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Abstract: Dental caries are one of the chronic diseases caused by organic acids made from oral
microbes. However, there was a lack of knowledge about the oral microbiome of Korean children.
The aim of this study was to analyze the metagenome data of the oral microbiome obtained from
Korean children and to discover bacteria highly related to dental caries with machine learning models.
Saliva and plaque samples from 120 Korean children aged below 12 years were collected. Bacterial
composition was identified using Illumina HiSeq sequencing based on the V3–V4 hypervariable
region of the 16S rRNA gene. Ten major genera accounted for approximately 70% of the samples on
average, including Streptococcus, Neisseria, Corynebacterium, and Fusobacterium. Differential abundant
analyses revealed that Scardovia wiggsiae and Leptotrichia wadei were enriched in the caries samples,
while Neisseria oralis was abundant in the non-caries samples of children aged below 6 years. The
caries and non-caries samples of children aged 6–12 years were enriched in Streptococcus mutans
and Corynebacterium durum, respectively. The machine learning models based on these differentially
enriched taxa showed accuracies of up to 83%. These results confirmed significant alterations
in the oral microbiome according to dental caries and age, and these differences can be used as
diagnostic biomarkers.

Keywords: children; dental caries; microbiome; next-generation sequencing

1. Introduction

Dental caries is a common infectious disease that affects people of all ages and both
genders worldwide. Although the prevalence of dental caries is decreasing, it can still be
found in more than 50% of children [1,2]. The mechanism of dental caries fundamentally
comes from the balance of demineralization and remineralization in the tooth structures [3].
When the pH in the oral cavity is lowered below a certain level due to the acid produced
by the microbes in the plaque, demineralization occurs in which the mineral components
in the hard tissue are dissolved [3]. Conversely, when the oral pH is restored to the neutral
level, dissolved calcium and phosphorus components are deposited again. This process is
called remineralization [3].

Streptococcus mutans, Streptococcus sobrinus, and Lactobacillus are the representative
bacteria known to be associated with dental caries [4]. However, only about 50% of
approximately 700 types of oral microorganisms have been cultivated and named. It is also
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known that the predominant microbes causing dental caries differ by race and age, and
even differ among people of the same race [5–8].

The microbiome refers to the sum of all microorganisms and their genomes in a
particular environment [9]. Oral cavity is the second largest microbial community in the
humans after the gut; a significant relationship has been found between the microbes in
the oral cavity and the onset of some systemic diseases [5,10,11]. Therefore, understanding
the oral microbiome will make it possible to understand not only oral infectious diseases,
such as dental caries and periodontal diseases, but also cardiovascular diseases, stroke,
rheumatoid arthritis, cancer, chronic obstructive pulmonary disease, and metabolic diseases
such as diabetes and obesity [5,10,11].

Microbiome research has developed with the advances in molecular biology technol-
ogy and next-generation sequencing (NGS). In the field of dentistry, NGS has been used to
analyze the oral microbes involved in infectious diseases, including dental caries, and to
identify the genes associated with oral diseases such as hypodontia and oral cancer [12–16].
Additionally, longitudinal changes in the oral microbiome of children from 3 months to
7 years after birth were confirmed by NGS [17–19]. The distribution of site-specific oral mi-
crobiomes in the oral cavity has also been discovered [20,21]. Although it is widely known
that oral microbes are one of the main determinants of dental caries [22], there are only few
reports on the oral microbiome of Korean children, especially of children and adolescents
under the age of 12 years, who are the primary patients in pediatric dentistry [4,23–27].

Recently, machine learning techniques have been actively applied to analyzing oral
microbiota for making predictions of health status based on the hidden patterns in a large
amount of metagenomics data. For example, Omori et al. developed random forest models
to classify type 2 diabetes mellitus and a healthy control based on metagenomic profiles
of saliva [28]. Kato-Kogoe et al. performed 16S rRNA metagenomic analysis of salivary
microbiota in patients with atherosclerotic cardiovascular disease and proposed random
forest models for predicting atherosclerotic cardiovascular disease [29]. Although machine
learning approaches have also been adopted for predicting childhood caries based on oral
microbiome in several previous studies, they were often based on a limited number of
samples and focused on a certain ethnic group [30–32].

The aim of this study was to analyze the oral microbiome of saliva and plaque
collected from 120 Korean children under 12 years of age. The children were categorized
into non-caries and caries groups according to their dental caries experience. The richness
and diversity of the bacterial community were analyzed using NGS. Moreover, machine
learning models were developed to classify the non-caries and caries samples.

