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Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that specifically causes
cancer and is widely distributed in the environment. Poly (ADP-ribosylation), as a
key post-translational modification in BaP-induced carcinogenesis, is mainly catalyzed
by poly (ADP-ribose) glycohydrolase (PARG) in eukaryotic organisms. Previously, it is
found that PARG silencing can counteract BaP-induced carcinogenesis in vitro, but the
mechanism remained unclear. In this study, we further examined this process in vivo by
using heterozygous PARG knockout mice (PARG+/−). Wild-type and PARG+/− mice
were individually treated with 0 or 10 µg/m3 BaP for 90 or 180 days by dynamic
inhalation exposure. Pathological analysis of lung tissues showed that, with extended
exposure time, carcinogenesis and injury in the lungs of WT mice was progressively
worse; however, the injury was minimal and carcinogenesis was not detected in the
lungs of PARG+/− mice. These results indicate that PARG gene silencing protects mice
against lung cancer induced by BaP inhalation exposure. Furthermore, as the exposure
time was extended, the protein phosphorylation level was down-regulated in WT mice,
but up-regulated in PARG+/− mice. The relative expression of Wnt2b and Wnt5b mRNA
in WT mice were significantly higher than those in the control group, but there was no
significant difference in PARG+/− mice. Meanwhile, the relative expression of Wnt2b
and Wnt5b proteins, as assessed by immunohistochemistry and Western blot analysis,
was significantly up-regulated by BaP in WT mice; while in PARG+/− mice it was not
statistically affected. Our work provides initial evidence that PARG silencing suppresses
BaP induced lung cancer and stabilizes the expression of Wnt ligands, PARG gene and
Wnt ligands may provide new options for the diagnosis and treatment of lung cancer.

Keywords: benzo(a)pyrene, ADP-ribosylation, poly (ADP-ribose) glycohydrolase, Wnt signaling pathway,
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INTRODUCTION

Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that
is known to be carcinogenic. It is mainly produced by pyrolysis
and incomplete combustion of carbonaceous materials and is
widely distributed in both the working and living environment
(Liu et al., 2008). A large number of experiments have shown
that BaP can induce cancer in various animals (IARC Working
Group on the Evaluation of Carcinogenic Risks to Humans, 2010;
Kasala et al., 2016). Furthermore, epidemiological studies suggest
that BaP is closely associated with human lung cancer (Rojas
et al., 2004; Alexandrov et al., 2010; Widziewicz et al., 2018).
On the basis of these studies, BaP was classified as a human
class I carcinogen by the International Agency for Research on
Cancer in 2006 (IARC Working Group on the Evaluation of
Carcinogenic Risks to Humans, 2012).

Lung cancer is the most common malignant tumor in the
human respiratory system and is extremely harmful to human
health. Globally, the morbidity and mortality of lung cancer
are among the highest (Ferlay et al., 2015). According to the
American Cancer Society, lung cancer leads to the highest
number of deaths in both men and women. Recent evidence
suggests that the incidence of lung cancer in China is the
highest and the mortality is increasing at a rate of 4.5% per
year (Chen et al., 2016).

The occurrence of lung cancer is the result of a combination
of both environmental and genetic factors, including epigenetic
changes which have been proved to contribute to lung
cancer development (Hagood, 2014). ADP-ribosylation, as an
epigenetic modification, plays a critical role in cell survival and
disease development, including cancers (D’Amours et al., 1999;
Min et al., 2010; Huang et al., 2012). Poly-ADP-ribosylation
can convert nuclear chromatin to a loose state, allowing
accessibility of DNA damage repair enzymes to the injury site,
thereby promoting DNA damage repair against cytotoxicity and
genetic damage. Poly-ADP-ribose glycohydrolase (PARG) can
hydrolyze poly (ADP-ribose) on poly (ADP-ribose) polymerase-
1 (PARP-1), which promotes the degradation of intracellular
poly (ADP-ribose) (PAR) (Rouleau et al., 2004). It is the
only known enzyme that can hydrolyze poly (ADP-ribose)
in the nucleus (Meyer et al., 2007). Recent studies have
shown that PARG gene silencing can increase intracellular
poly-ADP-ribosylation to protect cells against cytotoxicity.
Li et al. (Li et al., 2016) found that BaP can induce
chromosomal aberrations, micronucleus formation, chromatin
structure changes and malignant transformation of normal
16HBE cells, but PARG gene silencing can inhibit these
abnormalities. Studies have shown that PARG also is associated
with tumorigenesis (Miwa and Masutani, 2007), but the exact
mechanism of PARG on tumor promotion has not been
fully clarified.

