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Abstract: Gastric cancer is among the most common malignancies worldwide. Due to limited
availability of therapeutic options, there is a constant need to find new therapies that could target ad-
vanced, recurrent, and metastatic gastric cancer. Carnosic acid is a naturally occurring polyphenolic
abietane diterpene derived from Rosmarinus officinalis and reported to have numerous pharmaco-
logical effects. In this study, the cytotoxicity assay, Annexin V-FITC/PI, caspases 3, 8, and 9, cell
cycle analysis, and Western blotting were used to assess the effect of carnosic acid on the growth and
survival of human gastric cancer cell lines (AGS and MKN-45). Our findings showed that carnosic
acid inhibited human gastric cancer cell proliferation and survival in a dose-dependent manner.
Additionally, carnosic acid is found to inhibit the phosphorylation/activation of Akt and mTOR.
Moreover, carnosic acid enhanced the cleavage of PARP and downregulated survivin expression,
both being known markers of apoptosis. In conclusion, carnosic acid exhibits antitumor activity
against human gastric cancer cells via modulating the Akt-mTOR signaling pathway that plays a
crucial role in gastric cancer cell proliferation and survival.
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1. Introduction

Worldwide, gastric cancer (GC) is considered to be one of the most common malig-
nancies, leading to significant annual human cancer deaths [1]. GC is the third largest
cause of cancer-related deaths and is a global public health priority [2]. While certain GC
subtypes are diminishing due to improved screening, diagnosis, and healthcare services,
other subtypes of GC are increasing in their incidence, such as non-cardiac GC in adults [3].
However, the prognosis for advanced, recurrent, and metastatic GC is still unsatisfactory
and have very limited treatment options. Therefore, there is an urgent need to find novel
and alternative therapies that could target gastric cancer.

Secondary metabolites derived from natural sources, primarily herbal plants, with
potential pharmacological properties and less toxicity could be used to synthesize novel
pharmaceutical products [4]. Among these natural compounds are the ‘terpenes’ that have
been reported to possess various anticancer pharmacological properties. Diterpenes are a
promising group of terpenes that are abundant in nature and are found in a wide variety
of plant extracts and animal fats [4]. Carnosic acid is a naturally occurring polyphenolic
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abietane diterpene, as shown in Figure 1, commonly derived from herbal plants like
Rosmarinus officinalis. The molecule’s pharmacological properties, including antitumor,
antiviral, and anti-inflammatory activities, have been reported [5–9]. Previously it was
reported that carnosic acid inhibited cell growth and induced cell cycle arrest in B16F10
melanoma cells in addition to the stimulation of p21 expression [5]. It has also been
reported that carnosic acid inhibited the growth of estrogen receptor (ER)-negative human
breast cancer cells by inducing G1-cell cycle arrest [10]. Carnosic acid showed strong
anticancer activity in human cervical cancer cells by inhibiting cell growth and increased
the production of reactive oxygen species (ROS) [11]. Furthermore, it downregulated the
expression of cyclin A1 in both leukemia and colon cancer cells [12]. Additionally, carnosic
acid was reported to induce apoptosis in various other cancer cell lines, including human
prostate cancer, neuroblastoma, and hepatocellular carcinoma [9,13,14]. While in human
hepatoma cells, it inhibited cell growth via targeting the Akt/mTOR pathway leading to
autophagy induction [15].
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Figure 1. The chemical structure of carnosic acid.

The antitumor activity of carnosic acid on gastric cancer has never been previously
investigated. Therefore, this study aimed to investigate the potential anti-proliferative and
anticancer activity of carnosic acid on human gastric cancer cell lines, namely AGS and
MKN-45, and explore the underlying molecular mechanism.