2. Materials and Methods
2.1. Patient Selection and Oral Examination

The participants were 120 children who visited the Department of Pediatric Dentistry,
Pusan National University Dental Hospital, Yangsan, Korea. Group 1 included children
aged below 6 years, and Group 2 included children aged 6–12 years in accordance with
oral health surveys of the World Health Organization (WHO) [33]. The number of samples
was determined with G*power software (ver.3.1.9, Düsseldorf, Germany) to maintain
a significance level of 0.05% and power of 0.8 based on previous studies [34,35]. The
minimum samples were calculated as 24 for each group; 30 subjects participated in this
study considering the dropout rate of 10% or more. Inclusion criteria were that children
were medically healthy, had at least completed primary dentition with the primary second
molars, and had not used antibiotics within the preceding 2 weeks. There was no age
limit, but children with a lack of compliance for clinical examination and sample collection
were excluded. Children without complete primary dentition were excluded. Furthermore,
children with systemic diseases or disabilities that influence oral health care ability, salivary
gland dysfunction, and fixed orthodontic devices which can affect alterations of the oral
microbiome were excluded [36].
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All clinical examinations were performed by a pediatric dentist with the subject lying
in the supine position on a dental chair. The presence of dental caries was recorded using
the International Caries Detection and Assessment System (ICDAS) [20,37]. Patients whose
teeth were graded as ICDAS code 0–2 only were classified as the non-caries group, and
those with ICDAS code 3 or higher as the caries group.

Written informed consent was obtained from all participants involved in the study. The
study design, protocol, and informed consent were approved by the Institutional Review
Board of Pusan National University Dental Hospital (PNUDH-2018-024, 22 August 2018).

2.2. Sample Preparation and DNA Extraction

All participants were instructed not to clean their teeth the evening and morning before
sampling and not to eat or drink for 2 h preceding the sampling in the morning [25,27,38].
Supragingival plaque specimens were scraped using a sterile Gracey curette and pooled
into sterile Eppendorf tubes. Plaque samples were primarily collected on primary second
molars in children below 6 years, and permanent first molars in children aged 6–12 years
old. Saliva samples were collected by rinsing the mouth for 30 s with 12 mL of a solution
(E-zen Gargle, JN Pharm, Korea) [39]. All procedures related to the sample collection were
performed in a safe environment under the supervision of the principal investigator. The
plaque samples were immediately stored at −20 ◦C and saliva samples at 4 ◦C until further
processing. In total, 240 samples were prepared for subsequent processing (Figure 1).
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Figure 1. Group categorization and sample preparation flowchart. Group 1 included children aged
below 6 years, and Group 2 included children aged 6–12 years. Each group was further divided into
non-caries and caries subgroups according to the ICDAS code and DMFT index. Saliva and plaque
samples were obtained from all participants. The sample coding is noted in each schematic box.

ICDAS: International Caries Detection and Assessment System; DMFT: Decayed,
Missing, Filled Teeth index by the World Health Organization criteria; N1P, plaque sample
of the non-caries group of Group 1; N1S, saliva sample of the non-caries group of Group 1;
N2P, plaque sample of the non-caries group of Group 2; N2S, saliva sample of the non-
caries group of Group 2; C1P, plaque sample of the caries group of Group 1; C1S, saliva
sample of the caries group of Group 1; C2P, plaque sample of the caries group of Group 2;
C2S, saliva sample of the caries group of Group 2.

For DNA extraction of the saliva, 8 mL of the gargled solution was transferred to
a 15 mL conical tube and centrifuged at 3900 rpm for 10 min to obtain the precipitate.
The supernatant was discarded and 200 µL of phosphate-buffered saline was added to
the precipitate to obtain a resuspended sample. The completely resuspended sample was
transferred to a 1.5 mL microcentrifuge tube, and DNA was extracted using an Exgene
Clinic SV DNA extraction kit (GeneAll®, Seoul, Korea) according to the manufacturer’s
instructions. The mixture of 20 µL proteinase K solution and 200 µL of BL buffer was
added to the resuspended sample and vortexed vigorously. The sample was incubated
at 56 ◦C for 10 min, then spun down briefly to remove any drops form inside of the lid.
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We added 200 µL of absolute ethanol to the sample, vortexed and spun down in the same
way. The mixture was carefully transferred to the SV column and centrifuged for 10 min
at 13,500 rpm, then replaced the collection tube with a new one. The sample was added
600 µL of buffer BW, centrifuged for 1 min at the same speed and replaced the collection
tube with a new one. We applied 700 µL of buffer TW and centrifuged the sample for 1 min.
Then we discarded the solution in the collection tube and reinserted the SV column back
into the collection tube. The sample was centrifuged for 1 min to remove residual buffer
and placed the SV column in a new 1.5 mL microcentrifuge tube and 50 µL elution buffer
was added. The sample was incubated at room temperature for 1 min and then centrifuged
for 1 min for the elution of DNA.

For DNA extraction of the plaque sample, we melt the sample at room temperature
and agitated to lyse the sample after adding 200 µL of buffer CL. We added 20 µL of
proteinase K in the tube and then vortexed the mixture and spun down to remove the
bubbles inside the tube. The sample was incubated overnight at 56 ◦C and transferred the
solution inside the tube to a new one. We added 200 µL of buffer BL and vortexed, rotated
for a while to remove the bubbles inside the lid. After adding 200 µL of absolute ethanol
and transferring it to the SV column, DNA was extracted using the same method as the
saliva samples.

