Someya
et al., 2010).

In this review, we focus on the effects of SIRT1 and SIRT3
on metabolic regulation and their anti-aging activity in brain,
and further discuss potential pharmacological approaches to rem-
edy and prevent age-associated neurological disorders by targeting
sirtuins.

SIRT1, METABOLISM AND BRAIN AGING
DISTRIBUTION OF SIRT1 IN THE BRAIN
During mouse embryogenesis, SIRT1 is highly expressed in the
brain, spinal cord, and dorsal root ganglion, with the peak expres-
sion at E4.5 (Salminen and Kaarniranta, 2012). SIRT1 is also
expressed in the adult brain, with high levels in the cortex, hip-
pocampus, cerebellum, and hypothalamus, and low levels in white
matter (Singh, 2004). Among the various cell types of brain, SIRT1
is predominantly, if not exclusively, expressed in neurons (Singh,
2004; Adler et al., 2007; Salminen and Kaarniranta, 2012). The
only exception is that SIRT1 is found in microglia when co-
cultured with neurons (Schmitz et al., 2004). At the subcellular
level, SIRT1 is viewed as a nuclear protein (Chen and Greene,
2003). Yet it is reported that SIRT1 has both nuclear import
and export sequences, and that SIRT1 is present in the cytoso-
lic fraction of mouse brain, although its cytosolic function is just
beginning to be elucidated (Chen et al., 2005b; Lee et al., 2008;
Hardie, 2011).

SIRT1 MEDIATES METABOLIC BENEFITS UNDER CR
SIRT1 contains 747 amino acids in humans, with a predicted
molecular weight of 81 kDa and a measured one of 120 kDa.
In addition to histones, SIRT1 also deacetylates a number of non-
histone substrates, including p53 (Luo et al., 2001)and peroxisome
proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-
1α; Nemoto et al., 2005), and FOXO (Xiong et al., 2011), nuclear
factor κ-light-chain-enhancer of activated B cells (NF-κB; Salmi-
nen et al., 2008b). SIRT1 is drawing even more attention since it is
considered to be one of the determining factors in lifespan exten-
sion induced by CR, a phenomenon observed in phylogenetically
diverse organisms including yeast, worm, fruit fly, and mouse
(Kaeberlein et al., 1999; Tissenbaum and Guarente, 2001; Howitz
et al., 2003; Rogina and Helfand, 2004). Its beneficial roles are
further supported by the findings that putative SIRT1-activating
compounds, such as resveratrol, also promote longevity in sev-
eral species, including yeast (Howitz et al., 2003), worm (Wood
et al., 2004), and mouse (Baur et al., 2006), making it an anti-aging
target.

The effects of SIRT1 on longevity rely on its enzymatic activ-
ity of deacetylation of histone and non-histone substrates. While
the deacetylation of histones leads to their interaction with DNA
and consequent gene silencing (Braunstein et al., 1993; Sauve et al.,
2006; Dali-Youcef et al., 2007), the deacetylation of non-histone
proteins has a wide range of biological effects, including metabolic
adjustment, survival promotion, and autophagy (Campisi, 2005;
Dali-Youcef et al., 2007; Brooks and Gu, 2009; Madeo et al., 2010).
For example, SIRT1 inhibits p53 (Luo et al., 2001), reducing its
pro-apoptotic effect. It also inhibits NF-κB (Yeung et al., 2004),
reducing its pro-inflammatory effects. In contrast, SIRT1 acti-
vates a transcriptional coactivator, PGC-1α (Nemoto et al., 2005),
leading to increased glucose levels, insulin sensitivity, and mito-
chondrial biogenesis. Together, these and other effects, contribute
to the longevity evoked by CR (Figure 1).

These metabolic changes and the cytoprotective involvement
of CR are generally considered to occur in non-neural organs,
such as the liver, pancreas, muscle, and fat tissues (Brooks and Gu,
2009; Imai and Guarente, 2010). However, recent studies suggest
that the hypothalamus may also contribute to the longevity effects
of SIRT1 and CR via coordination of neurobehavioral and neu-
roendocrine changes, including body temperature, appetite, and
overall physical activity (Dietrich et al., 2010; Satoh et al., 2010).
SIRT1 is abundantly expressed in several regions in the hypothala-
mus of mice, especially in the arcuate, paraventricular, ventro-
and dorsomedial nuclei; and CR increases SIRT1 levels in the
hypothalamus, which increases body temperature, food intake,
and physical activity (Ramadori et al., 2008; Dietrich et al., 2010;
Satoh et al., 2010). SIRT1 appears to be required for the afore-
mentioned behavioral changes, which are prevented if SIRT1 is
knocked out or inhibited (Chen et al., 2005a; Satoh et al., 2010). In
addition to the hypothalamus, SIRT1 is also expressed in other
regions of the brain, including the cortex, striatum, and hip-
pocampus (Ramadori et al., 2008). Shortly after this finding, a
neuroprotective role of SIRT1, has been reported (Tang, 2009;
Morris et al., 2011).

SIRT1 AND FACTORS INVOLVED IN CR AND AGING
SIRT1 has been found to delay aging and promote longevity by
regulating the activity of key cellular proteins like p53, FOXO and
Ku70 that are involved in either apoptotic processes or cellular
repair mechanisms. SIRT1 may thus promote health and longevity
partly by either decelerating cell death and/or by boosting repair
mechanisms in the cells (Wang et al., 2010).

It has become increasingly evident that the salutary effects of
the CR, are in part due to the promotion of sirtuins (Wang et al.,
2010). The expression levels of SIRT1 increase upon CR in several
rodent and human tissues, including white adipose, liver, skeletal
muscle, brain, and kidney. Levels of NAD have been shown to
rise in liver cells under CR-like conditions, which in turn induces
expression of SIRT1 (Rodgers et al., 2005). SIRT1 ends up con-
suming NAD+ as a result of its deacetylase activity, generating
nicotinamide, an inhibitor of its own activity. NAD+ is known
to protect neurons (Liu et al., 2009) and thus by increasing the
levels of NAD+, CR may preserveSIRT1 activity. SIRT1 also acti-
vates PGC1α (Rodgers et al., 2005) which results in mitochondrial
biogenesis (Liu et al., 2009). A decline in mitochondrial activity
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FIGURE 1 | Schematic diagram of anti-aging mechanism activated by

SIRT1 and calorie restriction. Calorie restriction upregulates the activity and
levels of SIRT1, SIRT1 deacetylates its substrates, including histone and

non-histone molecules, and improve genome stability, prevent apoptosis and
inflammation, and increases mitochondrial biogenesis, insulin sensitivity and
glucose tolerance. All these effects result in longevity.

is thought to be causative in many age-related diseases (Petersen
et al., 2003; Singh, 2004). CR evokes improvements in mitochon-
drial activity similar to those of SIRT1. Therefore, it is possible that
small-molecule modulators of SIRT1 may act on the same path-
ways as those modified by CR, and thus have potential to mitigate
age-related diseases (Lavu et al., 2008).

SIRT1 interacts with and modulates other key factors involved
in mammalian aging, such as NF-κB that controls a low-grade
systemic inflammation along with human aging process-inflamm-
aging (Salminen et al., 2008a), mammalian target of rapamycin
(mTOR; Finley and Haigis, 2009), AMP-activated protein kinase
(AMPK; Salminen and Kaarniranta, 2012), therefore controls the
gin process. The aging process involves changes in immune reg-
ulation; NF-κB signaling is the master regulator of the immune
system. Inhibition of NF-κB signaling in aged mice reverted the
tissue characteristics and global gene expression to those of young
mice (Adler et al., 2007). The function of the NFκB complex can
be regulated by the acetylation of the p65 component (Schmitz
et al., 2004). SIRT1 can interact with RelA/p65 protein in the NF-
κB complex and specifically deacetylates lysine 310, which has
been demonstrated to potentiate the transactivation capacity of
the NFκB complex (Chen and Greene, 2003). Several studies have
indicated that SIRT1 is a potent inhibitor of NF-κB transcription
(Yeung et al., 2004; Chen et al., 2005b). The signaling link between
SIRT1 and NF-κB is especially interesting with respect to aging, as
a consequence of the release of the SIRT1 brake, the transactivation

efficiency of NF-κB factor is potentiated, which evokes immune
activation and inflamm-aging.

Aging process is also regulated by autophagy. It has been
identified the signaling pathways that regulate autophagic degra-
dation and SIRT1 is a potent regulator of autophagic degradation
(Lee et al., 2008), SIRT1 can interact with and deacetylates sev-
eral components in the complexes of forming autophagosomes,
such as Atg5, Atg7, and Atg8 proteins (Lee et al., 2008). There is
a clear overlap between the signaling networks regulating both
aging and autophagocytosis, which emphasizes the important role
of autophagy in the regulating of aging and age-related degen-
erative diseases. It is evident that increase in autophagy can
extend lifespan. mTOR activity is suppressed by CR, reduction
in mTOR signaling is a logic candidate mechanism for the anti-
aging benefits of CR. Through deacetylation of a variety of proteins
involved in autophagy process, SIRT1 can regulate physiological
process during aging and moderated by CR (Haigis and Guarente,
2006).

Efficient control of energy metabolic homeostasis is a hallmark
of improved healthspan and extended lifespan. The AMPK and
SIRT1 signaling pathways are highly conserved energy sensor of
increased levels of AMP and NAD+, respectively, AMPK signal-
ing is involved in the regulation of energy metabolic homeostasis
(Hardie, 2011). Canto and Auwerx (2009) demonstrated that the
activation of AMPK stimulated the functional activity of SIRT1 by
increasing the intracellular concentration of NAD+. Interestingly,
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SIRT1 was able to deacetylate LKB1 kinase which subsequently
increased its activity (Lan et al., 2008). Since LKB1 is an upstream
activator of AMPK, this signaling pathway stimulates the activa-
tion of AMPK. This positive feedback loop between SIRT1 and
AMPK can also potentiate the function of the other AMPK-
activated signaling pathways. The close relationship between
AMPK and SIRT1 is evidence that energy balance effectively
controls cellular responses via an integrated signaling network.
AMPK can inhibit the activity of mTOR complex via two differ-
ent mechanisms, either by directly phosphorylating the Raptor,
a regulatory component of mTORC1, or by the phosphoryla-
tion of tuberous sclerosis protein 2 (TSC2), which subsequently
suppresses the activity of mTOR (Jung et al., 2010; Mihaylova
and Shaw, 2011). Taken together, SIRT1 interacts with other key
anti-aging signaling pathways thereby contributing to longevity
control.

It has been established that aging is a known risk factor for
many neurodegenerative diseases including Alzheimer’s disease
(AD), Parkinson’s disease (PD), Wallerian neurodegeneration,
Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS). The pathomechanisms involved in these disorders involve
common biochemical pathways and processes, including protein
misfolding, oligomerization, and aggregation, proteolysis, post-
translational modifications, mitochondrial dysfunction, abnormal
metabolic processes, and proinflammatory and proapoptotic
responses that we discuss in the next section.