In our previous study, 16HBE cells and PARG-deficient cells
were treated with 40 µmol/L BaP for a period of time to
induce malignant transformation, and by using MeDIP-sequence
analysis, it is found that the methylation levels of Wnt2b
and Wnt5b genes in the two cells were significantly different.
Wnt2b and Wnt5b are key players in the Wnt/β-Catenin

signaling pathway (Klaus and Birchmeier, 2008), which has
been highly conserved in evolution and is known to control
cell growth, differentiation, apoptosis, and self-renewal. This
pathway is activated by binding of Wnt ligands to receptors,
which increases the stability of β-catenin in the cytoplasm and
promotes its translocation to the nucleus, where it modulates
the expression of target genes that lead to tumorigenesis (Klaus
and Birchmeier, 2008). Studies have shown that this pathway
is abnormally activated during the development of lung cancer
and may coordinate or antagonize other signaling pathways to
regulate proliferation, migration, and invasion in lung cancer
(Reya and Clevers, 2005; Berndt and Moon, 2013). Recently,
30–40% of cells in tumor tissues have been shown to express
Wnt ligands, which create a microenvironment that is suitable
for tumor cells. In a human lung adenocarcinoma model, 70%
of cells have abnormal activation of the Wnt pathway, and
80% of cells may be involved in the formation of the tumor
microenvironment, which is critical for the progression of lung
cancer (Tammela et al., 2017).

Given the decisive role of the Wnt signaling pathway in
the development of lung cancer, inhibition of Wnt ligands
provides a viable approach for reducing the expansion of
lung cancer cell lines. The purpose of this study was to
investigate whether PARG gene silencing can inhibit lung
cancer development induced by BaP and whether it can
regulate the Wnt ligands to inhibit the development of lung
cancer. On the basis of our findings, PARG gene and Wnt
ligands may constitute a new option for the diagnosis and
treatment of lung cancer.

MATERIALS AND METHODS

Materials
BaP (CAS50-32-8, purity ≥96%) was purchased from American
Sigma Company, and dissolved in dimethylsulfoxide (DMSO).
Other chemicals were purchased from Sigma–Aldrich (St Louis,
MO, United States) or Thermo Fisher Scientific (Shanghai,
China), unless otherwise stated.