2. Results
2.1. Cytotoxic Activity

To investigate the effects of carnosic acid on gastric cancer cell proliferation, the AGS
and MKN-45 cells were treated with increasing concentrations of carnosic acid (0, 1, 10,
25, 50, 100, and 200 µg/mL) for 24, 48, and 72 h. Carnosic acid treatment decreases cell
viability in both cell lines in a dose-dependent manner (Figure 2). In AGS cells, the IC50
were 19.90, 18.93, and 16.57 µg/mL after 24, 48, and 72 h incubation, respectively, as
shown in Figure 2A. In MKN-45 cells, carnosic acid has IC50 values of 23.96, 20.39, and
17.76 µg/mL after 24, 48, and 72 h incubation, respectively, as shown in Figure 2B. The
concentrations of carnosic acid at 20 and 25 µg/mL for 24 h were selected for further
analysis in AGS and MKN-45 cell lines, respectively, as they were the best representation
of IC50.

2.2. Apoptotic Activity

Annexin V-FITC/PI double staining assay was used to assess carnosic acid’s proapop-
totic activity on AGS and MKN-45 cells that were treated with 20 and 25 µg/mL of carnosic
acid for 24 h, respectively.

The Annexin V-positive rate revealed that apoptotic cells increased significantly by
treating the cells with carnosic acid (p > 0.001), as shown in Figure 3. The early and late
apoptotic rates in AGS treated cells were 5.59 and 8.32, respectively, compared to 1.2 and
3.00, respectively, in the control.
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Figure 3. The level of apoptosis and necrosis was assessed by flow cytometry in (A) AGS and (B) MKN-45 cells, using
Annexin V/PI staining. The control groups were without any treatment, and the treated group was treated with 20 and
25 µg/mL carnosic acid in AGS and MKN-45 cell lines, respectively for 24 h. Q1, Q2, Q3, and Q4 represent necrotic cells,
late apoptotic, early apoptotic, and living cells, respectively. * p < 0.001.



Pharmaceuticals 2021, 14, 230 4 of 10

2.3. Caspase Activity

To assess carnosic acid’s apoptotic effect in AGS cells, the intracellular apoptotic
molecular biochemical events were investigated. Figure 4A revealed that the activities of
caspases 3, 8, and 9 were significantly stimulated in the cells treated with carnosic acid at
20 µg/mL for 24 h compared to untreated control cells. In addition, PARP cleavage was
also noted in the treated cells using 20 µg/mL carnosic acid for 24 h, as shown in Figure 4B.
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2.4. Cell Cycle Analysis

To assess carnosic acid’s impact on cell cycle progression in AGS cells, the DNA
content was measured by flow cytometry. Figure 5 shows that after 24 h of treatment with
20 µg/mL carnosic acid, there was a marked seven-fold increase in the sub-G1 population
in AGS cells, which confirmed apoptosis induction after 24 h. Moreover, treatment with
carnosic acid led to a noticeable reduction in both G1 and G2-M phase populations.

Figure 5. Carnosic acid induces cell cycle arrest in AGS cells. (A) AGS cells treated with DMSO (negative control) and (B)
AGS cells treated with the carnosic acid (20 µg/mL) for 24 h. The cell-cycle analysis was performed using flow cytometry,
and propidium was used to evaluate the DNA content.
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2.5. Western Blot

To investigate the molecular mechanisms involved in apoptotic induction, the expres-
sion of several proteins regulating cell death—Phospho-mTOR-S2448, mTOR Phospho-
AKT-S473, AKT1, and survivin—were assessed using Western blotting. The cells were
treated with vehicle (0.1% DMSO) or with carnosic acid at 20 µg/mL for 24 h, represent-
ing the IC50 concentration. The findings confirmed a significant reduction in Phospho-
mTOR-S2448, mTOR, Phospho-AKT-S473, AKT1, and survivin by 53, 33, 30, 27, and 57%,
respectively, when treated with 20 µg/mL carnosic acid for 24 h, as shown in Figure 6.
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3. Discussion

The anticancer activity of rosemary has been investigated in several types of can-
cer [16]. Carnosic acid, a major derivative of rosemary, has been linked with various bio-
logical activities, including antioxidant effects, epigenetic modification, anti-inflammatory
activity, and regulation of immune systems [17].