SIRT1 AND AGE-ASSOCIATED NEUROLOGICAL DISEASES
Wallerian degeneration
Wallerian degeneration refers to axonal death and degradation
after focal injury, followed by breakdown of myelin sheath. The
neuroprotective effect of SIRT1 against Wallerian degeneration
was first discovered in wlds transgenic mice (Perry et al., 1990).
These mice exhibited a significant delay in axonal degeneration
after physical or chemical injury. The mechanistic basis for the
delayed axonal damage was apparently associated with the mutant
wlds chimeric protein. It has been shown that Nicotinamide
mononucleotide adenylyltransferase 1 (NMNAT-1) activity plays
an important role in the prevention of axonal damage, exerting its
protective effects through SIRT1 activation, as the neuroprotec-
tion is blocked by the SIRT1 inhibitor sirtinol or siRNA-mediated
SIRT1 silencing (Araki et al., 2004; Sasaki et al., 2009; Babetto
et al., 2010). The role of SIRT1 remains controversial, however,
as both SIRT1-dependent (Araki et al., 2004) and -independent
mechanisms are reported (Wang et al., 2005b).

Alzheimer’s disease
Alzheimer’s disease is a terminal neurodegenerative disease, caus-
ing neuronal death and brain atrophy. The pathological hallmarks
of AD are the intracellular tangles and extracellular plaques in
brain. The tangles, also known as neurofibrillary tangles, are
formed by accumulation of insoluble tau proteins, and the plaques
are deposits of β-amyloid (Aβ) peptides, typically consisting of
40–42 amino acid residues.

The protective effect of SIRT1 against AD was initially observed
in CR studies, where CR reduced Aβ and plaque generation
in the brains of transgenic AD mice (Patel et al., 2005; Wang

et al., 2005a). Similarly, the reduction of Aβ was also noticed in
the cortex of fasted squirrel monkeys and is inversely correlated
with SIRT1 levels (Qin et al., 2006a). These studies imply that
SIRT1 is involved in neuroprotection against AD. Indeed, recent
studies demonstrate that SIRT1 activation reduces the neuronal
death and brain atrophy that are characteristic of AD (Chen et al.,
2005b; Qin et al., 2006b; Kim et al., 2007; Donmez et al., 2010;
Min et al., 2010). SIRT1 deficiency is associated with increased
levels of phosphorylated-tau in neurons (Min et al., 2010) and
the amount of neurofibrillary tangles in AD brains (Julien et al.,
2009).

Moreover, recent studies show that either administration of
resveratrol or overexpression of SIRT1 reduces Aβ levels both
in vitro and in vivo (Chen et al., 2005b; Qin et al., 2006b; Don-
mez et al., 2010). SIRT1 overexpression stimulates the production
of α-secretase in neurons and mice by two pathways: acti-
vating the retinoic acid receptor (RAR; Donmez et al., 2010)
and inhibiting the rho-associated, coiled-coil-containing protein
kinase 1 (ROCK1; Qin et al., 2006b). Increased levels of α-secretase
enhance normal process of Amyloid precursor protein (APP),
leading to decreased generation of toxic Aβ. In addition, SIRT1
also reduces the NF-kappaB pathway in microglia and decreases
Aβ level (Chen et al., 2005b). Taken together, these results establish
that SIRT1 protects against AD by multiple mechanisms, including
degradation of tau and reducing levels of Aβ.

Parkinson’s disease
Parkinson’s disease is a common neurodegenerative disease caused
by the death of dopaminergic neurons of the substantia nigra in
the midbrain. The major symptoms of PD are rigidity, tremor, and
bradykinesia. Our early study found that CR or use of 2-deoxy-
D-glucose, a glucose analog, reduces the loss of dopaminergic
neurons in mice and improves motor function, implying that
SIRT1 may be involved in the protection (Duan and Mattson,
1999). The levels of SIRT1 in dopaminergic neurons are sharply
decreased by treatment with neurotoxins, such as rotenone,
6-hydroxydopamine, α-synuclein, or 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP; Alvira et al., 2007; Pallas et al., 2008;
Albani et al., 2009), which are agents widely used to model PD.
Additionally, SIRT1 overexpression (Wareski et al., 2009) or acti-
vation by resveratrol (Okawara et al., 2007; Chao et al., 2008;
Albani et al., 2009) slows neuronal death as well as neurodegen-
eration in PD models both in vivo and in vitro (Donmez et al.,
2012), indicating a neuroprotective role of SIRT1 against PD.
Not all studies showed a protective role of SIRT1, however. For
example, no protection was observed in an MPTP-induced PD
model in SIRT1 transgenic mice (Kakefuda et al., 2009). Nev-
ertheless, despite the controversy, most research demonstrates a
protective role of SIRT1 against PD, although the mechanisms are
unclear.

Huntington’s disease
Huntington’s disease is an autosomal dominant hereditary dis-
ease with onset in middle-age. It is caused by a trinucleotide
repeat mutation in the huntingtin gene that results in an increased
number of glutamine residues in the N-terminus of the hunt-
ingtin protein which causes abnormal protein aggregation and

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 36 | 4

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


“fnagi-05-00036” — 2013/7/20 — 13:47 — page 5 — #5

Duan SIRT1, SIRT3 and brain aging

ultimately neuronal death. Our previous study showed that CR
could ameliorate the motor phenotype and extend survival of
HD mice (Duan et al., 2003), indicating that pathways related to
energy metabolism can modify disease progression in the disease.
CR increases mitochondrial biogenesis by inducing endothelial
nitric oxide synthase (eNOS), and NO can activate the SIRT1
gene (Nisoli et al., 2005; Haigis and Guarente, 2006), which is
the mammalian ortholog of yeast Sir2, and a highly conserved
NAD+-dependent protein deacetylase. Moreover, SIRT1 has been
suggested to mediate some beneficial effects of CR (Canto and
Auwerx, 2009; Wakeling et al., 2009; Shimokawa and Trindade,
2010; Chalkiadaki and Guarente, 2012).

The first report demonstrating the connection between SIRT1
and HD came from studies by Parker et al. (2005), who found that
overexpression of Sir2.1 or treatment with resveratrol rescued neu-
ronal dysfunction phenotypes induced by mutant polyglutamine
in Caenorhabditis elegans. In contrast to the neuroprotective
effect of Sir2.1 in C. elegans, Pallos et al. (2008) reported that
50% reduction of Sir2 extended survival and preserved neurons
containing photoreceptor in flies expressing mutant Htt. Inter-
estingly, in the fly model system, overexpression of Sir2 does
not reduce the lethality or the level of neuronal degeneration
caused by mutant Htt. Studies in both C. elegans and Drosophila
suggest that complete loss of Sir2 is deleterious in the worm
(Parker et al., 2005) and is deleterious compared with heterozy-
gous loss in mutant Htt-challenged flies (Pallos et al., 2008).
Although heterozygous loss of Sir2 is protective in flies, het-
erozygous loss of Sir2 in worms was not examined. Nevertheless,
reduction of Sir2 neither alters the life-span of flies not express-
ing Htt nor siblings expressing Htt. Several aspects of the role
of sirtuins in lifespan in C. elegans and Drosophila are contro-
versial, and studies have indicated that Sir2 overexpression did
not increase lifespan and that dietary restriction increased lifespan
in flies independently of dSir2 (Burnett et al., 2011). Nonethe-
less, overexpression of Sir2 increases the longevity of normal
flies and the longevity of diseased flies is slightly increased by
elevated Sir2 (Pallos et al., 2008). The different results might be
due to the amount of Sir2, its activation status, and different
downstream targets involved. These controversial results war-
rant further investigation of the role of SIRT1 in mammalian
systems.

Indeed, two independent studies by our group (Jiang et al.,
2011) and Krainc’s group (Jeong et al., 2011) demonstrated that
modulating the levels of SIRT1 has therapeutic benefit in three
different HD mouse models, and putative downstream targets
of SIRT1 involved in improved disease outcomes are also iden-
tified. These two studies provide compelling support to the
view that SIRT1 provides beneficial effects in HD mouse mod-
els, but also raise important questions. It is possible that the
contradictory results on the effects of SIRT1 in models of HD
might be explained by different effector pathways or mechanisms
and by context-dependent effects or different levels of SIRT1
activation. SIRT1 has numerous targets, and different models
of HD display different phenotypes by activating various tar-
gets and mechanisms. Therefore, it is not surprising to observe
contradictory data, especially in different species and different
models.

AMYOTROPHIC LATERAL SCLEROSIS
Amyotrophic lateral sclerosis is a chronic, fatal neurodegenerative
disease, characterized pathologically by the death of motor neu-
rons in the spinal cord and cortex, possibly induced by a deficiency
in the enzyme superoxide dismutase 1 (SOD1; Rosen, 1993). In the
animal model of ALS where a mutant form of SOD1 is expressed,
SIRT1 levels are upregulated in motor neurons (Kim et al., 2007).
SIRT1 overexpression protects neurons against toxicity induced by
the mutant SOD1 in both cultured neurons and mouse brain (Kim
et al., 2007). This protection corresponds to the increased deacety-
lation of p53. Resveratrol also enhances the protective effect of
SIRT1 in a mouse model of ALS (Kim et al., 2007; Markert et al.,
2010), but multiple doses are appear to be necessary to improve
neurological function and increase the longevity of mice (Markert
et al., 2010).

Multiple sclerosis
Multiple sclerosis is a myelin sheath disease with lesions typically
located in the brain, spinal cord or cranial nerves, and, most com-
monly, in the optic nerve. The causes of multiple sclerosis are
not fully identified but likely arise from an autoimmune etiology;
therefore, it is traditionally treated as an inflammatory disease.
Recently, however, multiple sclerosis has also been considered
to be a neurodegenerative disease because of the co-existence of
permanent axonal damage, neuronal loss, and neurological dis-
ability in patients with the disease (Lassmann, 2010; Shindler
et al., 2010). In a mouse model of multiple sclerosis, experimen-
tal autoimmune encephalomyelitis (EAE), SIRT1 activation by
SRT501 or SRT1720 maintains axonal density, prevents neuronal
loss, and improves neuronal dysfunction (Shindler et al., 2007,
2010). SIRT1 inhibition with Sirtinol attenuates the neuroprotec-
tive effects of SRT501 (Shindler et al., 2010), suggesting a protective
role of SIRT1 in multiple sclerosis. However, further investiga-
tions are necessary to fully delineate the role of SIRT1 in multiple
sclerosis.

Cerebral ischemia
Ischemic stroke is a common neurological disease caused by the
sudden reduction or cessation of blood flow to the brain, leading
to infarction. The clinical management of stroke is difficult and
current drugs must be administered within a limited time window
after the onset of the stroke to provide clinical benefit. Promising
candidates for neuroprotective strategies include preconditioning,
mild hypothermia, and the use of chemical and biological com-
pounds targeting critical molecular mediators of neuronal death
and survival.

The neuroprotective effect of SIRT1 was first reported in
ischemic preconditioning and the SIRT1 activating compound
resveratrol reduced neuronal injury of the hippocampus in global
cerebral ischemia in rats. Increased SIRT1 activity was also shown
to be a common mechanism for the protective effects of pre-
conditioning and resveratrol (Raval et al., 2006; Morris et al.,
2011). Sirtinol, an inhibitor of SIRT1 activity, abolished the
neuroprotection of preconditioning and resveratrol (Raval et al.,
2006), indicating that SIRT1 plays a key role in mediating neu-
roprotection. This neuroprotective role is further supported by
two recent studies (Chong and Maiese, 2008; Della-Morte et al.,
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2009) showing that SIRT1 activation reduces ischemic neuronal
injuries.