Animals and Treatment
The PARG knockout mice [B6N (Cg)-Pargtm2b(KOMP)Mbp/J]were
purchased from the Jackson Laboratory, and WT mice
(C57BL/6J) were purchased from Guangdong Medical Lab
Animal Center. PARG knockout mice were generated by the
targeted mutation 2b of the Parg gene resulting in deletion
of the full-length isoform of PARG protein (PARG110). The
strategy of gene targeting is Cre-mediated excision of the
parental Pargtm2b(KOMP)Mbp allele resulted in the removal of the
promoter-driven neomycin selection cassette and critical exon(s)
leaving behind the inserted lacZ reporter sequence. We screened
for heterozygous PARG knockout mice (PARG+/−) in our study
since death of homozygous PARG knockout mice (PARG−/−)
occurring before the normal life span of an organism, occurring
during pregnancy, parturition or lactation. The mice were
maintained under semi-specific-pathogen-free conditions with
the temperature controlled at 23 ± 2◦C and a 12-h light/dark
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cycle. We selected 2-month-old PARG+/− and WT mice for
this study. The mice were randomly divided into two groups
with 6 per group referring to the principles of experimental
animal selection and references. And then, they were treated
with 0 or 10 µg/m3 aerosols through respiratory tract by a
dynamic inhalation cabinet (Jiufang Company, Guangzhou)
for 90 or 180 days. The dynamic inhalation device makes
liquids into aerosols with a diameter of only a few micrometers,
which is in line with the actual human exposure to BaP in
the air. At the end of the experiment, mice were anesthetized
with ether and blood was collected by eyeball sampling. The
mice were then euthanized and the lungs were excised rapidly.
Half of each lung was stored in 4% paraformaldehyde, and
the other half was stored at −80◦C. All animal experiments
and procedures were approved by the Shenzhen Center for
Disease Control and Prevention. Efforts were made to minimize
animal suffering and reduce the number of mice used in
the experiments.

Genotyping of PARG Knockout Mice
Genomic DNA was purified from mouse tails using TianAMP
genomic DNA kits (Tiangen, Beijing, China). The concentration
and the quality of DNA were assessed by ultraviolet (UV)
absorbance using a NanoDrop ND-2000 spectrophotometer
(Thermo Fisher Scientific). The DNA was then amplified by
PCR (94◦C for 2 min; 10 cycles of 94◦C for 20 s, 65◦C for
15 s, and 68◦C for 10 s; 10 cycles of 94◦C for 15 s, 60◦C
for 15 s, and 72◦C for 10 s; 72◦C for 2 min, 10◦C hold)
using primers provided by the Jackson Laboratory (Wild-type
Forward: 5′-GAG ATA TCT AAG TCA GAG AAA GGT GGT-
3′, Wild-type Reverse: 5′-CCT CCT CTG GTG TGT CTG
AAG-3′, Mutant Forward: 5′-CGG TCG CTA CCA TTA CCA
GT-3′, Mutant Reverse: 5′-GGT ATC AGC GAT GGT TGT
TC-3′). The PCR products were 279 bp for the WT sample,
and 279 and 507 bp for the heterozygous PARG knockout
(PARG+/−) sample.

Hematoxylin and Eosin Staining
Mouse lung tissues were fixed in 4% paraformaldehyde for
48 h, dehydrated in ethanol and embedded in paraffin by
using a TissueWaveTM 2 Microwave Processor (Thermo Fisher
Scientific). Paraffin-fixed tissues were sliced into 5 µm sections,
mounted on glass slides, and dried for 1 h. After dewaxing
and rehydration, sections were stained with hematoxylin and
eosin (Sigma-Aldrich) and examined by light microscopy. The
pathology was evaluated by a blinded observer to detect the
degree of malignancy.

Real-Time Quantitative PCR
Total RNA was extracted from frozen lung samples with
miRNeasy mini kits (Qiagen, China) according to the
manufacturer’s instructions. Complementary DNA (cDNA)
was synthesized from 500 ng of total lung RNA (n = 3 per
group) using the PrimeScriptTM RT reagent kit (Takara,
China). Quantitative PCR (qPCR) was performed on
the ABI Prism 7500 system (Applied Biosystems, Foster
City, CA, United States) using SYBR select master mix.

The mRNA primers were purchased from Sangon Biotech
(Shanghai, China) and are listed in Supplementary Table S1.
Experiments were repeated at least 3 times. The relative
level of mRNA for each gene was determined using the
2−11Ct method (Schmittgen and Livak, 2008), and P-values
were calculated using the Student’s t-test on replicate 2−1Ct

values for each gene in each treatment group compared to
the control group.

