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Abstract

Background: MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators
of gene expression. They negatively regulate gene expression post-transcriptionally by translational repression and target
mRNA degradation. miRNAs have been shown to play crucial roles in muscle development and in regulation of muscle cell
proliferation and differentiation.

Methodology/Principal Findings: By comparing miRNA expression profiling of proliferating myoblasts versus differentiated
myotubes, a number of modulated miRNAs, not previously implicated in regulation of myogenic differentiation, were
identified. Among these, miR-221 and miR-222 were strongly down-regulated upon differentiation of both primary and
established myogenic cells. Conversely, miR-221 and miR-222 expression was restored in post-mitotic, terminally
differentiated myotubes subjected to Src tyrosine kinase activation. By the use of specific inhibitors we provide evidence
that expression of miR-221 and miR-222 is under the control of the Ras-MAPK pathway. Both in myoblasts and in myotubes,
levels of the cell cycle inhibitor p27 inversely correlated with miR-221 and miR-222 expression, and indeed we show that
p27 mRNA is a direct target of these miRNAs in myogenic cells. Ectopic expression of miR-221 and miR-222 in myoblasts
undergoing differentiation induced a delay in withdrawal from the cell cycle and in myogenin expression, followed by
inhibition of sarcomeric protein accumulation. When miR-221 and miR-222 were expressed in myotubes undergoing
maturation, a profound alteration of myofibrillar organization was observed.

Conclusions/Significance: miR-221 and miR-222 have been found to be modulated during myogenesis and to play a role
both in the progression from myoblasts to myocytes and in the achievement of the fully differentiated phenotype.
Identification of miRNAs modulating muscle gene expression is crucial for the understanding of the circuits controlling
skeletal muscle differentiation and maintenance.
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Introduction

Skeletal myogenesis requires the occurrence of specific coordi-

nated events, including exit from the cell cycle, transcription of

muscle-specific proteins, fusion into polynucleated fibers and

assembly of the contractile apparatus. Such complex processes are

regulated at multiple levels. Determination and differentiation

pathways are under the control of the MyoD family of myogenic

regulatory factors (MRFs) that cooperate with members of the

myocyte enhancer factor-2 family of transcription factors to

synergistically activate muscle-specific gene transcription by

recruiting chromatin remodeling proteins [1,2]. A fundamental

role in establishing and maintaining the post-mitotic state of

differentiated cells is played by cyclin-dependent kinase inhibitors

(CDKIs) such as p21, p27 and p57 that function by coupling cell

cycle arrest and cell differentiation [3]. Moreover, there is

evidence for the existence of a functional cross-talk between

CDKIs and MRFs [4,5], critical for induction of myogenesis.

Recent studies have identified the post-transcriptional control of

gene expression as a crucial level of regulation of myogenesis.

Among the critical mediators of such control, an important role is

played by miRNAs, small non coding RNAs that specifically bind

the 39untranslated regions (39UTRs) of mRNAs and control their

stability and translational efficiency [6,7]. Several miRNAs have

been identified, some of which, miR-1, miR-133a and miR-206,

are expressed specifically in muscle tissue [8,9]. The binding of

MRFs to the presumptive promoters of muscle-restricted miRNAs,

together with the over-expression and knock-down of these
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miRNAs in muscle tissues and in myogenic cell lines [10,11], have

provided experimental support for their role in muscle differen-

tiation. Interestingly, miR-1 and miR-206 promote myogenesis by

targeting transcriptional repressors of muscle gene expression,

whereas miR-133 inhibits myogenesis by enhancing myoblast

proliferation [12,13]. Little is known on how extracellular signals

impinge on the regulation of miRNAs involved in myogenic

differentiation.

Expression of oncogenes or exogenous growth factors has been

shown to interfere with myogenic differentiation by modulating

various extracellular-signal activated pathways involved in regu-

lation of skeletal muscle differentiation [14]. Activation of the p38

mitogen activated protein kinase (MAPK) pathway promotes

muscle differentiation, while its inhibition prevents expression of

muscle-specific genes and fusion of myocytes [15]. Oncogenic

activation of the Ras-MAPK pathway, instead, inhibits muscle

differentiation in most cell models studied, whereas inhibition of

endogenous MEK usually favors differentiation [16,17]. Trans-

formation of quail embryo myoblasts with temperature-sensitive

mutants of the v-src oncogene (QMb-ts) allows cells to proliferate

in low mitogen medium at the permissive temperature for the Src

kinase and to fully differentiate into myotubes that assemble highly

ordered sarcomeric structures at the restrictive temperature [18].

The block of differentiation of quail myoblasts transformed by ts-

Src is mainly due to the constitutive activation of Ras-MAPK and

inhibition of p38 MAPK pathways [16]. A unique property of this

cell context is that the ts kinase can be reactivated in terminally

differentiated myotubes leading to marked changes in muscle-

specific mRNA stability and prominent defects in the assembly of

contractile proteins [18,19].

In this study, we made use of the QMb-ts myoblast model,

which faithfully reproduces myogenesis in vitro, in order to identify

novel miRNAs that are specifically modulated in both differen-

tiation and maturation of skeletal muscle cells. Two of them, miR-

221 and miR-222, are down-regulated upon differentiation of

avian and mammalian myoblasts and are under the control of the

Ras-MAPK signaling pathway. We show that p27 is a target of

miR-221 and miR-222 in myoblasts and in myotubes subjected to

Src activation and that alterations of their expression lead to

defects in the transition from myoblasts to myocytes and in the

assembly of sarcomeres in myotubes.