Another study showed that, in primary neuronal culture, pre-
treatment with NAD+ pretreatment markedly reduces neuronal
death induced by oxygen-glucose deprivation, an in vitro model of
ischemia (Wang et al., 2008). SIRT1 is necessary for NAD+ neuro-
protection, as NAD+ treatment upregulates SIRT1 expression and
activity, and SIRT1 knockdown attenuates the protection mediated
by NAD+ (Wang et al., 2008). NAMPT overexpression reduces
ischemic infarct, whereas NAMPT inhibition aggravates ischemic
injuries. The protective effect of NAMPT is SIRT1-dependent, as
SIRT1 knockout blocks the protection (Wang et al., 2011).

Despite the aforementioned evidence, controversy exists over
the protective effect of SIRT1 against ischemia. In a study with
SIRT1 transgenic mice, where human SIRT1 was overexpressed
under the control of rat neuron-specific enolase promoter, no
neuroprotection was observed against stroke as SIRT1 and wild-
type mice demonstrated almost indistinguishable infarct volumes
and neurological deficiency scores (Kakefuda et al., 2009). The dis-
crepancy between this study and the others was probably due to
the sustained high level of SIRT1, because it may consume too
much or even deplete NAD+, which could exaggerate neuronal
injury (Wang et al., 2008; Kakefuda et al., 2009; Liu et al., 2009).
Therefore, it is possible that NAD+ deficiency compromised the
neuroprotective effect of SIRT1. In another study, nicotinamide,
a compound that inhibits SIRT1 action, showed neuroprotection
against ischemic injury, implying that SIRT1 might have a detri-
mental effect against stroke (Chong et al., 2005). However, this
report might overlook other functions of nicotinamide, including
that of precursor for NAD+ synthesis. In fact, the same group
later reported that SIRT1 overexpression prevents neurons from
apoptosis after oxidative stress (Chong and Maiese, 2008).

SIRT1 IN CLINICAL PRACTICE
SIRT1-activating compounds have not yet been proven to be
clinically useful for the treatment of neurodegenerative diseases.
Preclinical studies have been performed in various neurodegenera-
tive disease models, however. The information obtained from such
studies could prove to be valuable for designing SIRT1-activating
molecules that may be more likely to be useful clinically. The
discovery of such molecules is becoming increasingly important,
considering the limitations of genetic manipulations and the lack
of unequivocal evidence of specific SIRT1 activation by prototype
molecules like resveratrol (Sauve, 2009).

Several rational strategies based on the available protein struc-
ture and the catalytic pathways have been designed to develop
small molecules that selectively activate sirtuins (Sauve, 2009).
One strategy involves designing resveratrol-like molecules, which
has not yielded successful results as the in vivo mechanism of
SIRT1 activation is not fully understood. Another approach aims
to increase the cellular levels of NAD+ in order to activate SIRT1
function. This approach has the advantage of harnessing a nat-
ural metabolic pathway to enhance SIRT1 functions. Moreover,
naturally occurring metabolites present the least risk of toxicity.
The efficacies of agents that have been used to enhance NAD+
are still questionable, however, and NAD+ enhancement affects
a host of other physiological pathways, so that the approach is

not specific to SIRT1. A third strategy currently in the proof-
of-principle stage designated nicotinamide derepression is based
on countering the inhibitory effect of nicotinamide on sirtuins
by designing molecules that are antagonistic to nicotinamide.
This approach is still in its infancy and has not provided com-
pounds with desired potency, but is an attractive strategy to
develop further. Details of efforts to discover SIRT1-activating
molecules have recently been comprehensively reviewed by
Blum et al. (2011).

FUTURE PERSPECTIVES ON SIRT1
Over the last decade, our understanding of the biology of sirtuins
has vastly increased from its original description as an NAD+-
dependent class III histone deacetylase that can control the lifespan
of yeast. Of particular interest is the discovery that SIRT1 not only
deacetylates histones, but also some well-known transcriptional
regulators, thereby modulating a wide array of biological pro-
cesses. An exciting aspect is that SIRT1 mediates neuroprotection
against both acute and chronic neurological diseases. Importantly,
SIRT1 activity is enhanced by small-molecule compounds; there-
fore, development of small-molecule activators could lead to novel
therapies against neurological diseases. One of the broad pro-
tective mechanisms of SIRT1 is to suppress genome-wide gene
transcription via histone deacetylation. Furthermore, SIRT1 selec-
tively suppresses genes involved in fat storage, apoptosis, and
inflammation. Adding to the complexity of SIRT1-mediated cell
survival, SIRT1 specifically promotes the transcription of a set of
genes related to cell survival, energy metabolism, and mitochon-
drial biogenesis. SIRT1 thus has multifaceted mechanisms with
the end goal to increase cell viability.

Although extensively studied, the biological functions of SIRT1
remain only partially characterized. With respect to mechanism
of action, there are several substantial unknowns. For example,
it is not known how SIRT1 specifically increases transcription of
beneficial genes while it simultaneously suppresses universal tran-
scription. It would be of interest to determine whether similar
mechanisms exist for genes upregulated by SIRT1-mediated acti-
vation of transcription. Another issue is the paradoxical effect of
SIRT1. For example, whereas SIRT1 directly suppresses PPARγ

transcriptional activity directly (Picard et al., 2004), it also acti-
vates PGC-1α (Nemoto et al., 2005; Rodgers et al., 2005), which
could increase the transcriptional activities of PPARγ (Puigserver
et al., 1998).

Although SIRT1 has been found to be neuroprotective in
numerous studies, it is clear from the diverse pathological mech-
anisms manifested in neurodegenerative disorders that the role
of SIRT1 requires more detailed study. The availability of crystal
structures and detailed mechanistic analysis are helpful in discov-
ering SIRT1 modulators, but would be of limited value if they
failed to reach clinical trials, thus emphasizing the importance
of developing robust animal models for investigating molecular
mechanisms involved in SIRT1 activation. Moreover, the poten-
tial negative effects of SIRT1 activation and energy depletion
need further investigation in animal models. The clinical success
of sirtuin activating compounds (STACs) in neurodegenerative
diseases relies overwhelmingly on developing new strategies and
designing molecules based on the sirtuin chemistry and molecular
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pathways activated by SIRT1. A very recent study performed by
Hubbard et al. (2013) demonstrated that the specific hydrophobic
motifs in SIRT1 substrates such as PGC-1α and FOXO3a facilitate
SIRT1 activation by STACs, implying that SIRT1 can be directly
activated through an allosteric mechanism common to chemi-
cally diverse STACs. In summary, there is no doubt that SIRT1
holds promising therapeutic potential for neurodegenerative
disorders.

SIRT3, ENERGY METABOLISM AND AGING
This section summarizes the studies on the role of mitochon-
drial SIRT3 in energy metabolism and protection against oxidative
stress and age-associated dysfunction (Figure 2).

SIRT3 AND MITOCHONDRIA
Mitochondria are not only the powerhouse for ATP production
but also the main sites where reactive oxygen species (ROS) are
generated and the intrinsic apoptotic signaling pathway is initiated
(Salminen et al., 2008b). The functions of mitochondrial proteins
are altered when they are deacetylated by NAD+-dependent mito-
chondrial deacetylases, including SIRT3, SIRT4, and SIRT5. All
mitochondrial sirtuins are present in the mitochondrial matrix
(Howitz et al., 2003; Rogina and Helfand, 2004). Since mitochon-
dria contain their own DNA, transcription factors, histone-like

proteins, and protein synthesis systems, mitochondrial sirtuins
deacetylate a set of targets within the mitochondria that are distinct
from those of nuclear proteins (Tissenbaum and Guarente, 2001;
Wood et al., 2004). Although precise mechanistic information is
still lacking, evidence is emerging to suggest that mitochondrial
sirtuins protect against oxidative stress (Braunstein et al., 1993;
Baur et al., 2006).

Among the mitochondrial sirtuins, SIRT3 functions have been
characterized in the greatest detail. Initial studies of SIRT3-
deficient mice indicated that loss of SIRT3, but not SIRT4 or
SIRT5, led to dramatic protein hyperacetylation within mitochon-
dria, suggesting that SIRT3 is the major mitochondrial deacetylase
activity (Dali-Youcef et al., 2007). In humans, full-length SIRT3
is a 44-kD protein with an N-terminal mitochondrial targeting
sequence that is an enzymatically inactive in vitro. It is proteolyt-
ically processed in mitochondria to a mature 28 kD catalytically
active deacetylase (Onyango et al., 2002; Schwer et al., 2002). The
first mouse SIRT3 cDNA sequence identified encoded a 28-kD
protein lacking the N-terminal mitochondrial targeting sequence
(Yang et al., 2000). Several recent studies have identified a longer
isoform of murine SIRT3 encoding a 37 kD protein, however, that
can be imported into mitochondria and processed into the mature
28 kD protein (Cooper et al., 2009; Jin et al., 2009; Bao et al., 2010;
Yang et al., 2010). Whether or not an active fraction of SIRT3 exists

FIGURE 2 | Schematic overview of molecular targets of SIRT3 and the role in regulating metabolism in mitochondria.
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outside mitochondria and modifies extra-mitochondrial proteins
remains controversial.

SIRT3 AND METABOLIC HOMEOSTASIS
Emerging data have shown that one major function of SIRT3
is regulation of mitochondrial electron transport chain activ-
ity to maintain energy homeostasis. The main energy source in
mitochondria is pyruvate, a product of glycolysis. Alternatively,
mitochondria also burn fatty acids, amino acids, and acetates
when pyruvate is deficient. For fatty acid catabolism, long-chain
acyl coenzyme A dehydrogenase (LCAD) is a key enzyme that
breaks down fatty acids and generates acetyl-CoA, stimulating
β-oxidation. In SIRT3 knockout mice, LCAD is hyperacetylated
at Lys42, leading to decreases in enzymatic activity, β-oxidation,
and ATP level (Hirschey et al., 2010). Interestingly, these mice do
not tolerate cold exposure during fasting (Hirschey et al., 2010).
SIRT3 directly deacetylates LACD at Lys42 and increases LACD
activity (Hirschey et al., 2010). In addition, SIRT3 may promote β-
oxidation via multiple mechanisms, such as by deacetylating other
β-oxidation enzymes, including the short-chain L-3-hydroxyacyl-
CoA dehydrogenase and the very-long-chain acyl coenzyme A
dehydrogenase (Hallows et al., 2011), facilitating mitochondrial
adaptation to fuel changes.

Glucose is the major energy source for cells. When its avail-
ability is limited, however, alternative fuels become increasingly
important for cell survival. The first step of glycolysis is the con-
version of glucose to glucose-6-phosphate, a reaction catalyzed by
hexokinases. It is reported that SIRT3 deacetylates cyclophilin D
(Hafner et al., 2010; Shulga et al., 2010), which leads to the dis-
sociation of hexokinase II and mitochondria, decreases glucose
metabolism, and stimulates oxidative phosphorylation (Shulga
et al., 2010).