Immunohistochemistry
Mouse lung tissues were fixed in 4% paraformaldehyde
for 48 h, dehydrated in ethanol and embedded in paraffin
by using a TissueWaveTM Microwave Processor (Thermo
Fisher Scientific). After dewaxing and rehydration, 5 µm-
thick coronal sections were incubated in 0.01 M citrate
buffer (pH 6.0) with 0.1% Tween-20 at 95–100◦C for
10 min for antigen retrieval. For immunochemistry of
Wnt2b and Wnt5b (n = 3 per group), the sections were
incubated at 4◦C overnight with primary antibody (Wnt2b
at 1:200 or Wnt5b at 1:50). After being washed with PBST,
the sections were stained using the mouse and rabbit-
specific HRP/DAB (ABC) detection IHC kit (Abcam,
ab64264) and analyzed using an Olympus BX60 compound
microscope (Tokyo, Japan).

Western Blot Analysis
Lung proteins (n = 3 per group) were extracted from 30 mg
lung tissue with 600 µL lysis buffer (Beyotime, China) and
6 µL protease and phosphatase inhibitor cocktail (Thermo
Fisher Scientific, United States) on ice, and then centrifuged
and collected. The protein concentration was measured with a
BCA protein assay kit (Thermo Fisher Scientific, United States).
Each protein sample was combined with loading buffer and
heated for 8 min at 100◦C. Protein samples were separated
on 10% PAGE gels with 5% stacking gels and transferred
to PVDF membranes. The membranes were incubated in
TBST buffer containing 5% milk at room temperature for
2 h. Subsequently, they were incubated with anti-PARG
(mouse monoclonal antibody, 1:100), anti-phosphotyrosine
(PY20, mouse monoclonal antibody,1:1000), anti-Wnt2b (rabbit
monoclonal antibody, 1:3000), anti-Wnt5b (mouse monoclonal
antibody,1:500), or anti-α-tubulin (mouse monoclonal antibody,
1:3000) in TBST buffer for 1.5 h at room temperature.
After washing with TBST three times, the membranes were
incubated with homologous secondary antibody (anti-rabbit
or anti-mouse IgG HRPs) in TBST buffer for 60 min. The
membranes were then repeatedly washed with TBST buffer,
developed using chemiluminescence reagents from an ECL kit
(Pierce ECL, Santa Cruz, CA, United States) and detected on a
phosphorimager. The images of the membranes were analyzed
by ImageJ software.

Statistical Analysis
The histograms and statistical analyses of the relative expression
of each group were completed using Graph-Pad prism 7.0
software (GraphPad Software, Inc.). Data are presented
as mean ± SD. Comparisons between two groups were
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conducted with the Student’s t-test. P < 0.05 was considered
statistically significant.

RESULTS

Genotyping of PARG Knockout Mice
The heterozygous PARG knockout mice were used to characterize
the role of PARG in protecting mice from BaP-induced lung
cancer. According to the law of Mendelian inheritance, the
genotype of the progeny mice may be WT (PARG+/+),
heterozygous (PARG+/−), or homozygous (PARG−/−). Based
on genomic DNA purified from mouse tails, PARG+/− mice
were screened for our study as PARG−/− mice cannot survive to
maturity. The PCR product from WT mice was 279 bp, and the
PCR products from PARG knockout heteroygotes (PARG+/−)
were 279 and 507 bp, as shown in Figure 1A. After BaP
exposure, proteins from the lung tissues were extracted and
Western blotting were performed to verify the expression of
full-length isoform (PARG110). As expected, the expression of
PARG110 was significantly greater in WT mice than in PARG+/−

mice (Figure 1B). The results confirm that heterozygous PARG
knockout mice were successfully bred in our experiments.