Results

microRNA expression profiling upon myogenic
differentiation

Polyclonal populations of QMb-ts cells can be kept proliferating

both in growing (GM) and differentiation medium (DM) at the

permissive temperature for the v-Src kinase (35uC) and can

synchronously differentiate into multinucleate myotubes exhibiting

a high degree of fusion (over 90%) and structural maturation when

shifted to the restrictive temperature (41uC). In addition, the ts

kinase can be reactivated in myotubes by a simple temperature

shift (from 41uC to 35uC) resulting in profound alterations of the

differentiated phenotype [18]. To search for miRNAs specifically

modulated during the progression from myoblasts to myotubes

and in myotubes subjected to Src-induced perturbation, a miRNA

expression profile was determined by quantitative real-time PCR

in proliferating myoblasts maintained at 35uC in DM, in myoblasts

allowed to differentiate for 48 hours at 41uC in DM, and

myotubes differentiated at 41uC for 30 hours and then shifted to

35uC for 18 hours (Table S1). Novel miRNAs, not previously

described as linked to myogenic differentiation, were identified

and, among them, we chose all miRNAs showing a degree of

modulation between myoblasts and myotubes bigger than eight-

fold, and a selected group of microRNAs modulated to a lesser

extent (Fig. 1). Expression of miR-16, previously found to be

unaffected by muscle differentiation, was used to normalize

different samples and microRNA modulation was expressed as

fold increase or decrease in myotubes, compared to myoblasts.

Two miRNAs, miR-135a and miR-367, were strongly up-

regulated in differentiated myotubes to an extent comparable to

that measured for miR-1 and miR-133a, previously shown to be

specifically up-regulated in differentiated murine muscle cells [12].

Upon Src activation in myotubes, these miRNAs, with the

exception of miR-367, were moderately down-regulated. On the

contrary, miR-221, miR-222 and miR-29b were down-modulated

in differentiated myotubes. Other members of the miR-29-family,

namely miR29a and miR29c, although occupying chromosomal

positions adjacent to miR-29b, were down-modulated to a lesser

extent. Consistent with our results, a slight down-modulation of

miR-29 family members has been previously reported upon

differentiation of C2C12 mouse myoblasts [12]. In contrast, these

miRNAs have been found up-modulated upon differentiation of

C2C12 and human myoblasts by another group [20], possibly due

to different culture conditions. miR-223 was also included among

the modulated miRNAs shown in Fig. 1 due to its previously

recognized role in granulocytic differentiation [21]. Expression of

miR-221, miR-222 and miR-29b, strongly reduced in myotubes,

was induced upon shift to 35u to levels comparable to myoblasts,

highlighting a possible role of these miRNAs in both myoblasts

and myotubes subjected to Src-induced alteration.

Among the modulated miRNAs we pursued the study of miR-

221 and miR-222 (miR-221/222), previously implicated in tumor

cell proliferation [22–24], since little is known about their possible

involvement in myogenesis. Northern blot analysis of miR-221/

222 expression in QMb-ts cells confirmed that these miRNAs are

highly expressed in proliferating myoblasts, down-regulated in

differentiated myotubes and that their regulation is opposite to

that of miR-133 (Fig. 2). In addition, their re-induction in quail

myotubes following Src activation shows that they can be

modulated independently of proliferation.

In order to establish their possible role in myogenic differen-

tiation, modulation of miR-221/222 was analyzed in other

myogenic cell contexts, such as primary quail myoblasts (QMb),

primary mouse satellite cells (MSC) and two well characterized

rodent cell lines: mouse C2C12 and rat L6C5 myoblasts. RNAs

extracted from these cell types both in GM and DM at different

time points were analyzed for the expression of miR-221/222 by

quantitative PCR. As shown in Table 1, miR-221/222 were

down-modulated upon terminal differentiation in all myogenic

cells analyzed, whether primary myoblasts or established cell lines,

albeit to different extents and with different kinetics, indeed

suggesting their involvement in regulation of differentiation. While

the modulation of miR-221/222 in avian myoblasts was

pronounced, an average two-fold modulation was observed in all

mammalian myoblasts analyzed, in keeping with previous reports

in other cell contexts [25] where a similar modulation was shown

to be functionally relevant. miR-1 was also analyzed as control.

Expression of miR-221/222 inversely correlates with p27
accumulation and is under control of the Ras-MAPK
pathway

Being p27 CDKI a direct target of miR-221 and miR-222 in

human cancer cells [22–24], we investigated whether there was a

correlation between p27 and miR-221 and miR-222 expression in

myogenic cells. Therefore, QMb-ts myoblasts induced to differen-

tiate at 41uC or myotubes subjected to Src activation were analyzed

MiR-221/222 in Myogenesis
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at different time points for the expression of p27 protein and

mRNA, and for the expression of miR-221/222. Upon shift to

differentiation-permissive conditions, both p27 mRNA and protein

expression were induced, whereas the expression of miR-221/222

was correspondingly reduced (Fig. 3A). In contrast, when Src was

activated in myotubes, p27 protein levels were reduced up to 5 fold

while p27 mRNA levels were barely affected (Fig. 3B), suggesting

that down-regulation of p27 protein involves translational inhibition

mechanisms, possibly dependent on the corresponding increased

accumulation of miR-221/222. Note that expression of p27 is

probably a combination of transcriptional and post-transcriptional

mechanisms, in keeping with previous reports showing that

inhibition of p27 accumulation in Src-transformed fibroblasts is

due to reduced transcription and to protein destabilization [26,27].

We have recently reported that activation of the Ras-MAPK

pathway by Src in quail myogenic cells is largely responsible for

inhibition of differentiation both in myoblasts and in post-mitotic

myocytes [16]. In this context, we investigated whether this

pathway was also involved in the regulation of miR-221/222

expression. Therefore, QMb-ts were treated at 35uC with the

MEK inhibitor U0126, or infected with adenoviruses expressing

RasN17, a dominant negative Ras mutant, or GFP as control.

After 2 days, myoblasts were analyzed for expression of miR-221/

222 and miR-1 and for the accumulation of p27 and muscle-

specific proteins. Inhibition of the Ras-MAPK pathway by

RasN17 or U0126 efficiently inhibited accumulation of miR-

221/222 and induced expression of miR-1 (Fig. 4A) concomitantly

to that of p27 protein and sarcomeric myosin and a-actinin

(Fig. 4B). Note that the levels of miR-221/222 following block of

Ras-MAPK pathway are comparable to those observed in

myotubes at 41uC, further supporting the central role played by

the Ras-MAPK pathway in controlling expression of miR-221/

222 downstream of Src. In order to verify whether this pathway

was involved in miR-221/222 regulation independently of

proliferation, QMb-ts myotubes were subjected to Src activation

in the presence of U0126 and analyzed for the expression of miR-

221/222 and miR-1. As shown in Fig. 4C, inhibition of the Ras-

MAPK pathway in post-mitotic myotubes resulted in expression

levels of miR-221/222 comparable to those of myotubes,

counteracting the increase observed following Src activation.

