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Abstract: Uterine leiomyomas are tumors, which are hormone driven and originate from the smooth
muscle layer of the uterine wall. In addition to known genes in leiomyoma pathogenesis, recent
approaches also highlight epigenetic malfunctions as an important mechanism of gene dysregulation.
RNA sequencing raw data from pair-matched normal myometrium and fibroid tumors from two
independent studies were used as discovery and validation sets and reanalyzed. RNA extracted
from normal myometrium and fibroid tumors from 58 Slovenian patients was used as independent
confirmation of most significant differentially expressed genes. Subsequently, GWA data from leiomy-
oma patients were used in order to identify genetic variants at epigenetic marks. Gene Ontology
analysis of the overlap of two independent RNA-seq analyses showed that NPTX1, NPTX2, CHRM2,
DRD2 and CACNA1A were listed as significant for several enriched GO terms. All five genes were
subsequently confirmed in the independent Slovenian cohort. Additional integration and functional
analysis showed that genetic variants in these five gene regions are listed at a chromatin structure
and state, predicting promoters, enhancers, DNase hypersensitivity and altered transcription factor
binding sites. We identified a unique subgroup of dysregulated synaptic signaling genes involved in
the biology and pathogenesis of leiomyomas, adding to the complexity of tumor biology.

Keywords: uterine leiomyomas; NPTX1; NPTX2; CHRM2; DRD2; CACNA1A

1. Introduction

Uterine leiomyomas (UL), also known as uterine fibroids, are fibroid tumors that are
hormone driven and originate from the smooth muscle layer of the uterine wall [1,2]. It is
believed that the growth of UL is promoted by gonadal hormones, especially estrogen [3].
The tumors are characterized by deposition of extracellular matrix, which is disorganized
and results in various sizes of benign neoplasms [4,5]. The estimated prevalence of UL
ranges from 20 to 77% [6]. While UL are usually asymptomatic, up to 25% of women
with UL may experience abdominal pain, heavy menstrual bleeding, increased risk of
miscarriage or infertility [7]. The only curative treatment is hysterectomy, as non-surgical
treatment options do not exist [8]. New genetic techniques have provided new insights
into the pathogenesis of UL, with stratification into four main subtypes: mutations of
mediator of transcription subunit 12 (MED12), fumarate hydratase (FH), high mobility
group AT-hook 2 (HMGA2) translocations and collagen gene deletions [9]. It has been
found that approximately 70% of patients with UL carry mutations in exon 2 of MED12 [10].
Additionally, recent work has also revealed subtype-specific gene expression profiles,
which supports the idea of different mechanisms of leiomyoma pathogenesis [11]. Fur-
thermore, growth factors and their cognate receptors also play an important role in the
pathogenesis of UL [12]. It was clearly shown that alterations in over-expression of TGF-β
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may contribute to the growth of UL [13,14]. TGF-β stimulation increases extracellular
matrix protein production and simultaneously decreases degradation of the matrix in
UL [15]. Recent state-of-the-art integrative approaches have identified a wide genetic and
epigenetic etiology underlying UL. Integration of transcriptomic and epigenetic changes
has allowed for the identification of differential transcription factor occupancy, differential
enhancer engagement consisting of histone acetylation, and altered enhancer–promoter
contact rewiring as key events in UL gene dysregulation and differential expression [16].
Moreover, the regulatory potential of altered DNA methylation driving UL development
has also been shown [17]. Additionally, common loci between UL and other gynecological
diseases or phenotypes have also been identified by whole-genome association studies
(GWAs) [18,19], implicating a complex background in the etiology of UL and insinuating
the interplay of genetic variants and epigenetic expression regulation.