The DNA quality and quantity were determined using NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Polymerase Chain Reaction Amplification of 16S rRNA Genes and Sequencing Data Analysis

Polymerase chain reaction (PCR) amplification was performed using primers tar-
geting regions of the hypervariable regions V3 and V4 of the 16S rRNA genes. The
341F (5′-CCTACGGGNGGCWGCAG-3′) and 806R (5′-GACTACHVGGGTATCTAATCC-3′)
primers were designed and used. The amplified product was quantified according to
the quantitative PCR Quantification Protocol Guide (KAPA Library Quantification kits
for Illumina Sequencing platforms) and was verified using HT DNA High Sensitivity
LabChip® GX Kit (Caliper, PerkinElmer, Hopkinton, MA, USA). Thereafter, paired-end
(2 × 250 bp) sequencing was performed using the HiSeq™ platform (Illumina, San Diego,
CA, USA). Sequencing data were analyzed using QIIME2, version 2020.6 [40]. The se-
quences were denoised and clustered without trimming using Deblur [40], which uses
a novel sub-operational-taxonomic-unit approach. In the diversity analysis, rarefaction
was needed to normalize the difference in the frequency among samples, which randomly
subsampled the same number of sequences from each sample. The alpha diversity indices
of Shannon index, Faith’s phylogenetic diversity (PD), Observed features, and Pielou’s
evenness were calculated using QIIME2. The Jaccard distance was used in the principal
coordinate analysis (PCoA) plot to explain dissimilarity, which was drawn using the QIIME
viewer [40]. The taxonomy was determined at level 6 (genus) and level 7 (species) using
the SILVA 16S rRNA database and the qiime taxa collapse method, such that each sample
had assigned bacteria according to their sequence. The frequency of assigned bacteria was
divided by the total bacterial frequency in each sample (i.e., the percentage of the assigned
bacteria in each sample). A heatmap showing the major 10 genera was drawn using R
software package, version 3.6.1 (available online: https://www.r-project.org (accessed on
18 June 2021).

2.4. Statistical Analysis

An independent t-test was used after the normality test with the Shapiro–Wilk test to
compare the differences in age, gender, and dental caries indices using Statistical Product
and Service Solutions, version 22.0 (IBM SPSS, Armonk, NY, USA). Alpha diversity indices
of samples were compared using Student’s t-test. The Wilcoxon rank-sum test was per-
formed to compare the differences in the microbiomes according to age and dental caries
experience from the phylum level to the species level. Based on the results of taxonomic
assignment, data showing significant differences between the groups were selected using

https://www.r-project.org
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the Kruskal–Wallis test, and linear discriminant analysis (LDA) for the selected data was
conducted. The LDA effect size (LEfSe) method was used to analyze the differences in the
microbial community composition between the non-caries and caries groups. The LDA
cutoff score was set at 2.0, and p-values <0.05 were considered statistically significant.

2.5. Machine Learning Models for Classifying Non-Caries and Caries Samples

The machine learning models used in this study followed the default option. Random
forest was used to classify the non-caries and caries samples in each group. Bacteria at the
genus and species levels from differential abundance analysis were used as features in the
models. Each feature was evaluated based on its importance in each group using random
forest models (Table S1). The features were added one by one in order of importance from
the highest to the lowest, resulting in many models with various feature combinations
(Table S2), as previously done by Kim et al. [41]. The models with the best accuracy
were selected. The models performed stratified 5-fold cross-validation, which divided the
data into five subsets with one subset for the test set and four for the training set. The
performances of the models were evaluated by calculating the confusion matrix of accuracy,
balanced accuracy, precision, sensitivity, specificity, and standard deviations. The scope of
the confusion matrix ranged between 0 and 1.

Accuracy = TP+TN
TP+TN+FP+FN

Balanced accuracy = TP
2×(TP+FN)

+ TN
2×(TN+FP)

Precision = TP
TP+FP

Sensitivity = TP
TP+FN

Specificity = TN
TN+FP

where TP is true positive; TN, true negative; FP, false positive; and FN, false negative.

3. Results

This study enrolled 120 Korean children. The mean age in Group 1 (25 boys and
35 girls aged below 6 years) was 4.5 ± 0.7 (age range 3.1–5.9) years, and that in Group 2
(35 boys and 25 girls aged 6–12 years) was 7.9 ± 1.3 (age range 6.0–11.8) years. There was
no significant difference in the mean age according to gender between the groups (Table 1).
The mean ICDAS score of the non-caries group and caries group was 0.30 ± 0.71 and
4.12 ± 0.7, respectively, and the caries index between the two groups differed significantly
(p < 0.05) (Table 2).

Table 1. Distribution of the enrolled children by gender and age.