Interestingly, in contrast to miR-221/222, expression of miR-1

was relatively insensitive to both Src activity (see also Fig. 1) and

inhibition of the Ras-MAPK pathway in myotubes (Fig. 4C).

Concerning p27, the inhibition of the Ras-MAPK pathway

reduced only in part the decrease caused by Src activation in

myotubes, (Fig. 4C), probably due to protein destabilization

Figure 1. Profiling of modulated miRNAs in QMb-ts. miRNA expression was measured in QMb-ts, cultivated either at 35uC or 41uC for 48 hours
and in QMb-ts maintained at 41uC for 30 hours and shifted to 35uC for additional 18 hours. Values in table were normalized according to median
values and expressed as a function of values at 35uC DM using the comparative Ct method. Standard error (s.e.) and statistical significance (p, n = 6)
are shown. P values in red are not statistically significant. Heat map representing miRNA modulation is expressed in a linear scale with a maximum
value of 16 fold to highlight differences within this range. Green and red luts indicate down- and up-regulation, respectively.
doi:10.1371/journal.pone.0007607.g001
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operated by the Src kinase [26]. The efficacy of the treatment with

U0126 and of Src activation was monitored by measuring the

levels of phosphorylated p42/44 MAPK since no changes in

muscle-specific protein accumulation are detectable in myotubes

24 hours after Src activation [18]. These results clearly indicate

that the Ras-MAPK pathway regulates expression of miR-221/

222 independently of proliferation.

p27 is a target of miR-221 and miR-222 in avian and
mammalian myoblasts

Since the inverse regulation of expression of p27 protein and

miR-221/222 was compatible with p27 mRNA being a target of

these miRNAs also in myoblasts, we addressed this point by over-

expressing or inhibiting miR-221/222 in a variety of avian and

mammalian cell contexts. Therefore, QMb-ts, QMb, C2C12,

L6C5 and MSC myoblasts were transfected with miR-221, miR-

222 or control (siGFP) duplex RNAs, induced to differentiate in

DM for two days and analyzed for the expression of p27 protein.

Accumulation of p27 was strongly inhibited by both miRNAs

upon differentiation of normal and Src-transformed quail

myoblasts (Fig. 5A) and significantly reduced in mammalian

myocytes (Fig. 5B). Accumulation of p27 mRNA in the same cells

was reduced 2–3 fold (not shown), in keeping with the recent

finding that miR-dependent translational repression is often

accompanied by mRNA destabilization [28,29]. We then analyzed

the consequence of inhibiting endogenous miR-221/222 on

accumulation of p27. In order to best evaluate the effects of

miR-221/222 inhibition, antisense miRNA inhibitors were

transfected in QMb-ts myotubes shifted to 35uC, and in

proliferating C2C12 myoblasts, cell contexts where the levels of

p27 protein, but not of p27 mRNA, are low (see Fig. 3 and [4]). In

both cell types, inhibition of miR-221/222 resulted in a partial

recovery of p27 accumulation (Fig. 5C,D), suggesting that p27

mRNA is regulated by these miRNAs in myogenic cells.

To definitively validate quail p27 mRNA as a target of miR-

221/222, the full-length p27-39UTR of quail mRNA and a shorter

portion containing two identified target sites for these miRNAs

were cloned downstream to the luciferase coding region of the

pGL3 reporter vector. Control pGL3 reporter vector or pGL3

containing the short portion (s-UTR) or the full length (UTR) p27-

39UTR were transfected in QMb-ts myoblasts and luciferase

activity was measured both in myoblasts and in myotubes (Fig. 6A).

A significant decrease in luciferase activity of both p27-39UTR

constructs was detected in myoblasts compared to myotubes,

suggesting that endogenous miR-221/222 are competent for

inhibition of p27 mRNA translation in these cells. Co-transfection

of myoblasts with the p27-39UTR reporters along with miR-221/

222 antisense inhibitors (Fig. 6B) or with miR-221/222 duplexes

(Fig. 6C) further demonstrated that quail p27-39UTR mRNA is a

direct target of miR-221/222 and that inhibition of luciferase

Figure 2. Expression of miR-221, miR-222 and muscle specific
miR-133 in QMb-ts myoblasts. Northern blot analysis showing
expression of miR-221 and miR-222, compared to muscle-specific miR-
133, in QMb-ts myoblasts at 35uC, myotubes at 41uC and myotubes
shifted back to 35uC. Numbers represent the quantity of each miR
expressed as fold decrease/increase relative to that measured in
proliferating myoblasts (35u), taken as 1.0. U6 snRNA was used for
normalization.
doi:10.1371/journal.pone.0007607.g002

Table 1. Modulation of miR-221, miR-222 and miR-1 expression upon myogenic differentiation.

miR-221 miR-222 miR-1

fold decrease 6s.e. p fold decrease 6s.e. p fold increase 6s.e. p

QMb-ts 8.0 1.2 0.001 10.1 1.7 0.001 37.1 6.1 0.001

QMb 4.8 1.5 0.001 6.2 1.9 0.001 52.0 18.7 0.01

C2C12 2d 2.0 1.4 0.04 2.5 0.7 0.001 245.8 108.2 0.04

C2C12 4d 1.5 0.4 0.06 2.0 0.5 0.001 179.7 64.1 0.05

L6C5 2d 1.5 0.2 0.009 1.5 0.3 0.009 30.3 28.1 0.13

L6C5 4d 2.0 0.5 0.001 2.2 0.3 0.001 242.2 46.3 0.004

MSC 1d 1.9 0.2 0.001 1.9 0.1 0.001 9.2 5.4 0.10

MSC 2d 1.1 0.3 0.29 1.6 0.4 0.04 25.9 9.4 0.02

RNAs extracted from QMb-ts and QMb induced to differentiate for 2 days, C2C12 mouse myoblasts and L6C5 rat myoblasts induced to differentiate for 2 (2d) and 4 (4d)
days, and MSC induced to differentiate for 1 (1d) and 2 (2d) days were analyzed for the expression of miR-221, miR-222 and miR-1 by real-time RT-PCR. Fold decrease of
miR-221 and miR-222 and fold increase of miR-1 expression in myotubes is shown for each cell type relative to levels detected in proliferating myoblasts. Standard error
(s.e.) and statistical significance (p, n$3; for QMb and MSC, n = 3; for L6C5, n = 4; for QMb-ts, n = 6; for C2C12 n = 6) are shown. Not significant p values are underlined.
doi:10.1371/journal.pone.0007607.t001
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accumulation by miR-221/222 is efficiently counteracted by their