As recent approaches highlight epigenetic malfunctions as important mechanisms of
gene dysregulation, we aimed to use our previously published transcriptomic–genomic
integration approach [20,21] to identify additional genetic–epigenetic interplay regions
involved in the formation and biology of UL. For that, we used the combination and
integration of publicly available data from three previously published independent stud-
ies and our own cohort. Publicly available RNA sequencing (RNA-seq) raw data reads
from pair-matched normal myometrium and fibroid tumors from two independent stud-
ies [16,17] were used as discovery and validation sets in the present study. Subsequently,
RNA extracted from normal myometrium and fibroid tumors from our own Slovenian
cohort was used as independent confirmation of identified genes, and meta-analysis GWA
summary [18] was used in order to identify genetic variants at epigenetic marks.

2. Materials and methods
2.1. Subjects

We enrolled 36 Slovenian patients with clinically diagnosed UL who had undergone
surgical treatment at the Department of General Gynecology and Gynecological Urology
(University Medical Centre Maribor, Maribor, Slovenia). Out of 36, 14 women presented
with solitary and 22 with multiple uterine fibroids. RNA was extracted from solitary
tumors and from one tumor of patients with multiple UL. Clinical data are presented in
Table 1. Additionally, 22 patients who underwent surgical treatment for non-UL-related
conditions (with pelvic organ prolapse) were enrolled as controls in order to extract RNA
from normal myometrium. The mean age of enrolled women was 43.3 ± 6.5 years for
cases and 60.6 ± 11.5 years for controls. The study protocol was approved by the National
Medical Ethics Committee and the Institutional Review Board (KME 43/10/15). Written
informed consent was obtained from all enrolled subjects.

Table 1. Clinical data of enrolled patients with UL.

Data Values

Age mean (95% CI) 43.3 (40.6–45.4)
Positive familial history (%) 17.7

Menarche mean (95% CI) 12.6 (12.1–14.1)
Pregnancy mean (95% CI) 3 (2.5–3.5)

Parity mean (95% CI) 1.9 (1.6–2.2)
Miscarriage mean (95% CI) 0.6 (0.2–1.0)

Oral contraceptives (%) 60
Progestin therapy (%) 16
BMI mean (95% CI) 26.3 (25.0–28.5)

2.2. RNA Sequencing Analysis

RNA-seq analysis was performed using publicly available pair-matched paired-end
raw datasets from SRP166862 and SRP217468 [17] and SRP188330 [16] from previously
published studies. Datasets SRP166862 and SRP217468 were used as discovery and valida-
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tion sets in the study performed by George and colleagues [17] and were merged to obtain
the discovery dataset in the present study. The discovery dataset consisted of 15 matched
normal myometrium and fibroid tumors. If multiple tumors were present, samples from
other UL were discarded from the analyses. Dataset SRP188330 was used as the validation
set in the present study and also consisted of 15 matched normal myometrium and fibroid
tumors. Both datasets were analyzed independently using the R 4.0.2 environment (R Core
Team 2020, Vienna, Austria). Paired-end reads were mapped to the hg19 reference genome
and assigned to genomic features using Rsubread 2.2.4 R package and featureCounts [22,23].
Counts per million (CPMs) were estimated using edgeR 3.30.3 R package [24] and low
expressed genes were filtered out based on CPMs corresponding to read counts of 10.
Retained genes were normalized using the trimmed mean of M values method [25]. Mean–
variance modeling at the observational level transformation (VOOM) was applied [26], and
differential expression of fibroid tumors relative to normal myometrium was estimated
using models and empirical bayes implemented in limma 3.44.3 R package [27] and using
blocking to adjust for paired samples. Differential expression was considered for genes
with q value < 0.05 and loget > 2 or <−2 (loget = log2(fibroid/normal)).

2.3. Gene Ontology Analysis

Gene Ontology analysis was performed using the software package CytoScape 3.8.1 [28]
with integrated application ClueGO v2.5.7 [29]. ClueGO analysis was performed us-
ing the following parameters and selected options: Ontology/Pathways selected: Bio-
logical Process, Cellular Component and Molecular Function Evidence selected: only
All_Experimental.

2.4. Extraction of RNA

RNA was extracted from 25 to 30 mg of fibroid tumors and normal myometrium using
a miRNeasy mini kit (QIAGEN, Germantown, ML, USA) after manual homogenization.
Purity and concentration of nucleic acids were determined using Synergy 2 spectropho-
tometer (BioTek, Winooski, VT, USA), and integrity of RNA was checked using agarose
gel electrophoresis.