To the best of our knowledge, this is the first study to demonstrate the growth inhibitory
activity of carnosic acid on gastric cancer cells with IC50 values of 19.90 and 23.96 µg/mL
after 24 h incubation on AGS and MKN-45 cells, respectively. It is worth mentioning that
carnosic acid is reported not to affect normal human fibroblast cell viability [18].

To investigate the mechanism by which carnosic acid induces gastric cancer cell death,
the Annexin V-FITC/PI assay was performed. Analysis of AGS and MKN-45 cells by
flow cytometry showed that carnosic acid induced a shift in the cell population towards
apoptosis, and the early and late apoptotic rates increased significantly relative to the
control group (p < 0.001). It is noted that the cells responded differently to carnosic acid
with respect to necrosis. The observed necrotic effect of carnosic acid on AGS cells can be
attributed to the possible necroptotic effect, and such effect has been reported previously
on other cell lines [19,20].

Apoptosis is regulated via several pathways, of which caspase induction is considered
one of the main paths. Caspase activation analysis in this study was performed on caspases
3, 8, and 9 to elaborate both intrinsic and extrinsic pathways. The findings showed that
carnosic acid activated all three caspases with the most remarkable activation being that of
caspase 9. This suggests that the proapoptotic activity of carnosic acid is mediated through
both extrinsic and intrinsic cell death pathways. The cross-communication between the
intrinsic and extrinsic pathways is mediated by the cleavage of the proapoptotic Bid (Bcl-2
family member) and explains the marked activation of caspase 9 [21,22]. We also analyzed
cleavage of the PARP protein, which is known for being cleaved by activated caspase 3
and, therefore, is essential to the apoptotic pathway [23]. Higher cleaved PARP protein
levels (89 kDa) were detected in carnosic acid-treated cells, while only full-length PARP
protein (116 kDa) was observed in the untreated cells.
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Cell cycle analysis was performed to explore the molecular mechanisms underlining
the observed cytotoxicity and proapoptotic activity of carnosic acid. The results revealed
the ability of carnosic acid to induce G1-phase cell cycle arrest on AGS treated cells.

The obtained data are consistent with previously published reports that showed
the anti-proliferative activity of carnosic acid on other cancer cell lines [5]. For example,
carnosic acid was found to have an antitumor effect and inhibit the growth of estrogen
receptor (ER)-negative human breast cancer cells and human cervical cancer cells in ad-
dition to prostate cancer, neuroblastoma, and hepatocellular carcinoma [10,11,13,14,24].
Moreover, carnosol, a phenolic diterpene isolated from rosemary and structurally related
to carnosic acid, has been reported to suppress patient-derived gastric tumor growth by
targeting RSK2 [25].

The PI3K/Akt/mTOR pathway is known to be commonly upregulated in various
cancers, including gastric cancer [26,27]. Many studies have reported overactivation of the
PI3K/AKT/mTOR pathway and high levels of phosphorylated/activated Akt in gastric
cancer [24,25]. PI3K is a lipid kinase that phosphorylates membrane phospholipids upon its
activation, leading to formation of 3-phosphoinositides, mainly phosphatidylinositol-3,4,5-
triphosphate (PIP3). PIP3 plays a crucial role in the activation of Akt (the serine/threonine-
protein kinase), which is an important promoter of the proliferation and survival of
cells [28]. As a consequence of activated Akt, the mammalian target of rapamycin (mTOR)
will be activated [29], which will increase protein synthesis and cell proliferation and
will inhibit apoptosis [29–31]. Accordingly, the expression of the five proteins (AKT1,
Phospho-AKT-S473, mTOR, Phospho-mTOR-S2448, and survivin) were studied based on
their contribution to cell growth and proliferation.