Acetate derived from acetic acid and alcohol is also used as a
mitochondrial fuel, although this only occurs in extreme circum-
stances of nutrient depletion. In the initial step acetate is converted
to acetyl-CoA catalyzed by acetyl-CoA synthetases. Acetyl-CoA
synthetase 2 is the mitochondrial form of the enzyme. SIRT3
deacetylates acetyl-CoA synthetase 2 and enhances its activity,
leading to increased production of acetyl-CoA (Hallows et al.,
2006; Schwer et al., 2006). The acetyl-CoA from fatty acids and
acetates as well as α-ketoglutarate from amino acids can enter the
Krebs cycle. These two reactions are enhanced by SIRT3 (Hallows
et al., 2006; Schwer et al., 2006; Lombard et al., 2007; Schlicker
et al., 2008). Additionally, SIRT3 directly stimulates the Krebs
cycle. The third step of the cycle is the conversion of 6-carbon isoc-
itrate to 5-carbon α-ketoglutarate, a process catalyzed by isocitrate
dehydrogenase 2 (IDH2). A recent study shows that SIRT3 directly
deacetylates this dehydrogenase to increase its activity (Someya
et al., 2010).

NADH dehydrogenase 1 alpha subcomplex subunit 9
(NDUFA9) is an enzyme of mitochondrial complex I that is acety-
lated at Lys370 (Kim et al., 2006). SIRT3 physically interacts with
NDUFA9 and deacetylates it. SIRT3 knockout enhances its acety-
lation and reduces the activity of complex I (Ahn et al., 2008),
indicating that SIRT3 is a positive regulator of complex I. Com-
plex II, also known as succinate dehydrogenase, is composed of
four subunits, including the flavoprotein succinate dehydrogenase

subunit A (SdhA). In SIRT3 knockout mice, SdhA is hyperacety-
lated at several lysine residues, and shows decreased activity of
complex II (Cimen et al., 2010). SIRT3 overexpression reverses the
acetylation of SdhA and increases complex II activity (Cimen et al.,
2010), indicating that SdhA is a SIRT3 substrate, and that SIRT3
is also a positive regulator of complex II.

SIRT3 is also reported to bind the alpha subunit 1 of the F1 par-
ticle of ATP synthase (Law et al., 2009), but the function is unclear.
Taken together, these results suggest that SIRT3 promotes ATP gen-
eration through enhancing action of several enzymes involved in
energy metabolism. Further supporting this role, SIRT3-knockout
mice show substantial acetylation of mitochondrial proteins, and
have reduced ATP levels at baseline and during cellular stress (Ahn
et al., 2008).

Mitochondria are also the major sites for the generation of
the ROS, superoxide, and also where the superoxide is dis-
muted by mitochondrial MnSOD. Recent reports show that SIRT3
deacetylates MnSOD at Lys122 and increases its activity, reducing
oxidative and radiation stress in mice (Qiu et al., 2010; Tao et al.,
2010). Overexpression of SIRT3 protects HEK293 from oxidative
stress and prevents age-related cochlear cell death in mice (Someya
et al., 2010). Overall, this suggests anti-oxidative and neuroprotec-
tive roles of SIRT3. New data suggest that the SIRT3 deacetylase
plays a key role in bolstering mitochondrial anti-oxidant defenses
during CR (Qiu et al., 2010; Someya et al., 2010).

In future studies, it will be of interest to define the mechanism
whereby acetylation of electron transport chain subunits affects
generation of ATP. It is also important to elucidate why it might be
desirable under some physiologic conditions to downregulate elec-
tron transport chain activity by increased acetylation. As an added
wrinkle, SIRT3 negatively regulates translation within mitochon-
dria by deacetylating the ribosomal protein MRPL10, a function
proposed to reduce respiration (Yang et al., 2010).

SIRT3 levels are increased in adipose tissue, skeletal mus-
cle, and liver during CR (Shi et al., 2005; Palacios et al., 2009;
Schwer et al., 2009; Hirschey et al., 2010), and conversely decline
in response to high-fat feeding (Palacios et al., 2009; Bao et al.,
2010; Kendrick et al., 2011). These expression data suggest that
SIRT3 might play a role in the response to metabolic homeostasis.
In mammals, two independent studies showed that SIRT3 inter-
acts with and deacetylates acetyl-CoA synthetase 2 (AceCS2) at
the active site lysine to promote AceCS2 activity (Hallows et al.,
2006; Schwer et al., 2006). Under fed conditions, the majority
of acetyl-CoA is generated through metabolism of pyruvate by
Pyruvate dehydrogenase complex (PDC) and by fatty acid β-
oxidation, largely bypassing the need for AceCS2. In this regard,
studies of AceCS2-deficient mice revealed that AceCS2 is specifi-
cally required for metabolic homeostasis when the mice are fed a
low carbohydrate/high fat diet (LC/HFD); AceCS2-deficient ani-
mals are essentially normal on a chow diet but show poor weight
gain, hypothermia, hypoglycemia, and impaired survival on an
LC/HFD (Sakakibara et al., 2009). Presumably the role of SIRT3
in regulating AceCS2 could also be important during fasting,
when acetate can be used as a source of energy in extrahepatic
tissues (Hirschey et al., 2010). Indeed, SIRT3 has recently been
shown to deacetylate and activate 3-hydroxy-3-methylglutaryl-
CoA synthase 2 (HMGCS2), a mitochondrial enzyme that converts
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acetyl-CoA into ketone bodies (acetoacetate, β-hydroxybutyrate,
and acetone) in the liver under fasting conditions, which can in
turn be used as a source of energy in certain tissues including the
brain (Shimazu et al., 2010). SIRT3-deficient mice are unable to
produce normal levels of ketone bodies upon fasting.

SIRT, LIFESPAN AND AGE-ASSOCIATED PHENOTYPES
The role of SIRT3 in aging is of considerable interest because it
appears to suppress ROS, one of the causes contributing to the
process of aging. In addition to elucidating its roles in regulat-
ing specific biochemical pathways in mitochondria, there is great
interest in testing whether SIRT3 might modulate age-associated
phenotypes, or indeed lifespan itself. In this regard, some studies
have linked polymorphisms in the SIRT3 genomic locus to human
longevity, although others have failed to demonstrate this associa-
tion (Rose et al., 2003; Bellizzi et al., 2005, 2007; Lescai et al., 2009).
A polymorphism associated with decreased SIRT3 mRNA expres-
sion was present in cohorts of young but not old men, suggesting
that reduced SIRT3 expression may be detrimental to survival in
old age (Bellizzi et al., 2005, 2009). In sedentary individuals, SIRT3
protein expression declined with age in skeletal muscle mito-
chondria, concomitant with a reduction in respiratory function
(Lanza et al., 2008).

Age-related hearing loss (ARHL) is a common problem in the
elderly, occurring secondary to cell loss and other degenerative
changes in the cochlea. An elegant study has firmly established
a role for SIRT3 in preventing ARHL (Someya et al., 2010). One
mechanism by which SIRT3 mediates this effect is by deacetyla-
tion of IDH2 (Schlicker et al., 2008; Someya et al., 2010), which
converts isocitrate to α-ketoglutarate concomitant with reduction
of NADP+. NADPH in turn allows regeneration of reduced glu-
tathione to promote mitochondrial oxidative defense. In response
to CR, wild-type mice, but not SIRT3-deficient animals, show
increased NADPH levels, increased reduced glutathione in mito-
chondria, and decreased DNA damage in the cochlea and in other
tissues. In tissue culture cells, overexpression of SIRT3 or IDH2
protects against oxidative stress-induced cell death, and the two
proteins together have a synergistic pro-survival effect. These
results do not rule out the possibility that SIRT3 might modify
other substrates in addition to IDH2 to prevent AHRL during CR.
Similarly, Qiu et al. (2010) reported that SIRT3-deficient mice fail
to suppress ROS levels and macromolecular damage during CR.
They find that SIRT3 directly deacetylates SOD2 to increase its
activity during CR, whereas SIRT3-deficient mice do not show
SOD2 deacetylation in response to this diet (Qiu et al., 2010).
Overall, these papers point to crucial role for SIRT3 in suppressing
oxidative damage and its negative sequel during CR. It remains
to be seen how SIRT3, or the other mitochondrial sirtuins, might
affect other phenotypes of aging and/or effects of CR. The reduc-
tion of serum insulin and triglycerides that normally occurs during
CR is not observed in SIRT3-deficient mice (Someya et al., 2010),
implying that SIRT3 plays additional, uncharacterized roles in the
adaptation to this dietary regimen. A recent study indicates that
upregulation of SIRT3 indeed reverses aging-associated degener-
ation in hematopoietic stem cells (Brown et al., 2013), and SIRT3
may promote organismal longevity by maintaining the integrity
of tissue-specific stem cells.

SIRT3 AND MITOCHONDRIAL PROTEIN ACETYLATION: UNRESOLVED
QUESTIONS
Acetylation of mitochondrial proteins plays a major role in reg-
ulating functions of this organelle. Despite the rapid progress
in this area, there are still many outstanding questions remain
that will no doubt provide fruitful avenues for research for years
to come. In particular, how mitochondrial proteins are acety-
lated in the first place is currently unknown. The identity of
putative mitochondrial acetyltransferases remains elusive; iden-
tification of such proteins would represent a major step forward
in this field. Alternatively, or in addition to enzymatic acetylation
within mitochondria, mitochondrial proteins could in principle
be acetylated outside this organelle, before or concomitant with
mitochondrial import or even be acetylated non-enzymatically.
These latter models would not permit rapid cycles of acetyla-
tion/deacetylation of mitochondrial proteins to regulate target
protein function in response to varied environmental challenges.
Instead, after deacetylation, restoration of acetylation status would
require new protein synthesis. Such models could be distin-
guished through pulse-chase experiments assessing acetylation
of newly synthesized mitochondrial proteins before and after
mitochondrial import.

Similarly, how SIRT3 activity is regulated in the mitochondria
is incompletely understood. SIRT3 requires NAD+, and there-
fore mitochondrial NAD+ levels play a critically important role in
governing mitochondrial SIRT3 function. Increased NADH gen-
eration from NAD+ that occurs with HFD and leads to reduced
SIRT3 function may explain the increased global mitochondrial
protein acetylation observed during this diet, as could increase
levels of acetyl-CoA, the substrate for acetyltransferases (Kendrick
et al., 2011). This overall increased acetylation may represent the
net effect of increased acetyltransferase activity superimposed
upon elevated SIRT3 function; alternatively, some protein species
hyperacetylated during CR or other conditions may not be sub-
strates for mitochondrial SIRT3. The activity of SIRT3 and other
mitochondrial sirtuins might be influenced by other conditions in
addition to NAD+ levels, such as post-translational modification
or interactions with regulatory proteins.

It is currently unclear whether interventions that have an
impact on acetylation of many mitochondrial proteins – SIRT3
deficiency, such as CR, HFD – lead to modification of common
sets of proteins on the same lysine sites, or whether this response
is tailored to different environmental perturbations. Similarly, it
remains unclear whether the mitochondrial sirtuins share com-
mon targets and/or functions in common. This question could
be addressed in mice or cells with mitochondrial sirtuin defi-
ciencies or knockdowns. Given that SIRT3 deacetylates many
proteins in mitochondria as well as suppresses some age-associated
phenotypes, it will be of interest to test whether acetylation of
mitochondrial proteins changes with age, either individually or
globally, and whether prevention of this effect might have a
beneficial effect on health span or even lifespan.

In addition, whereas the functional impact of acetylation on
a few individual protein targets is clear, a global understand-
ing of how SIRT3 affects the activity of metabolic pathways in
mitochondria, cells, tissues, and the organism overall is still
lacking. Answers to these and related questions involving SIRT3
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and mitochondrial protein acetylation will no doubt reveal novel
aspects of mitochondrial biology, and perhaps ultimately pro-
vide the basis for novel therapeutic strategies for a variety of
disorders.