Groups Gender n Mean Age (SD) p-Value

Non-caries (N1) 1 Male 10 4.3 (0.5)
0.731Female 20 4.4 (0.7)

Caries (C1) 1 Male 15 4.6 (0.7)
0.603Female 15 4.5 (0.7)

Non-caries (N2) 2 Male 14 8.1 (1.3)
0.560Female 16 7.9 (1.4)

Caries (C2) 2 Male 21 7.9 (1.3)
0.733Female 9 7.9 (1.4)

Total 120 6.2 (2.0)
1 Group 1 included children under 6 years of age; 2 Group 2 included children aged from 6 to 12 years. Significant
differences were determined using an independent t-test at p < 0.05.
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Table 2. Decayed teeth and International Caries Detection and Assessment System scores in the
non-caries and caries groups.

Groups (n)
d + D 1 ICDAS 2 Score

Mean (SD) Mean (SD)

Non-caries (60) 0.00 (0.00) 0.30 (0.71)
Caries (60) 5.73 (3.51) 4.12 (0.78)

p-value <0.001 * <0.001 *
1 Decayed primary (d) and permanent (D) teeth based on the World Health Organization criteria; 2 International
Caries Detection and Assessment System; * Significant differences were determined using an independent t-test
at p < 0.05.

3.1. Alpha and Beta Diversity Analysis

There were significant differences between Group 1 and Group 2 in the alpha diversity
indices of Shannon index, observed features, Faith’s PD, and Pielou’s evenness (Figure 2).
The bacterial communities were more diverse and evenly distributed in Group 2 than in
Group 1 (Figure 2a,d). Furthermore, the number of bacteria in Group 2 was higher than
that in Group 1 (Figure 2b). Faith’s PD was higher in Group 2 than in Group 1, indicating a
greater biodiversity in the former than in the latter (Figure 2c).
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Figure 2. Comparison of the alpha diversity indices between Group 1 and Group 2 using student’s
Table 1. and Group 2. (a) Distribution of Shannon index in group 1 and group 2; (b) Distribution of
observed features in group 1 and group 2; (c) Distribution of Faith’s PD in group 1 and group 2; (d)
Distribution of Pielou’s evenness in group 1 and group 2; * p < 0.05, ** p < 0.01, *** p < 0.001. Faith’s
PD, Faith’s phylogenetic diversity.
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A PCoA plot based on Jaccard distance metrics showed that the samples were clustered
by plaque or saliva, indicating dissimilarity in the bacterial compositions between the
plaque and saliva samples (Figure 3).
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3.2. Bacterial Compositions

A total of 11 phyla, 19 classes, 34 orders, 68 families, 143 genera, and 377 species
were detected in the Group 1 samples. At the phylum level, the five most abundant phyla
were Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria in both
non-caries and caries groups (Figure 4).
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Figure 4. Taxonomic assignment at the phylum level in Group 1. (a) All taxa from the 120 saliva
and plaque samples of Group 1; (b) Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and
Fusobacteria were the five most abundant phyla in Group 1.

Group 1 included children aged below 6 years.
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A total of 14 phyla, 21 classes, 37 orders, 72 families, 154 genera, and 421 species were
detected in the Group 2 samples. At the phylum level, the five most abundant phyla were
Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria in both the
non-caries and caries groups, similar to those in Group 1 (Figure 5).
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Figure 5. Taxonomic assignment at the phylum level in Group 2. (a) All taxa from the 120 saliva
and plaque samples of Group 2; (b) Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and
Fusobacteria were the five most abundant phyla in Group 2.

Group 2 included children aged from 6 to 12 years.
The dominant 10 genera are shown in Figure 6. Streptococcus (20.5%), Neisseria (8.2%),

Corynebacterium (7.0%), Leptotrichia (6.5%), Actinomyces (6.4%), Capnocytophaga (5.2%), Rothia
(4.9%), Haemophilus (4.3%), Prevotella (4.0%), and Fusobacterium (3.5%) accounted for approx-
imately 70.5% of the bacteria in each sample on an average. Streptococcus predominated in
all samples, and its proportion was higher in the saliva samples than in the plaque samples.
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Figure 6. Heatmap of the 10 major genera. Each column represents a sample and each row a genus.
The color bars correspond to the groups. The frequency of the genera in each sample was expressed
as a percentage in a range of 0–70%. Higher proportion of yellow indicates more of those genera
in the samples. N1P, plaque sample of the non-caries group of Group 1; N1S, saliva sample of the
non-caries group of Group 1; N2P, plaque sample of the non-caries group of Group 2; N2S, saliva
sample of the non-caries group of Group 2; C1P, plaque sample of the caries group of Group 1; C1S,
saliva sample of the caries group of Group 1; C2P, plaque sample of the caries group of Group 2; C2S,
saliva sample of the caries group of Group 2; g, genus.
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3.3. Differential Abundance Analysis

To identify the bacteria that were differentially abundant in each non-caries group
and caries group, LEfSe analysis was performed between the two groups considering the
plaque or saliva samples.