specific antisense inhibitors. A pGL3 reporter containing the

human p27-39UTR [24] was also co-transfected in myoblasts with

miR-221/222 duplexes for comparison and found to be regulated

also in avian cells (Fig. 6C). In conclusion, we show that in

myogenic cells miR-221 and miR-222 play a critical role in finely

regulating p27 protein dosage.

Ectopic expression of miR-221/222 leads to inhibition of
muscle-specific gene expression in myocytes and alters
maturation of myotubes

In order to investigate the functional role of miR-221 and miR-

222 in progression to terminal differentiation, miR-221/222 were

ectopically expressed in proliferating myoblasts and the rate of exit

from the cell cycle and accumulation of the early myogenic

transcription factor myogenin were measured. QMb-ts myoblasts

transfected with miR-221, miR-222 or both and control duplex

RNAs at 35uC in GM, were induced to differentiate at 41uC in

DM for various lengths of time. At each time point, cells were

labeled with BrdU for 2 hours, fixed and processed for

immunofluorescence with antibodies to BrdU and myogenin and

scored for positive cells. As shown in Fig. 7A and 7B, ectopic

expression of miR-221/222 induced a slight, but consistent delay

in the exit from the cell cycle up to 12 hours after induction of

differentiation and a decrease in the accumulation of myogenin,

most evident between 8 and 24 hours.

In order to establish whether the delay in myogenin

accumulation influenced the accumulation of sarcomeric proteins,

QMb-ts myoblasts overexpressing miR-221/222 were allowed to

differentiate for two days and cell extracts were analyzed by

Western blot. As shown in Fig. 8A, a significant reduction in the

accumulation of muscle-specific myosin heavy chain and a-actinin

was observed concomitant to p27 protein reduction. This reduced

accumulation of myofibrillar proteins was accompanied by an

altered cellular morphology, characterized by widening and

flattening of myotubes and loss of alignment and clustering of

Figure 3. Kinetics of p27, miR-221 and miR-222 accumulation in QMb-ts upon induction of differentiation at 41uC and shift down of
myotubes to 35uC. (A) QMb-ts myoblasts allowed to differentiate in DM upon temperature shift from 35uC to 41uC and (B) myotubes differentiated
in DM for 40 hours at 41uC (41-T0) subjected to Src activation at 35uC were analysed at different time points for expression of p27 protein by Western
blot (upper panels) and of p27 mRNA, miR-221 and miR-222 by real time RT-PCR. In B, 41-T24 represents control myotubes kept at 41uC for additional
24 hours. Accumulation levels of p27 protein and mRNA, miR-221 and miR-222, expressed relative to levels detected at 41uC, taken as 1.0, are shown
in the histograms, normalized for p38 protein, GAPDH mRNA and miR-16 respectively. Error bars represent standard error (n = 3).
doi:10.1371/journal.pone.0007607.g003
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Figure 4. Expression of miR-221 and miR-222 is under the control of the Ras-MAPK pathway. (A, B) Proliferating QMb-ts were treated in
DM at 35uC for two days with DMSO (vehicle) or with the MEK inhibitor U0126 (U0126), or infected with adenoviruses expressing GFP (ad-GFP) or a
dominant interfering Ras mutant (ad-RasN17). QMb-ts in DM at 41uC are shown for comparison. After 2 days, cells were analysed for (A) expression of
miR-221, miR-222 and miR-1 by real time RT-PCR and (B) accumulation of p27 and muscle-specific proteins by western blot. (C) QMb-ts myotubes
kept at 41u for 30 hours (41u (T0)) were treated with DMSO (vehicle) or U0126 (U0126) and shifted to 35u for 20 hours. Fold modulation of miRNA
expression shown in (A) and (C), normalized for miR-16 expression, is expressed relative to cell extracts at 35uC (A) and myotubes differentiated for
30 hours at 41uC (C), taken as 1.0. Error bars represent standard error and the observed differences are statistically significant (p,0.05; n$3).
doi:10.1371/journal.pone.0007607.g004
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nuclei (Fig. 9A). To investigate whether the unscheduled

expression of miR-221/222 in post-mitotic myocytes could lead

to alterations in myotube maturation, QMb-ts and MSC myocytes

were transfected with miR221/222 and, three days later, analyzed

for the expression of p27, muscle-specific myosin and cell

morphology. As observed in QMb-ts myoblasts undergoing

differentiation, ectopic expression of miR-221/222 in post-mitotic

myocytes induced a reduction of p27 (Fig. 8B and Fig. 9B) and

myosin accumulation (Fig. 8B and not shown), accompanied, in

MSC, by diminished cell fusion (Fig. 9C), as emphasized by the

high percentage of myotubes with a small number of nuclei,

compared to control (Fig. 8C).

A specific trait of the terminally differentiated muscle phenotype

is the assembly of a highly ordered array of myofibrils. Therefore,

organization of myofibrils was analyzed after transfection of miR-

221/222 in 1-day-old QMb-ts and MSC myocytes undergoing

maturation. As shown in Fig. 9B, QMb-ts myotubes expressing

miR-221/222, recognizable by the reduced levels of p27 protein in

nuclei, displayed misalignment of myofibrils and reduced sarco-

mere assembly, highlighted by the poor cross-striation pattern

evidenced by myosin staining, as compared to controls transfected

with siGFP. A similar phenotype was observed in MSC myotubes

expressing miR-221/222 (Fig. 9D). Note that monoclonal

antibody (mAb) to p27 does not recognize the antigen in MSC

by immunofluorescence. Levels of p27, therefore, were routinely

measured in parallel cultures by western blot analysis, as in Fig. 8B.