2.5. Validation Using RT-qPCR

A total of 1 µg of mRNA was transcribed into cDNA using a high-capacity cDNA
reverse transcription kit (Thermo Fisher, Waltham, MA, USA). Nucleotide sequences of
target genes NPTX1, NPTX2, DRD2, CHRM2 and CACNA1A were obtained from the NCBI
Nucleotide database (www.ncbi.nlm.nih.gov/nuccore/, accessed on 15 March 2021), and
isoform non-specific primers were hand-picked using IDT OligoAnalyzer Tool (eu.idtdna.
com/calc/analyzer, accessed on 15 March 2021). Reference genes primers for ACTB and
B2M were obtained from a previous study [30]. Primer sequences and accession numbers
are summarized in Table 2. Primers were synthesized by Sigma (Merck, Darmstadt,
Germany). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) gene
expression experiments were carried out using LightCycler 480 SYBR Green I Master Mix
and a LightCycler 480 real-time thermocycler (Roche, Basel, Switzerland). An amount of
2 µL of 10-fold diluted cDNA (5 ng/µL) was used as a template. Efficiency was >90% for
all primer pairs, and specificity of amplification was estimated using melting curves for
each sample after each run. Raw CT values were obtained from three run-independent
technical replicates for each sample. Geometric averaging of reference genes was used
for normalization, and relative expression was calculated using the 2−∆∆Ct method [31].
Statistical analysis was performed using linear 2−∆Ct calculation and binomial generalized
linear models adjusted to age in the R environment.

www.ncbi.nlm.nih.gov/nuccore/
eu.idtdna.com/calc/analyzer
eu.idtdna.com/calc/analyzer
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Table 2. Primer sequences and accession numbers.

GENE ACCESSION FW 5′ to 3′ RV 5′ to 3′

NPTX1 NM_002522.4 GTGGCAGTGGCGAGAACT GGTCCCAGATGTTGAAGTGG
NPTX2 NM_002523.3 CAGGACGGAGAGAAGCTG AGTGGCATCAAACCTACCC
CHRM2 NM_001006630.2 CTATCAACCCTGCCTGCTAT ACCTTGTAGCGCCTATGTTC
DRD2 NM_000795.4 TCCCAGCAGAAGGAGAAGAA TGTTCAGGATGTGTGTGATGAA

CACNA1A NM_000068.4 TTGTGGTGTTCCCCTTCTTC ACATGCGGTACTGGAAGCTC

2.6. Correlation Analyses and Machine Learning Prediction Value Estimation

In order to perform correlation analyses, raw counts from publicly available RNA-seq
data were transformed to transcripts per million (TPM). Both discovery and validation
datasets were first merged and divided into normal myometrium and fibroid tumors
datasets in order to obtain 30 samples per set. Correlation analyses were performed using
the 4.0.2 environment (R Core Team 2020, Vienna, Austria) and using PerformanceAna-
lytics 2.0.4 R package (github.com/braverock/PerformanceAnalytics). Additionally, all
five genes were further assessed using randomForest 4.6-14 [32] R package and receiver
operating characteristics analysis using Proc [33] R package. The assessment was made
independently for obtained RNA-seq TPM data and obtained RT-qPCR data.

2.7. Integration to Meta-GWAs and In Silico Functional Analysis

Uterine leiomyoma GWA data were obtained from publicly available summary statis-
tics of uterine leiomyoma meta-analysis of cohorts of the Women’s Genome Health Study,
UK Biobank, Queensland Institute of Medical Research, and the North Finnish Birth Co-
hort of white European ancestry (www.ebi.ac.uk/gwas/studies/GCST009158, accessed
on 5 May 2021) [18]. Summary statistics included summaries for 11,464,556 variants. All
variants ranging ±100 kb from previously identified differentially expressed genes were
extracted and further analyzed. Functional analyses were conducted using HaploReg
v4.1 [34] and GTEx Portal [35]. Regional Manhattan plots were constructed using Locus-
Zoom [36].