FURTHER PERSPECTIVES
In the past decade, the function of mammalian sirtuins has been
investigated in greater detail than ever before, and we now have
a much better molecular understanding of the multiple roles
this unique family of enzymes plays in seemingly every biolog-
ical process. There is little doubt that sirtuins have emerged as
critical modulators of metabolic adaptive responses, and their
activities have been linked to metabolic abnormalities as well as

age-associated neurodegeneration. Yet, key questions will keep
investigators busy in the coming years. We still have poor under-
standing of the molecular mechanisms regulating expression and
activity of the sirtuins, and of the precise stimuli that regulate these
proteins, and whether the activities of different sirtuins are regu-
lated in a coordinated fashion. In other words, is there cross-talk
between sirtuins? Will future studies cement the argument that
sirtuins are, indeed, critical modulators of lifespan? This review
has focused on SIRT1 and SIRT3. Even less is known about other
sirtuins. Further investigation into the targets and functions of
this unique family of sirtuins will help develop new strategies
for protection against and recovery from common aging-related
neurological diseases and promote successful aging.

REFERENCES
Adler, A. S., Sinha, S., Kawahara,

T. L., Zhang, J. Y., Segal, E.,
and Chang, H. Y. (2007). Motif
module map reveals enforcement of
aging by continual NF-kappaB activ-
ity. Genes Dev. 21, 3244–3257. doi:
10.1101/gad.1588507

Ahn, B. H., Kim, H. S., Song, S., Lee,
I. H., Liu, J., Vassilopoulos, A., et al.
(2008). A role for the mitochon-
drial deacetylase Sirt3 in regulating
energy homeostasis. Proc. Natl. Acad.
Sci. U.S.A. 105, 14447–14452. doi:
10.1073/pnas.0803790105

Albani, D., Polito, L., Batelli, S., De
Mauro, S., Fracasso, C., Martelli,
G., et al. (2009). The SIRT1 acti-
vator resveratrol protects SK-N-BE
cells from oxidative stress and against
toxicity caused by alpha-synuclein
or amyloid-beta (1–42) peptide. J.
Neurochem. 110, 1445–1456. doi:
10.1111/j.1471-4159.2009.06228.x

Alvira, D., Yeste-Velasco, M., Folch,
J., Verdaguer, E., Canudas, A. M.,
Pallas, M., et al. (2007). Com-
parative analysis of the effects of
resveratrol in two apoptotic mod-
els: inhibition of complex I and
potassium deprivation in cerebellar
neurons. Neuroscience 147, 746–756.
doi: 10.1016/j.neuroscience.2007.
04.029

Araki, T., Sasaki, Y., and Milbrandt,
J. (2004). Increased nuclear NAD
biosynthesis and SIRT1 activation
prevent axonal degeneration. Science
305, 1010–1013. doi: 10.1126/sci-
ence.1098014

Babetto, E., Beirowski, B., Janeckova,
L., Brown, R., Gilley, J., Thomson,
D., et al. (2010). Targeting NMNAT1
to axons and synapses transforms
its neuroprotective potency in vivo.
J. Neurosci. 30, 13291–13304. doi:
10.1523/JNEUROSCI.1189-10.2010

Bao, J., Scott, I., Lu, Z., Pang, L.,
Dimond, C. C., Gius, D., et al.
(2010). SIRT3 is regulated by nutri-
ent excess and modulates hepatic
susceptibility to lipotoxicity. Free

Radic. Biol. Med. 49, 1230–1237.
doi: 10.1016/j.freeradbiomed.2010.
07.009

Baur, J. A., Pearson, K. J., Price, N.
L., Jamieson, H. A., Lerin, C., Kalra,
A., et al. (2006). Resveratrol improves
health and survival of mice on a high-
calorie diet. Nature 444, 337–342.
doi: 10.1038/nature05354

Bellizzi, D., Covello, G., Di Cianni,
F., Tong, Q., and De Benedictis, G.
(2009). Identification of GATA2 and
AP-1 activator elements within the
enhancer VNTR occurring in intron
5 of the human SIRT3 gene. Mol. Cells
28, 87–92. doi: 10.1007/s10059-009-
0110-3

Bellizzi, D., Dato, S., Cavalcante, P.,
Covello, G., Di Cianni, F., Pas-
sarino, G., et al. (2007). Charac-
terization of a bidirectional pro-
moter shared between two human
genes related to aging: SIRT3 and
PSMD13. Genomics 89, 143–150. doi:
10.1016/j.ygeno.2006.09.004

Bellizzi, D., Rose, G., Cavalcante, P.,
Covello, G., Dato, S., De Rango,
F., et al. (2005). A novel VNTR
enhancer within the SIRT3 gene, a
human homologue of SIR2, is asso-
ciated with survival at oldest ages.
Genomics 85, 258–263. doi: 10.1016/
j.ygeno.2004.11.003

Biessels, G. J., and Kappelle, L. J. (2005).
Increased risk of Alzheimer’s disease
in Type II diabetes: insulin resis-
tance of the brain or insulin-induced
amyloid pathology? Biochem. Soc.
Trans. 33, 1041–1044. doi: 10.1042/
BST20051041

Blum, C. A., Ellis, J. L., Loh, C., Ng,
P. Y., Perni, R. B., and Stein, R. L.
(2011). SIRT1 modulation as a novel
approach to the treatment of diseases
of aging. J. Med. Chem. 54, 417–432.
doi: 10.1021/jm100861p

Boveris, A., and Navarro, A. (2008).
Brain mitochondrial dysfunction in
aging. IUBMB Life 60, 308–314. doi:
10.1002/iub.46

Braunstein, M., Rose, A. B., Holmes,
S. G., Allis, C. D., and Broach, J.

R. (1993). Transcriptional silencing
in yeast is associated with reduced
nucleosome acetylation. Genes Dev.
7, 592–604. doi: 10.1101/gad.7.4.592

Brooks, C. L., and Gu, W. (2009). How
does SIRT1 affect metabolism, senes-
cence and cancer? Nat. Rev. Cancer 9,
123–128. doi: 10.1038/nrc2562

Brown, K., Xie, S., Qiu, X., Mohrin, M.,
Shin, J., Liu, Y., et al. (2013). SIRT3
reverses aging-associated degenera-
tion. Cell Rep. 3, 319–327. doi:
10.1016/j.celrep.2013.01.005

Burnett, C., Valentini, S., Cabreiro, F.,
Goss, M., Somogyvari, M., Piper, M.
D., et al. (2011). Absence of effects of
Sir2 overexpression on lifespan in, C.
elegans and Drosophila. Nature 477,
482–485. doi: 10.1038/nature10296

Campisi, J. (2005). Suppressing can-
cer: the importance of being senes-
cent. Science 309, 886–887. doi:
10.1126/science.1116801

Canto, C., and Auwerx, J. (2009).
Caloric restriction, SIRT1 and
longevity. Trends Endocrinol. Metab.
20, 325–331. doi: 10.1016/j.tem.
2009.03.008

Chalkiadaki, A., and Guarente, L.
(2012). Sirtuins mediate mammalian
metabolic responses to nutrient avail-
ability. Nat. Rev. Endocrinol. 8, 287–
296. doi: 10.1038/nrendo.2011.225

Chao, J., Yu, M. S., Ho, Y.
S., Wang, M., and Chang, R.
C. (2008). Dietary oxyresveratrol
prevents parkinsonian mimetic 6-
hydroxydopamine neurotoxicity. Free
Radic. Biol. Med. 45, 1019–1026.
doi: 10.1016/j.freeradbiomed.2008.
07.002

Chen, D., Steele, A. D., Lindquist, S.,
and Guarente, L. (2005a). Increase
in activity during calorie restriction
requires Sirt1. Science 310, 1641. doi:
10.1126/science.1118357

Chen, J., Zhou, Y., Mueller-Steiner,
S., Chen, L. F., Kwon, H., Yi,
S., et al. (2005b). SIRT1 pro-
tects against microglia-dependent
amyloid-beta toxicity through
inhibiting NF-kappaB signaling.

J. Biol. Chem. 280, 40364–40374. doi:
10.1074/jbc.M509329200

Chen, L. F., and Greene, W. C.
(2003). Regulation of distinct biolog-
ical activities of the NF-kappaB tran-
scription factor complex by acetyla-
tion. J. Mol. Med. (Berl.) 81, 549–57.
doi: 10.1007/s00109-003-0469-0

Chong, Z. Z., Lin, S. H., Li, F.,
and Maiese, K. (2005). The sir-
tuin inhibitor nicotinamide enhances
neuronal cell survival during acute
anoxic injury through AKT, BAD,
PARP, and mitochondrial associ-
ated “anti-apoptotic” pathways. Curr.
Neurovasc. Res. 2, 271–285. doi:
10.2174/156720205774322584

Chong, Z. Z., and Maiese, K. (2008).
Enhanced tolerance against early
and late apoptotic oxidative stress
in mammalian neurons through
nicotinamidase and sirtuin medi-
ated pathways. Curr. Neurovasc.
Res. 5, 159–170. doi: 10.2174/
156720208785425666

Cimen, H., Han, M. J., Yang, Y., Tong,
Q., Koc, H., and Koc, E. C. (2010).
Regulation of succinate dehydroge-
nase activity by SIRT3 in mammalian
mitochondria. Biochemistry 49, 304–
311. doi: 10.1021/bi901627u

Cooper, H. M., Huang, J. Y., Verdin, E.,
and Spelbrink, J. N. (2009). A new
splice variant of the mouse SIRT3
gene encodes the mitochondrial pre-
cursor protein. PLoS ONE 4:e4986.
doi: 10.1371/journal.pone.0004986

Dali-Youcef, N., Lagouge, M., Froelich,
S., Koehl, C., Schoonjans, K.,
and Auwerx, J. (2007). Sirtuins:
the ‘magnificent seven’, function,
metabolism and longevity. Ann.
Med. 39, 335–345. doi: 10.1080/
07853890701408194

Della-Morte, D., Dave, K. R., DeFazio,
R. A., Bao, Y. C., Raval, A. P., and
Perez-Pinzon, M. A. (2009). Resver-
atrol pretreatment protects rat brain
from cerebral ischemic damage via a
sirtuin 1-uncoupling protein 2 path-
way. Neuroscience 159, 993–1002. doi:
10.1016/j.neuroscience.2009.01.017

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 36 | 10

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


“fnagi-05-00036” — 2013/7/20 — 13:47 — page 11 — #11

Duan SIRT1, SIRT3 and brain aging

Dietrich, M. O., Antunes, C., Geliang,
G., Liu, Z. W., Borok, E., Nie, Y., et al.
(2010). Agrp neurons mediate Sirt1’s
action on the melanocortin system
and energy balance: roles for Sirt1
in neuronal firing and synaptic plas-
ticity. J. Neurosci. 30, 11815–11825.
doi: 10.1523/JNEUROSCI.2234-
10.2010

Donmez, G., Arun, A., Chung, C. Y.,
McLean, P. J., Lindquist, S., and
Guarente, L. (2012). SIRT1 pro-
tects against alpha-synuclein aggre-
gation by activating molecular chap-
erones. J. Neurosci. 32, 124–132. doi:
10.1523/JNEUROSCI.3442-11.2012