Figure 7a shows the differential abundance of the bacteria in the plaque samples of
the non-caries and caries groups of Group 1 (N1P and C1P, respectively). At the species
level, Corynebacterium matruchotii, Capnocytophaga granulosa, Leptotrichia wadei, Prevotella
salivae, Anaeroglobus geminatus, Selenomonas sputigena, Scardovia wiggsiae, and Prevotella
histicola were abundant in the C1P group. At the genus level, Leptotrichia, Veillonella, F0332
uncultured bacterium, Lachnoanaerobaculum, Gemella uncultured organism, JGI 0000069 P22,
Bergeyella, and F0332 were abundant in the C1P group. At the species level, Neisseria oralis
was abundant in the N1P group.

Diagnostics 2021, 11, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 7. Histogram of differentially abundant taxa from the class to species level in the plaque 

samples of the non-caries and caries groups of Group 1 and Group 2 using linear discriminant 

analysis of effect size. (a) Taxa abundant in the plaque samples of the non-caries and caries groups 

of Group 1; (b) Taxa abundant in the plaque samples of the non-caries and caries groups of Group 

2. The threshold of the logarithmic LDA score for discriminative features was set at 2.0; p-values < 

0.05 were considered statistically significant. LDA, linear discriminant analysis linear discriminant 

analysis; c, Class; o, Order; f, Family, g, Genus; s, Species; N1P, plaque sample of the non-caries 

group of Group 1; N2P, plaque sample of the non-caries group of Group 2; C1P, plaque sample of 

the caries group of Group 1; C2P, plaque sample of the caries group of Group 2. 

Figure 8a shows the differential abundance of bacteria in the saliva samples of the 

non-caries and caries groups of Group 1 (N1S and C1S, respectively). At the species level, 

Corynebacterium matruchotii, Campylobacter gracilis, Prevotella oulorum, Lactobacillus fermen-

tum, Capnocytophaga granulosa, Selenomonas flueggei, Selenomonas noxia, Leptotrichia wadei, 

Scardovia wiggsiae, and Selenomonas sputigena were abundant in the C1S group. At the ge-

nus level, Aggregatibacter, F0332 uncultured bacterium, Shuttleworthia, Tannerella, uncultured 

Atopobium, Granulicatella, F0332, and JGI 0000069 P22 were abundant in the C1S group. At 

the species level, Neisseria oralis, Veillonella atypica, and Haemophilus quentini were abun-

dant in the N1S group. At the genus level, Streptococcus, Enhydrobacter, and Pseudopropion-

ibacterium uncultured bacterium were abundant in the N1S group. 

Figure 8b shows the differential abundance of bacteria in the saliva samples of the 

non-caries and caries groups of Group 2 (N2S and C2S, respectively). At the species level, 

Figure 7. Histogram of differentially abundant taxa from the class to species level in the plaque
samples of the non-caries and caries groups of Group 1 and Group 2 using linear discriminant
analysis of effect size. (a) Taxa abundant in the plaque samples of the non-caries and caries groups of
Group 1; (b) Taxa abundant in the plaque samples of the non-caries and caries groups of Group 2. The
threshold of the logarithmic LDA score for discriminative features was set at 2.0; p-values <0.05 were
considered statistically significant. LDA, linear discriminant analysis linear discriminant analysis; c,
Class; o, Order; f, Family, g, Genus; s, Species; N1P, plaque sample of the non-caries group of Group
1; N2P, plaque sample of the non-caries group of Group 2; C1P, plaque sample of the caries group of
Group 1; C2P, plaque sample of the caries group of Group 2.
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Figure 7b shows the differential abundance of bacteria in the plaque samples of the
non-caries and caries groups of Group 2 (N2P and C2P, respectively). At the species level,
Treponema maltophilum, Dialister pneumosintes, Capnocytophaga haemolytica, Anaeroglobus
geminatus, Candidatus saccharibacteria, Streptococcus mutans, and Porphyromonas pasteri were
abundant in the C2P group. At the genus level, Porphyromonas, Lachnoanaerobaculum,
F0058 uncultured bacterium, uncultured Peptococcus, Clostridia UCG 014 Clostridiales bacterium,
Centipeda uncultured bacterium, Candidatus Saccharimonas, Lactobacillus, Bergeyella, Treponema,
Peptostreptococcus, and Granulicatella were abundant in the C2P group. At the species level,
Corynebacterium durum, Aggregatibacter sp., and Treponema socranskii were abundant in the
N2P group. At the genus level, Actinomyces, Kingella, Cardiobacterium uncultured bacterium,
and Kingella uncultured bacterium were abundant in the N2P group.