PARG+/− Mice Are Protected From
Pathological Changes in Lung Tissues
Induced by BaP
To establish a lung cancer model for assessing the effects of
heterozygous PARG silencing, we exposed mice to long-term
inhalation of BaP and then prepared paraffin sections of lung
tissues. Hematoxylin and eosin staining were used to analyze the
pathological changes that were observed under light microscopy.
As shown in Figure 2A, in the lungs of WT mice exposed for
90 days, alveolar diffuse interstitialization occurred, though the
alveolar structure was visible; in contrast, the degree of injury in
PARG+/− mice was mild with no obvious pathological damage.
The results were similar in both male and female mice. After 180-
day exposure to BaP, the lungs of the WT mice treated with BaP
showed severe alveolar diffuse interstitialization, and the alveolar
structure was severely damaged with obvious inflammatory
infiltration and abnormal nodules (Figure 2B). Comparison
between the 90- and 180-d pathology suggests that the degree of

lung injury in WT mice treated with BaP was positively correlated
with the time of exposure. In PARG+/− mice after 180 days,
however, some alveolar interstitial thickening appeared while the
alveolar structure was still visible. This suggests that PARG+/−

mice were protected from the effects of BaP on lung pathology.
A higher magnification was used to examine tumor formation.
In WT mice, the number of cells increased abnormally and
tumorigenesis could be observed (Figure 2C); however, no tumor
tissue was found in PARG+/− mice. These results demonstrate
that heterozygous PARG gene silencing can inhibit the induction
of lung cancer by BaP in mice.

PARG+/− Mice Express Elevated Levels
of Phosphorylated Proteins in Lung
Tissues After BaP Inhalation Exposure
To determine whether heterozygous PARG silencing affects the
overall protein phosphorylation level, we performed Western
blot assays using the universal anti-tyrosine phosphorylation
monoclonal antibody PY20 with protein extracted from
lung tissues. As shown in Figure 3A, the levels of total
phosphorylated proteins in WT and heterozygous PARG
knockout mice were not significantly different from that
of the control group after exposure to BaP for 90 days
(P > 0.05). After 180-d exposure, however, the level of
phosphorylated proteins was significantly down-regulated in
WT mice (∗P < 0.05), but was significantly up-regulated in
PARG+/− mice compared with the control group (∗P < 0.05).
These results indicate that, at an extended BaP exposure
time, PARG affects phosphorylation of proteins, which could
potentially be associated with the ability of PARG+/− mice to
resist tumorigenesis.

PARG Silencing Inhibits the Relative
Expression of Wnt2b and Wnt5b
mRNA in Lung Tissues After BaP
Inhalation Exposure
To further elucidate whether ADP-ribosylation affects the Wnt
pathway in PARG+/−mice, we first performed real-time qPCR to
detect the relative expression of the Wnt2b and Wnt5b genes. The
relative expression of Wnt2b and Wnt5b mRNA was significantly
higher in WT mice than in control mice at 90 and 180 days

FIGURE 1 | Genotyping of poly (ADP-Ribose) glycohydrolase (PARG) knockout mice. Genotyping of PARG+/− mice. (A) Genotyping by PCR. Lane M, 100 bp DNA
Marker; Lane 1, blank control; Lane 2, WT mice; and Lane 3, PARG+/− mice. (B) Genotyping by Western blotting. The expression of PARG110 protein was
assessed in lungs from WT and PARG+/− mice.
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FIGURE 2 | PARG+/− mice are protected from pathological changes in lung tissues induced by BaP inhalation exposure. Pathological changes in lung tissues of
WT and PARG+/− mice after benzo(a)pyrene inhalation exposure (A) 90-day exposure (×100). (B) 180-day exposure to BaP (×100). The red arrows show
abnormally increased numbers of cells. (C) The magnification of the place pointed by the red arrow in B, pathological signs of tumorigenesis (×200). Results are
representative of 3 mice from each group.

(∗∗∗P < 0.001), but there were no significant differences in the
PARG+/− mice (P > 0.05) (Figure 4).