Our results showed that carnosic acid significantly downregulated the expression
of AKT1, Phospho-AKT-S473, mTOR, and Phospho-mTOR S2448 and survivin proteins,
which explains the observed cell cycle arrest along with the proapoptotic activity of the
acid on the tested cell line.

mTOR is a signaling molecule that promotes protein synthesis, cell survival, and
proliferation, which is usually found activated in cancer [31,32]. Its activation in cancer
cells is correlated with a high rate of protein synthesis and autophagy suppression [33,34].
Concurring with these findings, the obtained results confirmed the high levels of phospho-
rylation/activation of mTOR in untreated AGS cells. While treating the cells with carnosic
acid exhibits very potent inhibition of mTOR expression and phosphorylation, this effect
could be attributed to the observed inhibition of Akt, an mTOR activator, or through down-
regulation of other signaling components involved in the mTOR activation pathway [35].
Moreover, reduction in the phosphorylated/activated Akt and mTOR proteins’ expression
may result in cancer cells being more sensitized to chemotherapies and reducing drug
resistance [35]. This finding can be used as a base for future research into carnosic acid’s
possible use with other chemotherapies used in gastric cancer to improve their efficacy.

Survivin is a protein that acts as a key regulator of cell proliferation and suppression of
apoptosis. It is known for not being expressed in normal differentiated tissues but is highly
upregulated in most tumors [36]. The overexpression of survivin is usually accompanied
by angiogenesis, apoptosis inhibition, and cell proliferation activation [37]. Moreover, in
the pre-mitotic phase, survivin binds to spindle microtubules leading tumor cells to escape
G2/M phase monitoring [38]. This study’s findings prove that treatment with carnosic acid
downregulates survivin and contributes to the anticancer effect of carnosic acid through
activation of apoptosis and inhibition of cell proliferation.

4. Materials and Methods
4.1. Chemicals

The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA):
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium], ethanol,
and dimethyl sulfoxide (DMSO). The ELISA kits for caspase assays, in addition to the
Annexin V-FITC and PI staining assay, were purchased from Abcam (Cambridge, UK).



Pharmaceuticals 2021, 14, 230 7 of 10

4.2. Cell Lines

Two human gastric adenocarcinoma cell lines AGS (CVCL 0139) and MKN-45 (DSMZ
ACC409) were purchased from CLS (Cell Lines Service, Germany) and DSMZ (Deutsche Samm-
lung von Mikroorganismen und. Zellkulturen, Germany), respectively. The DMEM/RPMI
medium supplemented with 10% heat-inactivated fetal bovine serum, 10,000 units/mL peni-
cillin, and 10 mg/mL streptomycin was used to propagate the cells that were maintained at
37 ◦C and 5% CO2 atmosphere.

4.3. Cytotoxicity Assay

Carnosic acid was used at different concentrations ranging from 1 to 200 µg/mL. Cells
were seeded in a 96-well plate (5 × 103 cells/well) and incubated with carnosic acid for 24,
48, and 72 h. After treatment, MTT solution was added to the medium, and the cells were
incubated at 37 ◦C for 2 h. The solubilization of MTT crystals was accomplished by adding
100 µL of DMSO followed by a 10 min incubation. Absorbance was measured using a
microtiter plate reader at 570 nm. The rate of proliferation was calculated by comparing
the absorption of treated cultures with untreated control cultures.

4.4. Annexin V/PI

The apoptosis induction was detected using the Annexin-V-PI staining method. In
brief, the cells were incubated with 20 µg/mL carnosic acid for 24 h. Then, they were
harvested, washed with PBS, and stained for 20 min using the Annexin V-FITC Kit. Finally,
the flow cytometer (BD FACS Aria III; Becton Dickinson) was used to analyze the cells for
apoptosis at 488 nm excitation, and a 530/30 nm bandpass filter was used for fluorescein
detection. PI-positive cells were considered necrotic; cells positive for annexin V staining
were considered early apoptotic, while cells positive for both annexin V and PI were
considered late apoptotic. FlowJo software (Tree Star, Ashland, OR, USA) was used to
analyze flow cytometry data.