Figure 8a shows the differential abundance of bacteria in the saliva samples of the
non-caries and caries groups of Group 1 (N1S and C1S, respectively). At the species
level, Corynebacterium matruchotii, Campylobacter gracilis, Prevotella oulorum, Lactobacillus
fermentum, Capnocytophaga granulosa, Selenomonas flueggei, Selenomonas noxia, Leptotrichia
wadei, Scardovia wiggsiae, and Selenomonas sputigena were abundant in the C1S group.
At the genus level, Aggregatibacter, F0332 uncultured bacterium, Shuttleworthia, Tannerella,
uncultured Atopobium, Granulicatella, F0332, and JGI 0000069 P22 were abundant in the C1S
group. At the species level, Neisseria oralis, Veillonella atypica, and Haemophilus quentini
were abundant in the N1S group. At the genus level, Streptococcus, Enhydrobacter, and
Pseudopropionibacterium uncultured bacterium were abundant in the N1S group.

Figure 8b shows the differential abundance of bacteria in the saliva samples of the
non-caries and caries groups of Group 2 (N2S and C2S, respectively). At the species
level, Streptococcus mutans, Prevotella pallens, Prevotella veroralis, Anaeroglobus geminatus,
Lactobacillus fermentum, Megasphaera micronuciformis, Prevotella buccae, Alloprevotella rava,
Parascardovia denticolens, Olsenella uli, and Streptococcus sobrinus were abundant in the C2S
group. At the genus level, Lactobacillus, Bifidobacterium, Selenomonas Veillonellaceae bacterium,
Atopobium, Absconditabacteriales SR1, Dialister, Staphylococcus, and Bergeyella were abundant
in the C2S group. At the species level, Corynebacterium durum, Actinomyces massiliensis,
Capnocytophaga gingivalis, and Cardiobacterium hominis were abundant in the N2S group.
At the genus level, Actinomyces, Lautropia uncultured bacterium, Kingella, Cardiobacterium
uncultured bacterium, Moraxella, and Stenotrophomonas were abundant in the N2S group.

3.4. Classification of Samples Using the Random Forest Machine Learning Model

Taxa at the genus or species level in each group from the differential abundance
analysis were used as features that classified the non-caries and dental caries samples
in the random forest machine learning models. The selected taxa were evaluated based
on their importance in each group using the random forest model (Table S1). The taxa
were then added one by one in the order of importance from the highest to the lowest
in the machine learning model to identify the best feature combination that resulted in
the highest accuracy (Table S2). The best feature (taxa) combination, accuracy, balanced
accuracy, precision, sensitivity, and specificity in each group are shown in Table 3. The
models showed accuracy over 0.7 in all cases, especially in the case of the saliva samples of
Group 2 (accuracy of 0.83).
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Figure 8. Histogram of the differentially abundant taxa from the class to species level in the saliva
samples of the non-caries and caries groups of Group 1 and Group 2 using linear discriminant
analysis of effect size. (a) Taxa abundant in the saliva samples of the non-caries and caries groups of
Group 1; (b) Taxa abundant in the saliva samples of the non-caries and caries groups of Group 2. The
threshold of the logarithmic LDA score for discriminative features was set at 2.0; p-values <0.05 were
considered statistically significant. LDA, linear discriminant analysis; c, Class; o, Order; f, Family, g,
Genus; s, Species; N1S, saliva sample of the non-caries group of Group 1; N2S, saliva sample of the
non-caries group of Group 2; C1S, saliva sample of the caries group of Group 1; C2S, saliva sample of
the caries group of Group 2.
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Table 3. Best performance with feature combination, accuracy, balanced accuracy, precision, sensitivity, and specificity in
each group using random forest machine learning model.

Group Feature Combination Accuracy Balanced
Accuracy Precision Sensitivity Specificity

N1P vs. C1P V + Lep 0.78 (0.14) 0.81 (0.13) 0.80 (0.19) 0.80 (0.15) 0.81 (0.16)
N1S vs. C1S Sw + Cgra + Str + Cm + Gra + Agg + No + Lw 0.70 (0.18) 0.71 (0.19) 0.67 (0.18) 0.74 (0.20) 0.69 (0.20)
N2P vs. C2P Cun + Gra + Lac + Por + CS + cbac + Cd + Kun 0.73 (0.10) 0.75 (0.10) 0.73 (0.17) 0.74 (0.08) 0.75 (0.13)
N2S vs. C2S Sta + Act + Cun + B + Ato + Cgin 0.83 (0.13) 0.84 (0.13) 0.87 (0.12) 0.82 (0.14) 0.86 (0.15)

V, Veillonella; Lep, Leptotrichia; Sw, Scardovia wiggsiae; Cgra, Campylobacter gracilis; Str, Streptococcus; Cm, Corynebacterium matruchotii; Gra,
Granulicatella; Agg, Aggregatibacter; No, Neisseria oralis; Lw, Leptotrichia wadei; Cun, Cardiobacterium uncultured bacterium; Lac, Lachnoanaerobac-
ulum; Por, Porphyromonas; CS, Candidatus Saccharimonas; cbac, Clostridiales bacterium; Cd, Corynebacterium durum; Kun, Kingella uncultured
bacterium; Sta, Staphylococcus; Act, Actinomyces; B, Bergeyella; Ato, Atopobium; Cgin, Capnocytophaga gingivalis. N1P, plaque sample of the
non-caries group of Group 1; N1S, saliva sample of the non-caries group of Group 1; N2P, plaque sample of the non-caries group of Group
2; N2S, saliva sample of the non-caries group of Group 2; C1P, plaque sample of the caries group of Group 1; C1S, saliva sample of the
caries group of Group 1; C2P, plaque sample of the caries group of Group 2; C2S, saliva sample of the caries group of Group 2.