PARG Silencing Inhibits the Expression
of Wnt2b and Wnt5b Protein in Lung
Tissues After BaP Inhalation Exposure
The expression of Wnt2b and Wnt5b at the level of the
protein were further confirmed by performing Western
blotting and immunohistochemistry. The expression of
Wnt2b protein was up-regulated in lungs from WT mice
that were treated with BaP for 90 and 180 days (∗P < 0.05,
compared with the control group); however, for PARG+/−

mice, no statistically significant differences were observed
(P > 0.05) (Figure 5A). In immunohistochemistry assays,
Wnt2b protein (brownish yellow staining) was localized to
the cytoplasm, and after 90 and 180 days of BaP inhalation
exposure, the expression levels in WT male and female
mice were higher for treated vs. control mice; however,
for PARG+/− mice, there were no significant differences
(Figure 5B). Similar results were observed for Wnt5b,
though the effect on Wnt5b expression was more obvious
at 180 days than at 90 days (Figures 5C,D). These findings

suggest that PARG gene silencing stabilizes the expression of
Wnt2b and Wnt5b after BaP exposure, possibly inhibiting the
progression of lung cancer.

DISCUSSION

Metabolically activated BaP is known to cause cytotoxic,
teratogenic, genotoxic, mutagenic and carcinogenic effects in
many different tissues and cell types from numerous mammalian
studies (Miller and Ramos, 2001; van Delft et al., 2010).
BaP in cigarette smoking is implicated as one of the main
factors in lung cancer (Rubin, 2001). The occurrence of cancer
includes three stages: initiation, promoting and progressing.
Epigenetic modification, as a bridge between these stages, can
involve DNA methylation, microRNA, chromatin remodeling,
and histone modification (Bird, 2007). ADP-ribosylation is
one of the most important post-translational modifications in
tumorigenesis (Klaus and Birchmeier, 2008). Studies showed
that the use of PARG inhibitor to suppress PARG activity
facilitates oxidative damage-induced PARylation as well as DNA
damage repair (Zhang et al., 2015). PARG gene silencing
increases the level of poly (ADP-ribosylation) to regulate DNA
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FIGURE 3 | PARG+/− mice express elevated levels of phosphorylated proteins in lung tissues after BaP inhalation exposure. Expression of phosphorylated proteins
in lung tissues of mice after BaP inhalation exposure. (A) The overall phosphorylation level of proteins in WT and PARG+/− mice that were untreated or were treated
with exposure to BaP for 90 days. (B) Expression of phosphorylated proteins after 180-day exposure to BaP. Female-C, control untreated female mice; Female-T,
treated female mice; Male-C, control untreated male mice; Male-T, treated male mice. ∗P < 0.05, ∗∗∗P < 0.001, significant difference in treated compared to
untreated mice. Results represent the mean ± SD of 3 mice from each group. Quantification of the phosphorylation levels was performed using ImageJ software.

damage repair and genome stability (Koh et al., 2004). In
our previous study, it is determined that in vitro PARG
silencing inhibits tumorigenesis by dramatically reducing DNA
damage, chromosome abnormalities, micronuclei formations,
and malignant transformation. To further investigate the possible
in vivo role of PARG gene silencing, heterozygous PARG
knockout mice were utilized. We exposed WT and PARG+/−

mice to BaP by dynamic inhalation for 90 and 180 days.
Pathological analysis showed that carcinogenesis appeared in
the lungs of WT mice and the injury was progressive for
180-day vs. 90-day treatment, while PARG+/− mice showed
no carcinogenesis and minimal signs of lung injury. These
results suggest that PARG gene silencing can inhibit lung
cancer induced by BaP in mice, which is consistent with our
in vitro results.