Donmez, G., Wang, D., Cohen, D.
E., and Guarente, L. (2010). SIRT1
suppresses beta-amyloid production
by activating the alpha-secretase gene
ADAM10. Cell 142, 320–332. doi:
10.1016/j.cell.2010.06.020

Drew, B., and Leeuwenburgh, C. (2004).
Ageing and subcellular distribution
of mitochondria: role of mitochon-
drial DNA deletions and energy
production. Acta Physiol. Scand.
182, 333–341. doi: 10.1111/j.1365-
201X.2004.01371.x

Duan, W., Guo, Z., Jiang, H., Ware,
M., Li, X. J., and Mattson, M. P.
(2003). Dietary restriction normal-
izes glucose metabolism and BDNF
levels, slows disease progression,
and increases survival in huntingtin
mutant mice. Proc. Natl. Acad. Sci.
U.S.A. 100, 2911–2916. doi: 10.1073/
pnas.0536856100

Duan, W., and Mattson, M. P.
(1999). Dietary restriction and
2-deoxyglucose administration
improve behavioral outcome and
reduce degeneration of dopaminergic
neurons in models of Parkin-
son’s disease. J. Neurosci. Res. 57,
195–206. doi: 10.1002/(SICI)1097-
4547(19990715)57:2

Finley, L. W., and Haigis, M. C.
(2009). The coordination of nuclear
and mitochondrial communication
during aging and calorie restriction.
Ageing Res. Rev. 8, 173–188. doi:
10.1016/j.arr.2009.03.003

Guarente, L., and Franklin, H. (2011).
Epstein lecture: sirtuins, aging, and
medicine. N. Engl. J. Med. 364, 2235–
2244. doi: 10.1056/NEJMra1100831

Hafner, A. V., Dai, J., Gomes, A. P., Xiao,
C.Y., Palmeira, C. M., Rosenzweig, A.,
et al. (2010). Regulation of the mPTP
by SIRT3-mediated deacetylation of
CypD at lysine 166 suppresses age-
related cardiac hypertrophy. Aging
(Albany NY) 2, 914–923.

Haigis, M. C., and Guarente, L. P.
(2006). Mammalian sirtuins –
emerging roles in physiology,
aging, and calorie restriction.

Genes Dev. 20, 2913–2921. doi:
10.1101/gad.1467506

Hallows, W. C., Lee, S., and Denu,
J. M. (2006). Sirtuins deacety-
late and activate mammalian acetyl-
CoA synthetases. Proc. Natl. Acad.
Sci. U.S.A. 103, 10230–10235. doi:
10.1073/pnas.0604392103

Hallows, W. C., Yu, W., Smith, B.
C., Devries, M. K., Ellinger, J.
J., Someya, S., et al. (2011). Sirt3
promotes the urea cycle and fatty
acid oxidation during dietary restric-
tion. Mol. Cell. 41, 139–149. doi:
10.1016/j.molcel.2011.01.002

Hardie, D. G. (2011). AMP-activated
protein kinase: an energy sensor that
regulates all aspects of cell func-
tion. Genes Dev. 25, 1895–1908. doi:
10.1101/gad.17420111

Herranz, D., Munoz-Martin, M.,
Canamero, M., Mulero, F., Martinez-
Pastor, B., Fernandez-Capetillo, O.,
et al. (2010). Sirt1 improves healthy
ageing and protects from metabolic
syndrome-associated cancer. Nat.
Commun. 1, 3. doi: 10.1038/
ncomms1001

Hirschey, M. D., Shimazu, T., Goet-
zman, E., Jing, E., Schwer, B.,
Lombard, D. B., et al. (2010).
SIRT3 regulates mitochondrial fatty-
acid oxidation by reversible enzyme
deacetylation. Nature 464, 121–125.
doi: 10.1038/nature08778

Howitz, K. T., Bitterman, K. J., Cohen,
H. Y., Lamming, D. W., Lavu,
S., Wood, J. G., et al. (2003).
Small molecule activators of sirtu-
ins extend Saccharomyces cerevisiae
lifespan. Nature 425, 191–196. doi:
10.1038/nature01960

Hubbard, B. P., Gomes, A. P., Dai, H.,
Li, J., Case, A. W., Considine, T.,
et al. (2013). Evidence for a com-
mon mechanism of SIRT1 regula-
tion by allosteric activators. Science
339, 1216–1219. doi: 10.1126/sci-
ence.1231097

Imai, S., and Guarente, L. (2010).
Ten years of NAD-dependent SIR2
family deacetylases: implications for
metabolic diseases. Trends Phar-
macol. Sci. 31, 212–220. doi:
10.1016/j.tips.2010.02.003

Jeong, H., Cohen, D. E., Cui, L.,
Supinski, A., Savas, J. N., Mazzulli,
J. R., et al. (2011). Sirt1 mediates
neuroprotection from mutant hunt-
ingtin by activation of the TORC1
and CREB transcriptional pathway.
Nat. Med. 18, 159–165. doi:
10.1038/nm.2559

Jiang, J. C., Jaruga, E., Repnevskaya,
M. V., and Jazwinski, S. M. (2000).
An intervention resembling caloric
restriction prolongs life span and
retards aging in yeast. FASEB J.

14, 2135–2137. doi: 10.1096/fj.00-
0242fje

Jiang, M., Wang, J., Fu, J., Du, L.,
Jeong, H., West, T., et al. (2011). Neu-
roprotective role of Sirt1 in mam-
malian models of Huntington’s dis-
ease through activation of multiple
Sirt1 targets. Nat. Med. 18, 153–158.
doi: 10.1038/nm.2558

Jin, L., Galonek, H., Israelian, K.,
Choy, W., Morrison, M., Xia, Y.,
et al. (2009). Biochemical characteri-
zation, localization, and tissue distri-
bution of the longer form of mouse
SIRT3. Protein Sci. 18, 514–525. doi:
10.1002/pro.50

Julien, C., Tremblay, C., Emond, V.,
Lebbadi, M., Salem, N. Jr., Ben-
nett, D. A., et al. (2009). Sirtuin 1
reduction parallels the accumulation
of tau in Alzheimer disease. J. Neu-
ropathol. Exp. Neurol. 68, 48–58. doi:
10.1097/NEN.0b013e3181922348

Jung, C. H., Ro, S. H., Cao, J., Otto,
N. M., and Kim, D. H. (2010).
mTOR regulation of autophagy.
FEBS Lett. 584, 1287–1295. doi:
10.1016/j.febslet.2010.01.017

Kaeberlein, M., McVey, M., and
Guarente, L. (1999). The SIR2/3/4
complex and SIR2 alone promote
longevity in Saccharomyces cerevisiae
by two different mechanisms. Genes
Dev. 13, 2570–2580. doi: 10.1101/
gad.13.19.2570

Kakefuda, K., Fujita, Y., Oyagi,
A., Hyakkoku, K., Kojima, T.,
Umemura, K., et al. (2009). Sir-
tuin 1 overexpression mice show a
reference memory deficit, but not
neuroprotection. Biochem. Biophys.
Res. Commun. 387, 784–788. doi:
10.1016/j.bbrc.2009.07.119

Kendrick, A. A., Choudhury, M.,
Rahman, S. M., McCurdy, C. E.,
Friederich, M., Van Hove, J. L.,
et al. (2011). Fatty liver is associ-
ated with reduced SIRT3 activity and
mitochondrial protein hyperacetyla-
tion. Biochem. J. 433, 505–514. doi:
10.1042/BJ20100791

Kim, D., Nguyen, M. D., Dobbin,
M. M., Fischer, A., Sananbenesi, F.,
Rodgers, J. T., et al. (2007). SIRT1
deacetylase protects against neurode-
generation in models for Alzheimer’s
disease and amyotrophic lateral scle-
rosis. EMBO J. 26, 3169–3179. doi:
10.1038/sj.emboj.7601758

Kim, S. C., Sprung, R., Chen, Y., Xu, Y.,
Ball, H., Pei, J., et al. (2006). Substrate
and functional diversity of lysine
acetylation revealed by a proteomics
survey. Mol. Cell. 23, 607–618. doi:
10.1016/j.molcel.2006.06.026

Klar, A. J., and Fogel, S. (1979). Activa-
tion of mating type genes by trans-
position in Saccharomyces cerevisiae.

Proc. Natl. Acad. Sci. U.S.A. 76, 4539–
4543. doi: 10.1073/pnas.76.9.4539

Koubova, J., and Guarente, L. (2003).
How does calorie restriction work?
Genes Dev. 17, 313–321. doi:
10.1101/gad.1052903

Lan, F., Cacicedo, J. M., Ruder-
man, N., and Ido, Y. (2008). SIRT1
modulation of the acetylation sta-
tus, cytosolic localization, and activ-
ity of LKB1. Possible role in AMP-
activated protein kinase activation. J.
Biol. Chem. 283, 27628–27635. doi:
10.1074/jbc.M805711200

Lanza, I. R., Short, D. K., Short, K.
R., Raghavakaimal, S., Basu, R.,
Joyner, M. J., et al. (2008). Endurance
exercise as a countermeasure for
aging. Diabetes 57, 2933–2942. doi:
10.2337/db08-0349

Lassmann, H. (2010). Axonal and neu-
ronal pathology in multiple sclerosis:
what have we learnt from animal
models. Exp. Neurol. 225, 2–8. doi:
10.1016/j.expneurol.2009.10.009

Lavu, S., Boss, O., Elliott, P. J.,
and Lambert, P. D. (2008). Sirtu-
ins – novel therapeutic targets to
treat age-associated diseases. Nat.
Rev. Drug Discov. 7, 841–853. doi:
10.1038/nrd2665

Law, I. K., Liu, L., Xu, A., Lam, K. S.,
Vanhoutte, P. M., Che, C. M., et al.
(2009). Identification and character-
ization of proteins interacting with
SIRT1 and SIRT3: implications in
the anti-aging and metabolic effects
of sirtuins. Proteomics 9, 2444–2456.
doi: 10.1002/pmic.200800738

Lee, I. H., Cao, L., Mostoslavsky, R.,
Lombard, D. B., Liu, J., Bruns, N.
E., et al. (2008). A role for the NAD-
dependent deacetylase Sirt1 in the
regulation of autophagy. Proc. Natl.
Acad. Sci. U.S.A. 105, 3374–3379. doi:
10.1073/pnas.0712145105

Lescai, F., Blanche, H., Nebel, A., Beek-
man, M., Sahbatou, M., Flachsbart,
F., et al. (2009). Human longevity and
11p15.5: a study in 1321 centenari-
ans. Eur. J. Hum. Genet. 17, 1515–
1519. doi: 10.1038/ejhg.2009.54

Liu, D., Gharavi, R., Pitta, M., Gleich-
mann, M., and Mattson, M. P. (2009).
Nicotinamide prevents NAD+ deple-
tion and protects neurons against
excitotoxicity and cerebral ischemia:
NAD+ consumption by SIRT1 may
endanger energetically compromised
neurons. Neuromol. Med. 11, 28–42.
doi: 10.1007/s12017-009-8058-1

Lombard, D. B., Alt, F. W., Cheng, H.
L., Bunkenborg, J., Streeper, R. S.,
Mostoslavsky, R., et al. (2007). Mam-
malian Sir2 homolog SIRT3 regulates
global mitochondrial lysine acetyla-
tion. Mol. Cell. Biol. 27, 8807–8814.
doi: 10.1128/MCB.01636-07