Altogether these findings strengthen the notion that the expression

of miR-221 and miR-222 needs to be tightly regulated during

differentiation and suggest the existence of a role of these miRNAs

both in progression of myogenic differentiation and in achieve-

ment of the differentiated phenotype.

Discussion

Beside the well-defined transcriptional level of regulation, the

discovery of miRNAs adds a new layer of post-transcriptional

mechanisms that appear to fine tune protein dosages of key

regulators during muscle differentiation. Importantly, the emerg-

ing crucial role of miRNAs in animal development suggests that

Figure 5. Over-expression and inhibition of miR-221 and miR-222 result in modulation of p27. Western blot analysis of p27 in myotubes
derived from (A) QMb-ts and primary QMb and (B) C2C12, L6C5 and MSC myoblasts transfected with control siGFP (siGFP), miR-221 (221), miR-222
(222) or both (221+222) duplex RNAs and allowed to differentiate for two days. p27 expression in (C) QMb-ts myotubes transfected with antisense
inhibitors to GFP (aGFP), used as control, miR-221 (a221), miR-222 (a222) or both (a221+a222) and shifted to 35uC for 24 hours and in (D) C2C12
myoblasts transfected with the same duplexes in GM and analysed 24 hours. Untransfected (n.t.) myoblasts in DM at 35uC or GM and (n.t.) myotubes
in DM are shown as controls. Numbers represent levels of p27 expressed as fold decrease/increase relative to that measured in controls (siGFP), taken
as 1.0. p38 protein levels were used for normalization.
doi:10.1371/journal.pone.0007607.g005
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these RNAs might also be involved in muscle diseases and, indeed,

recent studies have shown that deregulation of miRNAs is linked

to skeletal and cardiac hypertrophy and muscular dystrophy [30–

32]. By comparing miRNA expression profiling of proliferating

quail embryo myoblasts and terminally differentiated myotubes,

we identified a number of miRNAs strongly modulated upon

differentiation that had not been previously described in other

myogenic cell contexts. Two of them in particular, miR-221 and

miR-222, were down-regulated during differentiation in all

myogenic cells examined. Expression of miR-221 and miR-222

was restored in post-mitotic avian myotubes subjected to activation

of thermolabile Src kinase, a finding that correlates with the

consistently elevated levels of miR-222 expression observed in

human muscle disorders [31] and in muscles of 3- and 18-months-

old mdx dystrophic mice (B. C., L. C. and G. F., unpublished

observations). Together, these findings strongly suggest that miR-

222 plays a role in muscle cell damage. miR-221 and miR-222 are

both up-regulated in several tumor-derived cell lines and in cancer

patients and recent studies suggest that miR-221 and miR-222

promote cell cycle progression of tumor cells [33–35]. Interest-

ingly, we found that expression of miR-221/222 can be induced in

a post-mitotic context, thus in a proliferation-independent fashion.

miR-221/222 have been shown to control protein levels of the

cell-cycle inhibitors p27 and p57 [22–24,36,37]. Here we report

that also in myogenic cells the coordinated expression of miR-221

Figure 6. The 39UTR of quail p27 mRNA is a direct target of
miR-221 and miR-222. Firefly luciferase activity was measured in
QMb-ts after transfection of pGL3 reporter vectors carrying the entire
(UTR) or a portion (s-UTR) of the quail p27-39UTR containing the target
sites for miR-221 and miR-222. (A) pGL3 reporter vectors were
transfected and luciferase activities were measured in myoblasts (35u)
and myotubes (41u) cultivated in DM; (B) pGL3 reporter vectors were
cotransfected with antisense inhibitors to GFP (aGFP) and miR-221 and
miR-222 (a221+a222) in myoblasts at 35uC in DM; (C) pGL3 reporter
vectors were cotransfected with control (GFP) or miR-221 and miR-222
(221+222) duplexes in myoblasts at 35uC. In (C) also a human p27-39UTR
(h-UTR) is shown for comparison. The transfection efficiency was
accounted for by cotransfection with the renilla luciferase reporter pRL.
Activities of UTR, s-UTR and h-UTR were normalized on activity of pGL3
empty vector transfected in parallel plates, and expressed relative to
activity at 35u (A), to activity of control aGFP (B) and control GFP (C),
taken as 1.0. Error bars represent standard error and the observed
differences are all statistically significant (p,0.05; n$3).
doi:10.1371/journal.pone.0007607.g006

Figure 7. Ectopic expression of miR-221 and miR-222 delays
exit from the cell cycle and inhibits myogenin accumulation.
QMb-ts were transfected with control (siGFP) or miR-221 and miR-222
duplexes (miR221+222) in GM and transferred to 41uC in DM 24 hours
later. At different time points after temperature shift cells were pulse-
labeled (for 2 hours) with BrdU, fixed and stained for immunofluores-
cence with antibodies to (A) BrdU and (B) myogenin. The percentage of
positive cells relative to total cells is shown in the histograms. Error bars
represent standard error; (*) = p,0.05; (**) = p,0.01; n$3.
doi:10.1371/journal.pone.0007607.g007
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and miR-222 inversely correlates with the expression of p27 and

demonstrate that p27 is a direct target of both miRNAs in

myoblasts. In contrast, no down-modulation of p57 was observed

in myotubes from mouse myoblasts over-expressing miR-221/222;

moreover, the avian p57 mRNA homologue does not appear to

harbor putative target sequences for miR-221 and miR-222 (B. C.,

L. C. and G. F., unpublished observations). Over-expression of

miR-221/222 in myoblasts undergoing differentiation, while

Figure 8. miR-221 and miR-222 reduce muscle-specific protein
accumulation and affect cell fusion. (A) QMb-ts transfected at 35uC
with control siGFP, miR-221 (221), miR-222 (222) and both (221+222)
duplex RNAs were shifted to 41uC in DM and allowed to differentiate for
two days. Cell extracts were analyzed by immunoblotting with
antibodies specific for the indicated proteins. (B, C) MSC myocytes
kept in DM for 24 hours were transfected with control siGFP, miR-221
and miR-222 (221+222), and, after 2 days, were either analyzed by
Western blot with antibodies to the proteins indicated in (B) or
processed for immunofluorescence and scored for degree of cell fusion
(C). Protein accumulation levels expressed as fold decrease/increase
relative to those measured in control siGFP, taken as 1.0, are shown in
(A, B). p38 and vinculin protein levels were used for normalization. (C)
Histogram displaying the size distribution of MSC myotubes, labeled
with antibody to myosin heavy chain and with the fluorescent dye
Hoechst 33258, expressed as function of the number of nuclei per
myotube. Error bars represent standard error.
doi:10.1371/journal.pone.0007607.g008