3. Results
3.1. RNA Sequencing and Differential Expression

Using available pair-matched raw datasets (SRP166862 and SRP217468; merged and
used as discovery [17] and SRP188330; used as validation) [16] from previously published
studies, we performed our own RNA-seq analysis using the aforementioned pipeline in
the R environment. The discovery dataset was first filtered according to q value < 0.05 and
loget > 2 or <−2, where 294 significantly differentially expressed genes were observed in
fibroid tumors relative to normal myometrium (Table S1). Subsequently, the same RNA-
seq pipeline was applied to the validation cohort, where 443 significantly differentially
expressed genes were observed in fibroid tumors relative to normal myometrium, using
the same filtering thresholds (Table S1). The results of the validation dataset RNA-seq
analysis confirmed 204 significantly differentially expressed genes from the discovery
dataset (Figure 1).

3.2. GO Analysis

Subsequent Gene Ontology analysis of 204 genes confirmed on the validation dataset
showed that 15 significantly enriched terms were listed after Bonferroni correction (Table 3).
It was observed that NPTX1 and NPTX2 genes were listed at eight enriched terms, followed
by DRD2 and CHRM2, which were listed at seven enriched terms. Interestingly, the
CACNA1A gene was listed at four enriched terms where all four aforementioned genes
were also present. All five genes were significantly upregulated in both the discovery and
validation datasets (Figure 2). Based on that observation, NPTX1, NPTX2, DRD2, CHRM2
and CACNA1A genes were considered for an additional validation using RT-qPCR.

www.ebi.ac.uk/gwas/studies/GCST009158
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Figure 1. Overlap of significantly expressed genes of discovery and validation RNA-seq analysis.

Table 3. Significant GO terms for 204 confirmed genes.

GO ID GO TERM ONTOLOGY BONFERRONI p GENES

GO:0098644 complex of collagen trimers Cellular component 0.004 COL11A1, COL2A1, COL4A4
GO:0009308 amine metabolic process Biological process 0.004 ATCAY, HDC, INMT, TDO2

GO:0098960 postsynaptic neurotransmitter
receptor activity Biological process 0.006 CHRM2, DRD2,

NPTX1, NPTX2
GO:0032835 glomerulus development Biological process 0.015 BMP7, CD24, COL4A4

GO:0001822 kidney development Biological process 0.020 BMP7, CD24, COL4A4,
OSR1, STRA6

GO:0099565 chemical synaptic
transmission, postsynaptic Biological process 0.025 CHRM2, DRD2,

NPTX1, NPTX2

GO:0072001 renal system development Biological process 0.025 BMP7, CD24, COL4A4,
OSR1, STRA6

GO:0001655 urogenital system
development Biological process 0.027 BMP7, CD24, COL4A4,

OSR1, STRA6

GO:0098916 anterograde trans-
synaptic signaling Biological process 0.027 CACNA1A, CHRM2, DRD2,

NPTX1, NPTX2

GO:0007268 chemical synaptic transmission Biological process 0.027 CACNA1A, CHRM2, DRD2,
NPTX1, NPTX2

GO:0099537 trans-synaptic signaling Biological process 0.030 CACNA1A, CHRM2, DRD2,
NPTX1, NPTX2

GO:0030594 neurotransmitter
receptor activity Molecular function 0.031 CHRM2, DRD2, GRIA2,

NPTX1, NPTX2

GO:0044106 cellular amine
metabolic process Biological process 0.033 ATCAY, HDC, TDO2

GO:0099536 synaptic signaling Biological process 0.034 CACNA1A, CHRM2, DRD2,
NPTX1, NPTX2

GO:0010469 regulation of signaling
receptor activity Biological process 0.034 CRHBP, NPTX1, NPTX2