In our previous vitro study, we identified two distinct Wnt
ligands (Wnt5b and Wnt2b) that are modulated by PARG by
using the MeDIP-sequence techniques. This raises the possibility

that ADP-ribosylation may affect the carcinogenesis of BaP
by regulating the activation of the Wnt signaling pathway
after PARG gene silencing. The Wnt pathway consists of
three components: the Wnt/β-catenin canonical pathway, the
Wnt/Ca2+ pathway and the Wnt/polarity pathway (Wodarz
and Nusse, 1998). After activation of the canonical pathway,
Wnt ligands bind to Frzzled and LRP5/6 on the cell surface
to form a trimer, which weakens the stability of a destruction
complex composed by β-catenin, Axin, GSK-3β, and APC
to prevent the phosphorylated degradation of β-catenin. The
concentration of β-catenin increases in the cytoplasm and
then is transferred into the nucleus which ultimately activate
the expression of downstream target genes (Veeman et al.,
2003). During this process, protein phosphorylation, especially
tyrosine phosphorylation (P-Tyr), as a major mode of cell
signal transduction and regulation of enzyme activity, plays
an vital role in the regulation of β-catenin (Ikeda et al.,
1998). ADP-ribosylation can promote phosphorylated proteins
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FIGURE 4 | PARG silencing inhibits the relative expression of Wnt2b and Wnt5b mRNA in lung tissues after BaP inhalation exposure. Relative expression of Wnt2b
and Wnt5b mRNA in lung tissues of WT and PARG+/− mice after BaP inhalation exposure. The mRNA expression in lungs from WT and PARG+/− mice was
measured by real-time quantitative PCR after 90 days (panels A,B) or 180 days (panels C,D) of BaP inhalation exposure. Female-C, control untreated female mice;
Female-T, treated female mice; Male-C, control untreated male mice; Male-T, treated male mice. ∗∗∗P < 0.001, significant difference was found in treated compared
to untreated mice. Results represent the mean ± SD of 3 mice from each group.

to bind to Axin scaffolding proteins, affecting the stability
of the key protein β-catenin and regulating the activation
of the Wnt pathway (Yang et al., 2016). In the current study,
the level of total phosphorylated protein in WT mice and
PARG+/− mice was not significantly different after 90-
day exposure to BaP. However, after 180 d, phosphorylated
protein was significantly reduced in WT mice but was up-
regulated in PARG+/− mice compared with the control
group. These findings are consistent with the possibility
that, as the exposure time of BaP extended, loss of PARG
promotes phosphorylation of proteins, which possibly leads
to phosphorylated degradation of key proteins in the Wnt
pathway; supported by the following studies (Zeng et al., 2005;
Kim et al., 2013; Yang et al., 2016). We will try to explore
how does PARG regulates protein tyrosine phosphorylation to
regulate the Wnt signaling against the progression of lung cancer
in our next study.

Wnt ligands play a vital role in the development of
lung cancer, and inhibition of Wnt ligands may reduce the
expansion of lung cancer cell lines (Tammela et al., 2017).
Our results demonstrate that the relative expression of Wnt2b
and Wnt5b mRNA was up-regulated in lung tissues of WT

mice compared with the control group after 90- and 180-
day exposure to BaP. Furthermore, the expression of Wnt2b
and Wnt5b protein was up-regulated, though there were
no significant differences in Wnt2b and Wnt5b mRNA and
protein expression in PARG+/− mice. It suggested that loss
of PARG stabilized the expression of Wnt ligands, probably
suppressing the activation of the Wnt pathway against the
progression of lung cancer.