Cardiobacterium uncultured bacterium was used as one of the features in N2P vs. C2P and
N2S vs. C2S, and 36 feature ids designated this bacterium in our data. One of the 36 feature
ids showed the highest frequency (60,446), and the National Center for Biotechnology
Information (NCBI) assigned it as Cardiobacterium hominis.

Kingella uncultured bacterium was used as one of the features in N2P vs. C2P, and
10 feature ids designated this bacterium in our data. One of the 10 feature ids showed the
highest frequency (43,193), and NCBI assigned it as Kingella oralis.

4. Discussion

Oral bacteria in dental plaque biofilms are essential for the initiation and progression
of dental caries [42,43]. Saliva is considered a suitable sample for studying oral microorgan-
isms, because the sample is easy to collect and contains various microorganisms [38]. This
study was performed to verify the differences in the abundance and diversity of microbes
in the dental plaque and saliva in children.

Traditionally, the diagnosis of dental caries is made using visual, tactile, and radio-
graphic methods. Recently, laser fluorescence or quantitative optical fluorescence has also
been used [44,45]. ICDAS was initially proposed to monitor the progression of dental
caries more accurately, manage dental caries more effectively, and facilitate communication
between the clinicians and patients; ICDAS-II is currently being used [46,47]. Braga et al.
analyzed the correlation between the WHO criteria and ICDAS-II and reported that ICDAS-
II is feasible in epidemiological surveys in preschool children [48]. In this study, all teeth
were graded according to ICDAS, and the decayed teeth were determined using the WHO
criteria. Although there is a limitation that the evaluation depends solely on the knowledge
and assessment of a trained examiner, it is a useful method for diagnosing dental caries in
situations where radiological or histological examination is not possible [48,49].

Group 2 showed more richness and evenness as compared to Group 1 in the alpha
diversity analysis. This could be due to the presence of permanent teeth in the former,
which are less reactive to acid [21,50]. Previous studies have reported that dental plaque and
saliva have different microbial compositions [51–53]. Our data also showed dissimilarity
in the microbial compositions between the plaque and saliva samples.

Firmicutes was commonly detected as the most dominant phylum in all groups, which
is consistent with the findings of previous studies [18,38,54,55]. Xu et al. reported that
Proteobacteria was the most predominant in primary dentition and adults with permanent
dentition, while Firmicutes was abundant in young adults with permanent dentition [21].
Chen et al. also reported a decrease in Firmicutes and an increase in Proteobacteria in
the children’s group and an increase in Firmicutes and a decrease in Proteobacteria in
the youth and adult groups [17]. In this study, the relative proportions of Firmicutes,
Proteobacteria, and Bacteroidetes were similar in both groups. Research on changes in



Diagnostics 2021, 11, 1324 13 of 17

the microbial community in humans, according to age from adolescence to adulthood, is
needed in the near future.

The Fusobacteria phylum was significant only in the plaque samples of Group 1 by
LDA. Fusobacteria are classified as obligate anaerobes that are frequently observed in the
gingival sulcus and deep gingival pockets [56,57]. Changes in the oral environment with
increasing age can affect the oral flora. The eruption of the primary tooth is regarded
as a major change, because the formation of the gingival sulcus leads to site-specific
bacterial composition in addition to the presence of hard tissue in the oral cavity [58].
Shi et al. reported that Firmicutes were more abundant in saliva, while Fusobacteria and
Actinobacteria were more abundant in plaque [57]. Shi et al. reported that permanent tooth
sites tend to host more diverse bacterial communities as compared to the primary tooth
sites [59]. They also found that Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and
Actinobacteria varied highly among the sites [59]. The location and shape of the teeth in
the oral cavity can affect the distribution of the anaerobic bacteria such as Fusobacteria. In
children with mixed dentition, the time of co-existence of the deciduous and permanent
teeth in the oral cavity can also be a factor affecting the microbial composition and ratio. In
this study, the plaque samples from Group 2 were mainly collected from the permanent
first molars. The different times of attachment and maturation of the bacteria to the teeth
in the mixed dentition could be one of the reasons for the differences in the microbial
composition and diversity [59].

Streptococcus mutans, a common caries pathogen, was enriched in the C2S and C2P
groups, while another known oral pathogen, Streptococcus sobrinus, was enriched in the
C2S group. Contrary to our results, a study of oral microbiome from adolescents aged
15 to 17 years reported that Streptococcus mutans and Streptococcus sobrinus had no sig-
nificant associations with carious risk [60]. In addition, another study of the oral mi-
crobiome detected Streptococcus mutans at 28% of interdental biofilms from caries-free
adults (20–35 years old) [61]. Anaeroglobus geminatus was enriched in the C1P, C2P, and
C2S groups. Since this bacterium appeared in both Group 1 and Group 2, and it has
previously been reported to be associated with oral disease [62], it could be a potential
dental caries biomarker.