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 36 | 11

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


“fnagi-05-00036” — 2013/7/20 — 13:47 — page 12 — #12

Duan SIRT1, SIRT3 and brain aging

Luo, J., Nikolaev, A. Y., Imai, S.,
Chen, D., Su, F., Shiloh, A., et al.
(2001). Negative control of p53
by Sir2alpha promotes cell survival
under stress. Cell 107, 137–148. doi:
10.1016/S0092-8674(01)00524-4

Madeo, F., Tavernarakis, N., and Kroe-
mer, G. (2010). Can autophagy pro-
mote longevity? Nat. Cell Biol. 12,
842–846. doi: 10.1038/ncb0910-842

Markert, C. D., Kim, E., Gifondorwa,
D. J., Childers, M. K., and Mil-
ligan, C. E. (2010). A single-dose
resveratrol treatment in a mouse
model of amyotrophic lateral sclero-
sis. J. Med. Food 13, 1081–1085. doi:
10.1089/jmf.2009.0243

Masoro, E. J. (2000). Caloric restriction
and aging: an update. Exp. Gerontol.
35, 299–305. doi: 10.1016/S0531-
5565(00)00084-X

Mihaylova, M. M., and Shaw, R.
J. (2011). The AMPK signalling
pathway coordinates cell growth,
autophagy and metabolism. Nat. Cell
Biol. 13, 1016–1023. doi: 10.1038/
ncb2329

Min, S. W., Cho, S. H., Zhou,
Y., Schroeder, S., Haroutunian, V.,
Seeley, W. W., et al. (2010). Acety-
lation of tau inhibits its degrada-
tion and contributes to tauopathy.
Neuron 67, 953–966. doi: 10.1016/
j.neuron.2010.08.044

Morris, K. C., Lin, H. W., Thomp-
son, J. W., and Perez-Pinzon, M.
A. (2011). Pathways for ischemic
cytoprotection: role of sirtuins in
caloric restriction, resveratrol, and
ischemic preconditioning. J. Cereb.
Blood Flow Metab. 31, 1003–1019.
doi: 10.1038/jcbfm.2010.229

Navarro, A., and Boveris, A. (2007).
The mitochondrial energy transduc-
tion system and the aging pro-
cess. Am. J. Physiol. Cell Physiol.
292, C670–C686. doi: 10.1152/ajp-
cell.00213.2006

Nemoto, S., Fergusson, M. M., and
Finkel, T. (2005). SIRT1 functionally
interacts with the metabolic regulator
and transcriptional coactivator PGC-
1{alpha}. J. Biol. Chem. 280, 16456–
16460. doi: 10.1074/jbc.M501485200

Nisoli, E., Tonello, C., Cardile, A.,
Cozzi, V., Bracale, R., Tedesco, L.,
et al. (2005). Calorie restriction pro-
motes mitochondrial biogenesis by
inducing the expression of eNOS. Sci-
ence 310, 314–317. doi: 10.1126/sci-
ence.1117728

Okawara, M., Katsuki, H., Kurimoto,
E., Shibata, H., Kume, T., and
Akaike, A. (2007). Resveratrol pro-
tects dopaminergic neurons in mid-
brain slice culture from multiple
insults. Biochem. Pharmacol. 73, 550–
560. doi: 10.1016/j.bcp.2006.11.003

Onyango, P., Celic, I., McCaffery, J.
M., Boeke, J. D., and Feinberg, A. P.
(2002). SIRT3, a human SIR2 homo-
logue, is an NAD-dependent deacety-
lase localized to mitochondria. Proc.
Natl. Acad. Sci. U.S.A. 99, 13653–
13658. doi: 10.1073/pnas.222538099

Palacios, O. M., Carmona, J. J., Michan,
S., Chen, K. Y., Manabe, Y., Ward, J.
L. III, et al. (2009). Diet and exercise
signals regulate SIRT3 and activate
AMPK and PGC-1alpha in skele-
tal muscle. Aging (Albany NY) 1,
771–783.

Pallas, M., Pizarro, J. G., Gutierrez-
Cuesta, J., Crespo-Biel, N., Alvira,
D., Tajes, M., et al. (2008). Mod-
ulation of SIRT1 expression in
different neurodegenerative models
and human pathologies. Neuro-
science 154, 1388–1397. doi: 10.1016/
j.neuroscience.2008.04.065

Pallos, J., Bodai, L., Lukacsovich, T.,
Purcell, J. M., Steffan, J. S., Thomp-
son, L. M., et al. (2008). Inhibition
of specific HDACs and sirtuins sup-
presses pathogenesis in a Drosophila
model of Huntington’s disease. Hum.
Mol. Genet. 17, 3767–3775. doi:
10.1093/hmg/ddn273

Parker, J. A., Arango, M., Abderrah-
mane, S., Lambert, E., Tourette, C.,
Catoire, H., et al. (2005). Resveratrol
rescues mutant polyglutamine cyto-
toxicity in nematode and mammalian
neurons. Nat. Genet. 37, 349–350.
doi: 10.1038/ng1534

Patel, N. V., Gordon, M. N., Con-
nor, K. E., Good, R. A., Engelman,
R. W., Mason, J., et al. (2005).
Caloric restriction attenuates
Abeta-deposition in Alzheimer
transgenic models. Neurobiol.
Aging. 26, 995–1000. doi: 10.1016/
j.neurobiolaging.2004.09.014

Perry, V. H., Lunn, E. R., Brown, M.
C., Cahusac, S., and Gordon, S.
(1990). Evidence that the Rate of Wal-
lerian degeneration is controlled by
a single autosomal dominant gene.
Eur. J. Neurosci. 2, 408–413. doi:
10.1111/j.1460-9568.1990.tb00433.x

Petersen, K. F., Befroy, D., Dufour,
S., Dziura, J., Ariyan, C., Rothman,
D. L., et al. (2003). Mitochondrial
dysfunction in the elderly: possible
role in insulin resistance. Science 300,
1140–1142. doi: 10.1126/science.
1082889

Picard, F., Kurtev, M., Chung, N.,
Topark-Ngarm, A., Senawong, T.,
Machado De Oliveira, R., et al.
(2004). Sirt1 promotes fat mobiliza-
tion in white adipocytes by repressing
PPAR-gamma. Nature 429, 771–776.
doi: 10.1038/nature02583

Puigserver, P., Wu, Z., Park, C.
W., Graves, R., Wright, M., and

Spiegelman, B. M. (1998). A cold-
inducible coactivator of nuclear
receptors linked to adaptive ther-
mogenesis. Cell 92, 829–839. doi:
10.1016/S0092-8674(00)81410-5

Qin, W., Chachich, M., Lane, M.,
Roth, G., Bryant, M., de Cabo,
R., et al. (2006a). Calorie restriction
attenuates Alzheimer’s disease type
brain amyloidosis in Squirrel mon-
keys (Saimiri sciureus). J. Alzheimers
Dis. 10, 417–422.

Qin, W., Yang, T., Ho, L., Zhao, Z.,
Wang, J., Chen, L., et al. (2006b).
Neuronal SIRT1 activation as a novel
mechanism underlying the preven-
tion of Alzheimer disease amyloid
neuropathology by calorie restric-
tion. J. Biol. Chem. 281, 21745–
21754. doi: 10.1074/jbc.M602909200

Qiu, X., Brown, K., Hirschey, M. D.,
Verdin, E., and Chen, D. (2010).
Calorie restriction reduces oxidative
stress by SIRT3-mediated SOD2 acti-
vation. Cell Metab. 12, 662–667. doi:
10.1016/j.cmet.2010.11.015

Ramadori, G., Lee, C. E., Book-
out, A. L., Lee, S., Williams, K.
W., Anderson, J., et al. (2008).
Brain SIRT1: anatomical distribution
and regulation by energy availabil-
ity. J. Neurosci. 28, 9989–9996. doi:
10.1523/JNEUROSCI.3257-08.2008

Raval, A. P., Dave, K. R., and Perez-
Pinzon, M. A. (2006). Resveratrol
mimics ischemic preconditioning
in the brain. J. Cereb. Blood
Flow Metab. 26, 1141–1147. doi:
10.1038/sj.jcbfm.9600262

Rodgers, J. T., Lerin, C., Haas, W.,
Gygi, S. P., Spiegelman, B. M.,
and Puigserver, P. (2005). Nutri-
ent control of glucose homeostasis
through a complex of PGC-1alpha
and SIRT1. Nature 434, 113–118. doi:
10.1038/nature03354

Rogina, B., and Helfand, S. L. (2004).
Sir2 mediates longevity in the fly
through a pathway related to calo-
rie restriction. Proc. Natl. Acad.
Sci. U.S.A. 101, 15998–16003. doi:
10.1073/pnas.0404184101

Rose, G., Dato, S., Altomare, K., Bel-
lizzi, D., Garasto, S., Greco, V.,
et al. (2003). Variability of the SIRT3
gene, human silent information reg-
ulator Sir2 homologue, and survivor-
ship in the elderly. Exp. Gerontol.
38, 1065–1070. doi: 10.1016/S0531-
5565(03)00209-2

Rosen, D. R. (1993). Mutations in
Cu/Zn superoxide dismutase gene are
associated with familial amyotrophic
lateral sclerosis. Nature 364, 362. doi:
10.1038/364362c0

Sakakibara, I., Fujino, T., Ishii, M.,
Tanaka, T., Shimosawa, T., Miura,
S., et al. (2009). Fasting-induced

hypothermia and reduced energy
production in mice lacking acetyl-
CoA synthetase 2. Cell Metab. 9, 191–
202. doi: 10.1016/j.cmet.2008.12.008

Salminen, A., and Kaarniranta, K.
(2012). AMP-activated protein
kinase (AMPK) controls the aging
process via an integrated signal-
ing network. Ageing Res. Rev. 11,
230–241. doi: 10.1016/j.arr.2011.
12.005

Salminen, A., Kauppinen, A., Suuro-
nen, T., and Kaarniranta, K.
(2008a). SIRT1 longevity factor sup-
presses NF-kappaB-driven immune
responses: regulation of aging via
NF-kappaB acetylation? Bioessays 30,
939–942. doi: 10.1002/bies.20799

Salminen, A., Ojala, J., Huuskonen,
J., Kauppinen, A., Suuronen, T.,
and Kaarniranta, K. (2008b). Inter-
action of aging-associated signaling
cascades: inhibition of NF-kappaB
signaling by longevity factors FoxOs
and SIRT1. Cell. Mol. Life Sci.
65, 1049–1058. doi: 10.1007/s00018-
008-7461-3

Sasaki, Y., Vohra, B. P., Baloh, R.
H., and Milbrandt, J. (2009). Trans-
genic mice expressing the Nmnat1
protein manifest robust delay in
axonal degeneration in vivo. J. Neu-
rosci. 29, 6526–6534. doi: 10.1523/
JNEUROSCI.1429-09.2009

Satoh, A., Brace, C. S., Ben-Josef, G.,
West, T., Wozniak, D. F., Holtzman,
D. M., et al. (2010). SIRT1 pro-
motes the central adaptive response
to diet restriction through activa-
tion of the dorsomedial and lat-
eral nuclei of the hypothalamus.
J. Neurosci. 30, 10220–10232. doi:
10.1523/JNEUROSCI.1385-10.2010