Wnt2b and Wnt5b are two ligands of the Wnt signaling
pathway. Wnt2b mainly acts through the canonical Wnt pathway
and binds to receptors on the cell membrane to increase
the stability of β-catenin in the cytoplasm and promote its
translocation to the nucleus to activate downstream target
genes that lead to tumorigenesis (Roelink et al., 1992). Studies
have shown that Wnt2b is overexpressed in various cancers
(Katoh, 2001; Huang et al., 2015). Wnt5b, on the other
hand, is a non-canonical Wnt pathway factor that activates
the Wnt/Ca2+ pathway or blocks the down-regulation of
β-catenin by GSK-3β to prevent the classical Wnt pathway
(Kohn and Moon, 2005). Studies have shown that Wnt5b
plays different roles in different types of cancers. In some
cancers, such as lung cancer, it promotes tumorigenesis, and
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FIGURE 5 | PARG silencing inhibits the expression of Wnt2b and Wnt5b protein in lung tissues after BaP inhalation exposure. Expression of Wnt2b and Wnt5b
protein in lung tissues detected by Western blotting and immunohistochemistry. (A) Western blotting of Wnt2b expression. (B) Immunohistochemical staining of
Wnt2b (×200). Protein expression levels are reflected by the area and depth of brownish yellow. (C) Western blotting of Wnt5b expression. (D) Immunohistochemical
staining of Wnt5b (×200). Red arrows indicate Wnt2b and Wnt5b localization in the cytoplasm. Female-C, control untreated female mice; Female-T, treated female
mice; Male-C, control untreated male mice; Male-T, treated male mice. ∗P < 0.05, ∗∗P < 0.01, significant up-regulation in treated vs. control mice.
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FIGURE 6 | Schematic model of the Wnt/β-catenin signaling pathway regulated by PARG gene silencing during BaP-induced lung cancer. After activation of the
canonical pathway, Wnt ligands bind to Frzzled and LRP5/6 on the cell surface to form a trimer, which weakens the stability of a destruction complex composed by
β-catenin, Axin, GSK-3β, and APC to prevent the phosphorylated degradation of β-catenin. The concentration of β-catenin increases in the cytoplasm, and then
transfers into the nucleus to ultimately activate the expression of downstream target genes. PARG gene silencing may promote binding of phosphorylated proteins to
the Axin scaffolding proteins, affecting the stability of the key protein β-catenin, and then suppressing the activation of the Wnt/β-catenin pathway to stabilize the
expression of Wnt2b against the progression of lung cancer.

in other cancers, it suppresses tumorigenesis (Kikuchi and
Yamamoto, 2008; Harada et al., 2017). On the basis of its
different roles in different cancers, Wnt5b may constitute a
specific marker for lung cancer screening. In our study, it
is found that the up-regulation of Wnt2b was similar at 90
and 180 days, while the up-regulation times of Wnt5b was
more obvious at 180 days than at 90 days. These findings
may suggest that the Wnt non-canonical pathway increased
with extended exposure times, while the classical pathway
remains activated at both 90 and 180 days. Specific mechanisms
of interaction between the two pathways remains to be
further studied.

In conclusion, in the development of lung cancer induced
by BaP, the expression of Wnt ligands are up-regulated, which
is consistent with current understanding of the role of this
pathway. Additionally, PARG gene silencing may regulate the
phosphorylation level of proteins to stabilize the expression of
Wnt2b, possibly inhibiting the ability of Wnt/β-catenin pathway
to drive lung cancer progression as shown in the schematic
model in Figure 6. The mechanism how PARG gene silencing

affects the expression of Wnt5 remains to be futher explored.
Understanding of the unresolved issue will contribute to the
development of applications of PARG for cancer therapy. Lung
cancer is one of the world’s most serious threats to human
health and has become a global public health problem (Siegel
et al., 2018). Therefore, studying the mechanisms of lung
cancer provides increased understanding that is relevant to
its diagnosis and treatment. Though epigenetic modification
is extensive, basic and reversible, its theory and results are
gradually being applied to the diagnosis and treatment of
cancer (Dawson and Kouzarides, 2012). In this study, it is
shown that PARG gene silencing can prevent the occurrence
of lung cancer induced by BaP. Our results demonstrate that
PARG may be a target for the diagnosis and treatment of
lung cancer. Furthermore, the inhibition of Wnt ligands may
inhibit lung cancer. These results provide a new potential
approach for the treatment of lung cancer. In concludsion, the
use of Wnt ligands in the diagnosis of lung cancer and the
use of PARG inhibitors as a potential therapeutic against lung
cancer is supported.
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