3.3. RT-qPCR Validation of GO Identified Genes

NPTX1, NPTX2, DRD2, CHRM2 and CACNA1A were selected for an additional
validation using RT-qPCR. All five genes were upregulated in both discovery and validation
datasets (Table 4). Subsequent RT-qPCR analysis was performed using RNA extracted from
Slovenian patients, from 22 unmatched normal myometrium and 36 unmatched fibroid
tumors. All five genes were proven to be statistically significantly upregulated in fibroid
tumors relative to normal myometrium (Table 4; Figure 3). Moreover, the gene expression of
NPTX1, NPTX2, CHRM2, DRD2 and CACNA1A was significantly upregulated throughout
both RNA-seq and RT-qPCR analyses. Raw RT-qPCR CT values are provided in Table S2.
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Table 4. RNA-seq and RT-qPCR results of selected genes.

Discovery Validation RT-qPCR

GENE LOGET q VALUE LOGET q VALUE FC p VALUE

NPTX1 2.84 2.3 × 10−4 2.49 1.3 × 10−4 2.55 0.013
NPTX2 3.50 1.4 × 10−4 2.60 3.4 × 10−5 7.34 0.015
DRD2 2.63 3.2 × 10−3 3.91 6.4 × 10−7 6.08 0.016

CHRM2 4.72 1.3 × 10−4 5.19 7.5 × 10−8 5.77 0.018
CACNA1A 2.55 1.4 × 10−4 2.18 2.1 × 10−6 4.68 0.024

Loget: Log2FC fibroid tumors relative to normal myometrium; FC: fold-change fibroid tumors relative to
normal myometrium.
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3.4. Between-Gene Regulation of the Identified Genes and Prediction Value Estimation

In order to assess the relationships between the identified genes, we performed corre-
lation analyses. For that, discovery and validation RNA-seq datasets containing raw counts
were merged, TPMs were calculated, and datasets were split into normal myometrium and
fibroid tumor datasets. Using normal myometrium data, the correlation results showed
an extensive interplay between all five genes (Figure 4A), whereas using fibroid tumor
data, the correlation was retained only for NPTX1 and CACNA1A (Figure 4B). Moreover, in
normal data, the correlation between NPTX1 and DRD2 was not observed, but in fibroid
tumor data, the correlation between NPTX1 and DRD2 was observed. Subsequently, calcu-
lated TPMs and RT-qPCR results were used independently to assess the prediction value of
selected genes using machine learning approach. For both RNA-seq and RT-qPCR obtained
data, the Random Forest machine learning algorithm further confirmed the involvement
of the five genes in uterine leiomyoma. For both datasets, the accuracy of prediction was
100% and AUC: 1.
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3.5. Integration into Uterine Leiomyoma Meta-GWAs and Functional Analysis

Subsequently, validated and confirmed expression results were integrated using
previously published meta-analysis results achieved by Gallagher and colleagues [18].
We analyzed single nucleotide variants from meta-analysis summary statistics ranging
±100 kb from previously identified differentially expressed genes, and we extracted the
most significant signals at each region (Table 5). For genes NPTX1, NPTX2, CHRM2,
DRD2 and CACNA1A, we found significant 3′ downstream variant rs9906819, 5′ upstream
variant rs817758, 3′ downstream variant rs77571733, 5′ upstream variant rs139711611 and
intronic rs112605945 variant, respectively (Figure 5). No eQTL data were available for
SNPs and selected genes. Using HaploReg, rs9906819 is listed as a genic enhancer by
the Core 15-state model and 25-state model, and at H3K4me1_Enh and H3K27ac_Enh
epigenetic chromatin state marks in various cells, there are also female skeletal muscle cells.
Additionally, DNase hypersensitivity in fetal and psoas muscle is listed at rs9906819, and
ChIP-seq evidence of NRSF binding exists at rs9906819. The PBX3 putative transcription
factor binding motif is also listed as altered by the variant. SNP rs817758 is listed only at
the H3K4me3_Pro epigenetic mark in lungs and spleen, and the YY1 putative transcription
factor binding motif is altered by the variant. SNP rs77571733 is listed at H3K4me1_Enh in
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muscle, mesenchymal stem cells and lung fibroblasts, and POU2F2 putative transcription
factor binding motif is listed as altered by the variant. SNP rs139711611 is listed at the
H3K4me1_Enh epigenetic mark in mesoderm cultured cells and mammary epithelial cells.
DNase hypersensitivity is also listed at rs139711611 in iPSCs. rs112605945 is listed as a
genic enhancer by the Core 15-state model and 25-state model. DNase hyperactivity is
also listed at the variant by 25-state model. The variant is also listed at H3K4me1_En,
H3K4me3_Pro, H3K27ac_Enh and H3K9ac_Pro epigenetic chromatin state marks. CTCF,
HNF4, NRSF, SP1 and Sin3Ak-20 putative transcription factor binding motifs are also listed
as altered by the variant.