Figure 9. miR-221 and miR-222 induce alterations of myotube
morphology and of myofibrillar organization. (A) QMb-ts
myoblasts were transfected with control duplexes (siGFP) or a mixture
of miR-221 and miR-222 duplexes (221+222), induced to differentiate in
DM at 41uC and, two days later, subjected to double immunofluores-
cence with actin-staining phalloidin and with antibodies specific for
p27, as indicated. (B) QMb-ts myotubes, differentiated in DM at 41uC for
24 hours, were transfected with control duplexes (siGFP) or a mixture of
miR-221 and miR-222 duplexes (221+222), maintained in DM at 41uC for
further 30 hours and subjected to double immunofluorescence with
antibodies specific for skeletal myosin and p27, as indicated. (C–D) MSC
myocytes, differentiated in DM for 24 hours, were transfected with
control duplexes (siGFP) or a mixture of miR-221 and miR-222 duplexes
(221+222), maintained in DM for additional 2 days and subjected to
immunofluorescence with antibodies specific for skeletal myosin. (A–D)
Nuclei were counterstained with Hoechst dye. Note that in (B) and (D)
high magnification micrographs are shown to allow visualization of
sarcomeres. Scale bars: 40 mm (A, C); 10 mm (B–D).
doi:10.1371/journal.pone.0007607.g009
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hampering p27 accumulation and inducing a transient delay in the

exit from the cell cycle, was not sufficient to maintain myoblast

proliferation. Our findings are in keeping with the observation that

in tumor cells reduced expression of p27 is not sufficient to sustain

active cell proliferation in the absence of growth factors [37].

Beyond contributing to modulation of cell proliferation, novel

regulatory functions of miR-221 and miR-222 are described in

progression and achievement of full myogenic differentiation.

Indeed, forced expression of miR-221/222 both in myoblasts

induced to differentiate and in post-mitotic myocytes caused a

diminished accumulation of muscle specific proteins and modifi-

cation of cellular morphology. Moreover, both avian and

mammalian myotubes displayed defects in sarcomere assembly,

a specific trait of the fully differentiated phenotype. Having

established that p27 is a target of miR-221 and miR-222 in

myoblasts and is down-modulated by miR-221/222 unscheduled

expression in post-mitotic myocytes, the question arises of whether

inhibition of p27 expression accounts for the observed defects of

myogenic differentiation. It was previously reported that abroga-

tion of p27 in C2C12 myoblasts reduces fusion and expression of

muscle myosin [4], although overall morphology and assembly of

sarcomeric structures were not analyzed. It is noteworthy that,

beyond control of cell cycle, p27 may regulate several other

functions both in myoblasts and in other cell types, such as

cadherin-mediated cell-cell adhesion [4], tumor progression,

apoptosis and cytoskeletal dynamics [38]. Interestingly, a negative

feedback loop has been described to occur between p27 and

RhoA, a pivotal regulator of the actin cytoskeleton [38], and over-

expression in myotubes of RhoA leads to alterations strikingly

similar to those induced by ectopic expression of miR-221 and

miR-222 (L.C. and G.F., unpublished observations). Therefore, it

is possible that the alterations of morphology and sarcomere

assembly that we observe in myotubes expressing ectopic miR-221

and miR-222 are mediated by down-modulation of cell cycle-

independent functions of p27 and/or by inhibition of other targets.

Being the miRNA world a relatively recent field of investigation,

very little is known about the pathways regulating the expression

and function of these RNAs. It was recently reported that

signalling through the ERK MAPK delayed expression of muscle-

specific miRNAs in C2C12 myoblasts undergoing differentiation

[11]. Here we describe for the first time that in QMb-ts myoblasts

induced to differentiate and in post-mitotic myotubes the

expression of miR-221 and miR-222 is under the positive control

of the Ras-MAPK signalling pathway, independently of prolifer-

ation. This well correlates with the finding that inhibition of the

Ras-MAPK pathway in QMb-ts myoblasts induced the expression

of p27 and muscle-specific proteins and the ability to fuse and

assemble contractile structures [16]. We confirm that the Ras-

MAPK pathway negatively regulates expression of miR-1 in

myoblasts, but we show that this miRNA is relatively insensitive to

this pathway in myotubes subjected to Src activation. Src and the

Ras-MAPK pathway have been implicated in repression of MyoD

and myogenin transcriptional activity in myoblasts [17,39–41]

and, recently, MRFs have been shown to regulate transcription of

muscle-restricted miR-1, miR-133 and miR-206 [10,11], likely by

direct binding to their presumptive promoters [10]. In turn,

muscle-specific miRNAs control accumulation of inhibitors of

muscle gene expression, thereby establishing positive feedback

loops resulting in enhanced differentiation [7]. Therefore, the

modulation of miRNA expression observed in QMb-ts may

represent a mechanism linking cytoplasmic intracellular signaling

initiated by Src through MAPK-pathway with nuclear events

leading to transcriptional inhibition of muscle gene expression

[39]. It is becoming clear that miRNAs are important elements of

the differentiation program of skeletal muscle cells. How the

interactions between upstream regulators of miRNAs and the

targets of miRNA activity lead to muscle differentiation and to its

maintenance will require further investigation.