Sauve, A. A. (2009). Pharmaceuti-
cal strategies for activating sirtuins.
Curr. Pharm. Des. 15, 45–56. doi:
10.2174/138161209787185797

Sauve, A. A., Wolberger, C., Schramm,
V. L., and Boeke, J. D. (2006). The
biochemistry of sirtuins. Annu. Rev.
Biochem. 75, 435–465. doi: 10.1146/
annurev.biochem.74.082803.133500

Schlicker, C., Gertz, M., Papatheodorou,
P., Kachholz, B., Becker, C. F.,
and Steegborn, C. (2008). Sub-
strates and regulation mechanisms
for the human mitochondrial sirtu-
ins Sirt3 and Sirt5. J. Mol. Biol. 382,
790–801. doi: 10.1016/j.jmb.2008.
07.048

Schmitz, M. L., Mattioli, I., Buss,
H., and Kracht, M. (2004).
NF-kappaB: a multifaceted tran-
scription factor regulated at several
levels. Chembiochem 5, 1348–1358.
doi: 10.1002/cbic.200400144

Schwer, B., Bunkenborg, J., Verdin,
R. O., Andersen, J. S., and Verdin,

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 36 | 12

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


“fnagi-05-00036” — 2013/7/20 — 13:47 — page 13 — #13

Duan SIRT1, SIRT3 and brain aging

E. (2006). Reversible lysine acety-
lation controls the activity of the
mitochondrial enzyme acetyl-CoA
synthetase 2. Proc. Natl. Acad.
Sci. U.S.A. 103, 10224–10229. doi:
10.1073/pnas.0603968103

Schwer, B., Eckersdorff, M., Li, Y.,
Silva, J. C., Fermin, D., Kurtev, M.
V., et al. (2009). Calorie restriction
alters mitochondrial protein acety-
lation. Aging Cell 8, 604–606. doi:
10.1111/j.1474-9726.2009.00503.x

Schwer, B., North, B. J., Frye, R.
A., Ott, M., and Verdin, E. (2002).
The human silent information regu-
lator (Sir)2 homologue hSIRT3 is a
mitochondrial nicotinamide adenine
dinucleotide-dependent deacetylase.
J. Cell Biol. 158, 647–657. doi:
10.1083/jcb.200205057

Shi, T., Wang, F., Stieren, E., and
Tong, Q. (2005). SIRT3, a mito-
chondrial sirtuin deacetylase, reg-
ulates mitochondrial function and
thermogenesis in brown adipocytes.
J. Biol. Chem. 280, 13560–13567. doi:
10.1074/jbc.M414670200

Shimazu, T., Hirschey, M. D., Huang,
J. Y., Ho, L. T., and Verdin,
E. (2010). Acetate metabolism and
aging: an emerging connection.
Mech. Ageing Dev. 131, 511–516. doi:
10.1016/j.mad.2010.05.001

Shimokawa, I., and Trindade, L. S.
(2010). Dietary restriction and aging
in rodents: a current view on its
molecular mechanisms. Aging Dis. 1,
89–107.

Shindler, K. S., Ventura, E., Dutt, M.,
Elliott, P., Fitzgerald, D. C., and
Rostami, A. (2010). Oral resver-
atrol reduces neuronal damage in
a model of multiple sclerosis. J.
Neuroophthalmol. 30, 328–339. doi:
10.1097/WNO.0b013e3181f7f833

Shindler, K. S., Ventura, E., Rex, T. S.,
Elliott, P., and Rostami, A. (2007).
SIRT1 activation confers neuropro-
tection in experimental optic neu-
ritis. Invest. Ophthalmol. Vis. Sci.
48, 3602–3609. doi: 10.1167/iovs.07-
0131

Shulga, N., Wilson-Smith, R., and
Pastorino, J. G. (2010). Sirtuin-
3 deacetylation of cyclophilin D

induces dissociation of hexoki-
nase II from the mitochondria.
J. Cell Sci. 123, 894–902. doi:
10.1242/jcs.061846

Sinclair, D. A. (2002). Paradigms and
pitfalls of yeast longevity research.
Mech. Ageing Dev. 123, 857–867. doi:
10.1016/S0047-6374(02)00023-4

Singh, K. K. (2004). Mitochondrial
dysfunction is a common pheno-
type in aging and cancer. Ann. N.
Y. Acad. Sci. 1019, 260–264. doi:
10.1196/annals.1297.043

Someya, S., Yu, W., Hallows, W. C., Xu,
J., Vann, J. M., Leeuwenburgh, C.,
et al. (2010). Sirt3 mediates reduc-
tion of oxidative damage and preven-
tion of age-related hearing loss under
caloric restriction. Cell 143, 802–812.
doi: 10.1016/j.cell.2010.10.002

Swerdlow, R. H. (2007). Treating neu-
rodegeneration by modifying mito-
chondria: potential solutions to
a “complex” problem. Antioxid.
Redox Signal. 9, 1591–1603. doi:
10.1089/ars.2007.1676

Swerdlow, R. H. (2011). Brain aging,
Alzheimer’s disease, and mito-
chondria. Biochim. Biophys. Acta
1812, 1630–1639. doi: 10.1016/
j.bbadis.2011.08.012

Tang, B. L. (2009). Sirt1’s com-
plex roles in neuroprotection. Cell.
Mol. Neurobiol. 29, 1093–1103. doi:
10.1007/s10571-009-9414-2

Tao, R., Coleman, M. C., Penning-
ton, J. D., Ozden, O., Park, S.
H., Jiang, H., et al. (2010). Sirt3-
mediated deacetylation of evolution-
arily conserved lysine 122 regu-
lates MnSOD activity in response to
stress. Mol. Cell. 40, 893–904. doi:
10.1016/j.molcel.2010.12.013

Tissenbaum, H. A., and Guarente, L.
(2001). Increased dosage of a sir-2
gene extends lifespan in Caenorhab-
ditis elegans. Nature 410, 227–230.
doi: 10.1038/35065638

Viswanathan, M., and Guarente, L.
(2011). Regulation of Caenorhabdi-
tis elegans lifespan by sir-2.1 trans-
genes. Nature 477, E1–E2. doi:
10.1038/nature10440

Wakeling, L. A., Ions, L. J., and Ford,
D. (2009). Could Sirt1-mediated

epigenetic effects contribute to the
longevity response to dietary restric-
tion and be mimicked by other
dietary interventions? Age (Dordr.)
31, 327–341. doi: 10.1007/s11357-
009-9104-5

Wang, J., Fivecoat, H., Ho, L., Pan,
Y., Ling, E., and Pasinetti, G.
M. (2010). The role of Sirt1: at
the crossroad between promotion
of longevity and protection against
Alzheimer’s disease neuropathology.
Biochim. Biophys. Acta 1804, 1690–
1694. doi: 10.1016/j.bbapap.2009.
11.015

Wang, J., Ho, L., Qin, W., Rocher,
A. B., Seror, I., Humala, N., et al.
(2005a). Caloric restriction attenu-
ates beta-amyloid neuropathology in
a mouse model of Alzheimer’s dis-
ease. FASEB J. 19, 659–661. doi:
10.1096/fj.04-3182fje

Wang, J., Zhai, Q., Chen, Y., Lin, E.,
Gu, W., McBurney, M. W., et al.
(2005b). A local mechanism medi-
ates NAD-dependent protection of
axon degeneration. J. Cell Biol. 170,
349–355. doi: 10.1083/jcb.200504028

Wang, P., Xu, T. Y., Guan, Y. F., Tian, W.
W., Viollet, B., Rui, Y. C., et al. (2011).
Nicotinamide phosphoribosyltrans-
ferase protects against ischemic
stroke through SIRT1-dependent
adenosine monophosphate-activated
kinase pathway. Ann. Neurol. 69,
360–374. doi: 10.1002/ana.22236

Wang, S., Xing, Z., Vosler, P.
S., Yin, H., Li, W., Zhang,
F., et al. (2008). Cellular NAD
replenishment confers marked neu-
roprotection against ischemic cell
death: role of enhanced DNA repair.
Stroke 39, 2587–2595. doi: 10.1161/
STROKEAHA.107.509158

Wareski, P., Vaarmann, A., Choubey,
V., Safiulina, D., Liiv, J., Kuum,
M., et al. (2009). PGC-1{alpha} and
PGC-1{beta} regulate mitochondrial
density in neurons. J. Biol. Chem.
284, 21379–21385. doi: 10.1074/
jbc.M109.018911

Wood, J. G., Rogina, B., Lavu, S.,
Howitz, K., Helfand, S. L., Tatar, M.,
et al. (2004). Sirtuin activators mimic
caloric restriction and delay ageing in

metazoans. Nature 430, 686–689. doi:
10.1038/nature02789

Xiong, S., Salazar, G., Patrushev,
N., and Alexander, R. W. (2011).
FoxO1 mediates an autofeedback
loop regulating SIRT1 expression. J.
Biol. Chem. 286, 5289–5299. doi:
10.1074/jbc.M110.163667

Yang, Y., Hubbard, B. P., Sinclair, D.
A., and Tong, Q. (2010). Char-
acterization of murine SIRT3 tran-
script variants and corresponding
protein products. J. Cell. Biochem.
111, 1051–1058. doi: 10.1002/jcb.
22795

Yang, Y. H., Chen, Y. H., Zhang, C. Y.,
Nimmakayalu, M. A., Ward, D. C.,
and Weissman, S. (2000). Cloning
and characterization of two mouse
genes with homology to the yeast
Sir2 gene. Genomics 69, 355–369. doi:
10.1006/geno.2000.6360

Yeung, F., Hoberg, J. E., Ramsey, C.
S., Keller, M. D., Jones, D. R., and
Frye, R. A., et al. (2004). Modula-
tion of NF-kappaB-dependent tran-
scription and cell survival by the
SIRT1 deacetylase. EMBO J. 23,
2369–2380. doi: 10.1038/sj.emboj.
7600244

Conflict of Interest Statement: The
author declares that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 31 March 2013; paper pending
published: 08 May 2013; accepted: 01 July
2013; published online: 23 July 2013.
Citation: Duan W (2013) Sirtuins: from
metabolic regulation to brain aging.
Front. Aging Neurosci. 5:36. doi:
10.3389/fnagi.2013.00036
Copyright © 2013 Duan. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License, which permits use, distribution
and reproduction in other forums, pro-
vided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 36 | 13

http://dx.doi.org/10.3389/fnagi.2013.00036
http://dx.doi.org/10.3389/fnagi.2013.00036
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

	Sirtuins: from metabolic regulation to brain aging
	Introduction
	Sirt1, metabolism and brain aging
	Distribution of sirt1 in the brain
	Sirt1 mediates metabolic benefits under CR
	Sirt1 and factors involved in CR and aging
	Sirt1 and age-associated neurological diseases
	Wallerian degeneration
	Alzheimer's disease
	Parkinson's disease
	Huntington's disease

	Amyotrophic lateral sclerosis
	Multiple sclerosis
	Cerebral ischemia

	Sirt1 in clinical practice
	Future perspectives on sirt1

	Sirt3, energy metabolism and aging
	Sirt3 and mitochondria
	Sirt3 and metabolic homeostasis
	Sirt, lifespan and age-associated phenotypes
	Sirt3 and mitochondrial protein acetylation: unresolved questions

	Further perspectives
	References