Badet et al. reported that Lactobacillus was the main pathogen for caries develop-
ment [63], and Caufield et al. showed that Lactobacillus fermentum was dominant in adult
and childhood caries [64]. Similarly, in our results, Lactobacillus was enriched in the C2P
and C2S groups, and Lactobacillus fermentum was enriched in the C1S and C2S groups.

Idate et al. found that Capnocytophaga granulosa and Capnocytophaga gingivalis were
more prevalent in healthy individuals than in patients with periodontitis [65]. In contrast,
our data showed that Capnocytophaga granulosa was enriched in the C1P and C1S groups
and Capnocytophaga gingivalis was enriched in the N2S group.

Corynebacterium matruchotii has been reported as enriched in the naturally healthy
adult group aged from 22 to 67 years using LEfSe [66]. Qudeimat et al. found that
Corynebacterium matruchotii and Corynebacterium durum were abundant in a caries-free
group of 7-year-old children [67]. However, in our study, Corynebacterium matruchotii was
enriched in the C1P and C1S groups, which was in contrast to the findings of previous
reports. However, Corynebacterium durum was enriched in the N2P and N2S groups, which
was consistent with previous reports.

Neisseria oralis, which is classified into the Proteobacteria phylum, was abundant
in both plaque and saliva samples of the non-caries group of Group 1. Cherkasov et al.
reported that Neisseria oralis was significantly enriched in the caries-depleted children’s
group [13]. Another study showed that Neisseria oralis was also isolated from the gingival
plaque of seven healthy people aged 1–80 years [68]. Furthermore, Neisseria oralis was used
as one of the features in the machine learning models in this study, which classified the
saliva samples from the caries group of Group 1 (Table 3). Abundance of Neisseria oralis
could indicate it to be one of the bacteria that can maintain a healthy oral microbiome.
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Kingella uncultured bacterium was assigned as Kingella oralis by NCBI, which was used
as one of the features in N2P vs. C2P. Cherkasov et al. studied the microbiota of asthmatic
children with or without dental caries and showed that Kingella oralis was one of the
statistically significant caries-enriched species [13].

Age can play an important role in various oral diseases [69]. For example, clinicians
can easily detect some oral lesions such as burning mouth syndrome and chronic candidia-
sis in the elderly rather than in young population [69]. The elderly who have decreased
salivary flow rate are susceptible to some oral diseases because saliva acts as an innate im-
mune system through its antimicrobial effect [70]. Some systemic conditions and diseases
can bring about delayed wound healing in the oral cavity after surgical dental intervention
as well for this reason [70]. Saliva has a great potential in remineralization of the tooth
surface because it contains calcium and phosphate in concentrations [71]. Solomon et al.
observed that higher values of salivary calcium in those with few carious lesions [71]. There
is a common consensus that some systemic diseases such as rheumatoid arthritis, diabetes,
and cardiovascular diseases are extremely closely related to Porphyromonas gingivalis, the
well-known periodontal pathogens [11,72]. Patients with periodontitis and diabetes simul-
taneously are prone to developing complications of cardiovascular, renal, and retinopathic
diseases [72]. Therefore, it is important to control the oral health and to maintain the
balance of ecosystem between hosts and microbiota. In this respect, microbiome of saliva
and plaque can be used as biomarkers for dental caries and periodontitis.

The main limitations of this study can be attributed to its cross-sectional design. We
found differences in the composition and diversity of the microbial communities between
the non-caries and caries groups. However, these findings do not indicate any causal
relationships with respect to dental caries. Furthermore, we did not take into account
socioeconomic status or the habits of oral hygiene or diet. These are known as important
risk factors of dental caries [22]. Dietary habits are possible contributors of ethnic or racial
variations in microbiome as well [73]. Another limitation is that only the plaque samples
collected from dental hard tissue were used for analysis, although the distribution of
microorganisms varies depending on the oral cavity. Particularly, children in the non-
caries group had good oral hygiene; hence, plaque samples had to be collected inevitably
from unspecified teeth, although they harbored a small amount of plaque. Therefore, it is
necessary to consider sample collection based on the microbial community of the oral cavity.
Future studies should analyze the changes in the oral flora before and after treatment of
carious teeth and explore the longitudinal changes in the oral flora according to the growth
and age of children.

5. Conclusions

It was confirmed that the composition and diversity of the oral microbiome differed
significantly not only according to the types of samples collected, i.e., saliva and plaque, but
also according to age. These results provide a theoretical basis for preventing and managing
dental caries in pediatric dentistry and emphasize the use of microbial examination as a
tool for diagnosing dental caries in clinics.
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