Materials and Methods

Ethic Statement
All animals were handled in strict accordance with good animal

practice as defined by the D.L 116/1992 of the Ministero della

Salute (Italy), and all animal work was approved by the Ministero

della Salute, Dipartimento Alimenti, Nutrizione e Sanità Pubblica

Veterinaria- Ufficio Xu.

Materials and antibodies
Highly purified Triton X-100 and NP-40 were from Roche.

FITC and TRITC-conjugated phalloidin and mAb to vinculin

(VIN-11-5) were from Sigma. mAb to BrdU (BU-1) was from GE

Healthcare. mAbs to p27 and to Ras (cl.18) were from

Transduction Laboratories. mAb to skeletal a-actinin (9A2B8)

and myosin heavy chain (MF20) were obtained from D. Fischman.

Rabbit serum to chicken myogenin was provided by B. Paterson.

A rabbit serum to chicken skeletal muscle myosin was developed in

house [39]. Rabbit polyclonal antibodies to p38 were from Santa

Cruz Biotechnology and to phospho- and total p42/44 MAPK

were from Cell Signaling. FITC- and TRITC-conjugated goat

anti-rabbit and anti-mouse antibodies were from Jackson Im-

munoResearch Laboratories. Horseradish peroxidase-conjugated

goat anti-mouse and anti-rabbit antibodies were from Bio-Rad.

Plasmid construction, RNA duplexes and 29-O-Methyl
RNA oligonucleotides

To construct the p27-39UTR luciferase reporter plasmids (UTR

and s-UTR), the full length and a portion of the 39UTR of quail

p27 mRNA were amplified by RT-PCR from total RNA of quail

myotubes using the following primers obtained from the 39UTR

sequence of chicken p27 mRNA (Genbank Accession Number

NM_204256) and containing the XbaI restriction site:

Forward: 59-TATTCTAACTCCCTAAGGCGGAGGACT-39

Reverse 1: 59-TATTCTAGAACAGGGGACCCACTTAAA-

GG-39

Reverse 2: 59-TATTCTAGAACATACAGGTACACAGGC-

AATG-39

The 39UTR PCR products were sequenced and the nucleotide

sequence deposited in the Genbank database (Genbank Accession

Number FJ378653). The fragments were ligated into the XbaI site

downstream to the firefly luciferase coding sequence of the pGL3-

Promoter vector (Promega).

The following sequences of the miRNA duplexes were designed

according to [42]:

miR-221 sense: 59-AGCUACAUUGUCUGCUGGGUUUC-39

miR-221 antisense: 59-AACCCAGCAGACAAUGUAGUUU-

U-39

miR-222 sense: 59-AGCUACAUCUGGCUACUGGGUCUC-

39

miR-222 antisense: 59-GACCCAGUAGCCAGAUGUAGCU-

UU-39

The miRNA duplexes are siRNA-like miRNA mimics that have

been shown to function on target mRNAs as well as endogenous

miRNAs [43]. A Green Fluorescent protein siRNA duplex

(Eurofins) was used as control (siGFP).

The sequences of the 29-O-Me antisense RNA oligonucleotides

were the following:
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29-O-Me anti miR-221: 59-GAAACCCAGCAGACAAUGU-

AGCU-39

29-O-Me anti miR-222: 59-GAGACCCAGUAGCCAGAU-

GUAGCU-39

29-O-Me anti GFP: 59-UCUUCGGCAAGCUGACCCUGAA-

GUUACCUU-39

Cell cultures and viral infection
Primary cultures of quail myoblasts (QMb) were prepared as

described previously [19] and maintained proliferating in DMEM

supplemented with 10% FCS, 10% tryptose phosphate broth and

3% quail embryo extract (GM) at 37uC. Polyclonal populations of

quail myoblasts transformed by the temperature-sensitive mutant

of the Rous Sarcoma Virus LA29 (QMb-ts) were established as

described [19] and propagated at 35uC in GM devoid of quail

embryo extract. Differentiation was induced by plating the cells on

collagen-coated dishes in GM and, the following day, by

substituting GM with DMEM supplemented with 2% FCS (DM)

and incubating the cell at 41uC. C2C12 [44] and L6C5 myoblasts

[45] (provided by M. Grossi) were maintained proliferating at

37uC in DMEM supplemented with 15% FCS (GM). Differen-

tiation of C2C12 myoblasts was induced by incubating the cultures

in DMEM with 2% horse serum (DM) and of L6C5 myoblasts by

incubating the cells in DMEM with 1% FCS and 1 mg/ml of

insulin. Primary mouse satellite cells (MSC) [46] (provided by D.

Pajalunga) were grown in Ham’s medium supplemented with 20%

FCS, 3% chicken embryo extract and 2.5 ng/ml bFGF.

Differentiation was induced by incubating the cultures in DMEM

with 10% FCS.

High-titer stocks of recombinant adenoviruses expressing GFP

(provided by M. Crescenzi) or RasN17 (provided by L. Parada)

were used to infect QMb-ts cells. Virus expression was scored by

immunofluorescence and only cultures showing a percentage of

infection over 70% were further processed. For treatment with

MEK inhibitor U0126 (Promega), myoblasts were kept for 2 days

at 35uC in DM containing 12.5 mM U0126 or vehicle (DMSO)

and medium was renewed every day; myotubes differentiated for

30 hours at 41uC were shifted to 35uC in DM containing 12.5 mM

U0126 or vehicle (DMSO) for 20 hours.

miRNA quantification
Total RNA was extracted using TRIzol (Invitrogen). RNA

enriched for small RNAs was obtained using the PureLink miRNA

Isolation Kit (Invitrogen), according to the manufacturer’s

instructions. miRNA levels were analyzed using the TaqMan

Real Time PCR method (1 ng/assay), and quantified with ABI

Prism 7000 SDS (Applied Biosystems). Primers for miRNAs and

the reagents for reverse transcription and PCR reactions were all

obtained from Applied Biosystems. Relative expression was

calculated using the comparative Ct method (22DDCt) [47].

Different samples were normalized to miR-16 expression.

Conditions for miRNA profiling were previously described [48].