4.5. Caspase 3, 8, and 9 Assays

Following the manufacturer’s protocol, briefly, AGS cells were incubated with 0.1%
DMSO or carnosic acid at a concentration of 20 µg/mL for 24 h for control and treated
cells, followed by mechanical disruption. Total protein was isolated and quantified by
nanodrop. Fifty micrograms of total protein was used to estimate the activity of caspases 3,
8, and 9 at 400 nm absorbance. The percentage of activity was calculated by comparing the
absorbance of the treated cells with the untreated ones.

4.6. Cell Cycle Analysis

The distribution of different phases of the cell cycle was analyzed using flow cytometry.
In brief, the carnosic acid-treated AGS cells (20 µg/mL for 24 h) were harvested and fixed
at −20 ◦C overnight using 1 mL of 70% ethanol. After washing with PBS, the cells were
stained with PI and DNase-free RNase solution for 30 min. Cells and their progression
through various cell cycle phases were then analyzed using a flow cytometry platform.

4.7. Western Blotting Analysis

An ice-cold NP40 lysis buffer containing protease cocktail-inhibitor (Sigma-Aldrich)
was used to lyse both the carnosic acid-treated and untreated AGS cells. Thirty micrograms
of protein was separated using 12% SDS-PAGE and blotted onto a nitrocellulose membrane
(Bio-Rad, Hercules, CA, USA). Skimmed milk was used to block the membrane, followed
by washing with tris-buffered saline with 0.1% tween solution (TBST). The membrane
was incubated with primary IgG-unlabeled antibodies of AKT1 (#A17909), Phospho-AKT-
S473 (#AP0637), mTOR (#A2445), and Phospho-mTOR-S2448 (#AP0115), purchased from
ABclonal technology (Woburn, MA, USA), and survivin (EPR2675) (ab134170) purchased
from Abcam, Cambridge, MA, USA, at 4 ◦C overnight. Later, the membrane was incubated
with secondary antibodies (anti-mouse and anti-rabbit; Cell Signalling Technology) at
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1:1000 dilutions for one hour. Chemiluminescence (Thermo Fisher Scientific, Waltham, MA,
USA) and Image Lab software (ChemiDoc Touch Gel and Western blot imaging system;
Bio-Rad) were used to detect the bands and quantify band-density, respectively. β-actin
was used as a normalization control.

4.8. Statistical Analysis

Prism (GraphPad, V8, San Diego, CA, USA) was used for statistical analyses. The
Comparisons between treated and untreated cells were conducted using student’s t-test,
and a p-value of <0.05 was considered significant. The dose–response curves were used
to calculate the IC50 values. All experiments were performed in triplicate, and data are
expressed as the mean ± standard deviation (SD).

5. Conclusions

Carnosic acid inhibits proliferation and induces apoptosis in human gastric cancer cell
lines. Mechanistic analysis revealed that carnosic acid induced the expression of caspases
3, 8, and 9, and triggered apoptosis by affecting the Akt/mTOR pathway. This study’s
findings provide a rationale to initiate in vivo studies to evaluate the efficacy of carnosic
acid on animal models as a complement to the currently used chemotherapies against
gastric cancer.
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AGS Human gastric adenocarcinoma cell line
AKT Protein Kinase B
DMSO dimethyl sulfoxide
FITC Fluorescein isothiocyanate
GC Gastric cancer
MKN-45 Human gastric adenocarcinoma cell lines
mTOR Mechanistic Target of Rapamycin
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium
PARP Poly (ADP-ribose) polymerase (PARP)
PI Propidium iodide
ROS reactive oxygen species
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