Briefly, to detect mature miRNA species, reverse transcription and

amplification were performed with specific primers and TaqMan

probes. 250 miRNAs were assayed in a 96-well format and

samples were also normalized to the median Ct value. Heat maps

were generated using Genesis software 1.7.2 version (Graz

University of Technology).

RNA expression analysis
Total RNA (30 mg) and RNA enriched for small RNAs (2 mg)

was separated through a 12% denaturing urea-polyacrilamide gel

and transferred to a GeneScreen Plus nylon membrane. miR-221,

miR-222, miR-133 probes (DNA oligonucleotides complementary

to the microRNA sequences) and U6 probes were end labeled with

50 mCi of [c-32P]dATP. Membranes were hybridized in 5X SSPE,

10% Dextran Sulphate, 5X Denhartd solution, 1% SDS and 50%

formamide at 37uC for 18 hours and washed in 2X SSPE and

0.2% SDS twice at room temperature and once at 37uC. Bands

were visualized on a PhosphorImager (Molecular Dynamics) and

quantified using ImageQuant 5.1 software (Molecular Dynamics).

For quantitative RT-PCR analysis of p27 mRNA, total RNA was

extracted using the TRIzol reagent and retro-transcribed with the

Reverse Transcription System (Promega) using oligo (dT). Primers

for quail p27 mRNA analysis were: (Forward) 59-AGCAAA-

CACCCAAGAAATCGA-39 and (Reverse) 59-CTCCGCCTTA-

GGGAGTTTACG-39; primers for quail GAPDH mRNA analysis

were: (Forward) 59-GAGGGTAGTGAAGGCTGCTG-39 and

(Reverse) 59-CCACAACACGGTTGCTGTAT-39. Analyses were

carried out using Power SYBR Green PCR master mix (Applied

Biosystems) and ABI Prism 7500. Results were normalized with

respect to GAPDH expression. Relative expression was calculated

using the comparative Ct method (22DDCt) [47].

Transient transfections and luciferase assays
QMb, QMb-ts, C2C12 and L6C5 myoblasts were transfected

with 100–200 nM duplex RNAs or 50–100 nM antisense RNA

oligos using the lipofectamine reagent (Invitrogen) in serum-free

Optimem (Gibco-BRL). QMb and QMb-ts myoblasts were

transfected at 35uC for 4 hours, fed with fresh GM and, 24 hours

later, transferred to DM at 41uC for different times. QMb-ts

myotubes, kept at 41uC in DM for at least 24 hours, were

transfected for 4 hours and maintained at 41uC in DM for further

24 hours. C2C12 and L6C5 myoblasts were transfected at 37uC in

GM and, after 4 hours, medium was replaced with fresh GM and

maintained for a minimum of 24 hours, or shifted to DM for at

least 2 days. MSC were transfected with 50 nM duplex RNAs

using the HiPerfect reagent (Qiagen). Transfection was performed

either when medium was replaced with DM or after 24 hours in

DM. Transfection efficiency of miRNA duplex oligonucleotides

was monitored in each experiment by real time PCR quantifica-

tion and miR-221/222 levels were found to be at least 400-fold

higher than the endogenous miRNA levels.

For the expression of luciferase reporter constructs, 50 ng of

pGL3 (Promega) and pGL3-derived plasmids were co-transfected

with 50 ng of pRL-TK (Promega) per 105 cells to normalize for

transfection efficiency using the lipofectamine reagent in serum-

free Optimem. In some experiments, a pGL3 construct containing

the human p27mRNA-39UTR (h-UTR, obtained by A. Fusco,

[24]) was also used. When required, 50–100 nM of duplex or

antisense RNAs were co-transfected with plasmid DNA. QMb-ts

myoblasts were transfected at 35uC, transferred in DM, and then

either kept at 35uC or shifted to 41uC to induce differentiation.

24–48 hours later, cells were lysed and luciferase expression was

measured with the Dual Luciferase Assay kit (Promega) using a

luminometer (Lumat LB9507, Berthold).

Bromo-deoxyuridine labeling and immunofluorescence
analysis

For bromo-deoxyuridine (BrdU) incorporation studies, QMb-ts

transfected at 35uC were shifted to 41uC in DM and labeled with

20 mM BrdU for 2 hours at various times following temperature

shift, as required. Following BrdU incorporation, cells were fixed

and processed for immunofluorescence. Cultures to be analyzed

by immunofluorescence were routinely fixed with 4% parafor-

maldehyde, permeabilized with 0.25% TritonX-100 in Phosphate

Buffered Saline and processed as previously described [39]. For

labeling with rabbit polyclonal antibodies to myosin, following
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fixation with paraformaldehyde, cells were permeabilized with ice-

cold 100% methanol and washed thoroughly before incubation

with antibodies. For labeling with mAb to myosin heavy chain

(MF20), cultures were fixed with a mixture of 3.5% formaldehyde,

70% ethanol and 5% acidic acid and washed thoroughly before

incubation with antibody. The samples were examined with an

Olympus microscope. Images were recorded on a CCD camera

and processed using a DeltaSystem and Adobe Photoshop

software. Cell scoring was carried out using the public domain

software ImageJ.

Whole-cell extracts and Western blot analysis
Cells were lysed in RIPA buffer (140 mM NaCl, 3 mM MgCl2,

1 mM EDTA, 1 mM orthovanadate, 15 mM Hepes, pH 7.2, also

containing 0.5% Nadeoxycholate, 1% NP-40, 0.1% SDS)

supplemented with a cocktail of protease inhibitors. Western blots

were carried out using horseradish peroxidase-conjugated goat

anti-rabbit and anti-mouse antibodies and revealed with a

chemiluminescence detection system by Pierce. Quantitation of

the bands was carried out by scanning films using the CanoScan

D2400U by Canon and evaluating band intensity using Im-

ageQuant software.

Statistical Analysis
Variables were analyzed by both Student’s t test and one way

ANOVA and a probability value of p #0.05 was deemed statis-

tically significant. Values are expressed as average 6 standard

error (s.e.).

Supporting Information

Table S1 MiRNA Expression Profiling in Quail Myoblasts

Expressing ts-Src Kinase

Found at: doi:10.1371/journal.pone.0007607.s001 (0.23 MB

XLS)
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