Table 5. Most significant SNPs in selected gene regions.

GENE SNP CONS REF ALT EFFECT SIZE ST ERROR p VALUE N

NPTX1 rs9906819 3’ downstream A C 0.036 0.011 0.0013 244324
NPTX2 rs817758 5’ upstream T C 0.085 0.029 0.0028 226299
CHRM2 rs77571733 3’ downstream A G −0.172 0.049 0.0004 238961
DRD2 rs139711611 5’ upstream A C −0.151 0.053 0.0044 238961

CACNA1A rs112605945 intron variant T C 0.078 0.026 0.0021 244324

CONS: consequence; REF: reference allele; ALT: alternative allele; ST ERROR: standard error of meta-analysis; N: number of individuals at
each observation.

Genes 2021, 12, 1179 9 of 14 
 

 

Table 5. Most significant SNPs in selected gene regions. 

GENE SNP CONS REF ALT EFFECT SIZE ST ERROR p VALUE N 
NPTX1 rs9906819 3’ downstream A C 0.036 0.011 0.0013 244324 
NPTX2 rs817758 5’ upstream T C 0.085 0.029 0.0028 226299 
CHRM2 rs77571733 3’ downstream A G -0.172 0.049 0.0004 238961 
DRD2 rs139711611 5’ upstream A C -0.151 0.053 0.0044 238961 

CACNA1A rs112605945 intron variant T C 0.078 0.026 0.0021 244324 
CONS: consequence; REF: reference allele; ALT: alternative allele; ST ERROR: standard error of meta-analysis; N: number 
of individuals at each observation. 

 
Figure 5. Regional Manhattan plots for selected gene regions from meta-analysis summary. 

4. Discussion 
The biology of uterine leiomyoma is still not well understood, and recent state-of-

the-art integrative studies have shown that in addition to already established genetic strat-
ification into four main subtypes, epigenetic malfunctions are recognized as important 
mechanisms of gene dysregulation in UL pathogenesis. Using the integration of 

Figure 5. Regional Manhattan plots for selected gene regions from meta-analysis summary.



Genes 2021, 12, 1179 9 of 13

4. Discussion

The biology of uterine leiomyoma is still not well understood, and recent state-of-
the-art integrative studies have shown that in addition to already established genetic
stratification into four main subtypes, epigenetic malfunctions are recognized as impor-
tant mechanisms of gene dysregulation in UL pathogenesis. Using the integration of
transcriptomic and genetic data, the present study identified synaptic signaling genes
NPTX1, NPTX2, CHRM2, DRD2 and CACNA1A, a unique subgroup of dysregulated genes
in the biology of UL. To the best of our knowledge, this is the first time that synaptic
signaling genes were observed to be associated with UL. GO analysis of the overlap of
two independent RNA-seq analyses showed that NPTX1, NPTX2, CHRM2, DRD2 and
CACNA1A were listed as significant for several enriched GO terms. These genes were
subsequently validated using RT-qPCR in our own cohort consisting of 36 and 22 Slovenian
patients and controls, respectively. The validation using Slovenian samples additionally
confirmed the aforementioned genes. We observed that all five genes show significant
upregulation in fibroid tumors relative to normal myometrium. However, Slovenian
samples were not pair-matched, which presents a limitation of the study. Moreover, the
present study also showed between-gene dysregulation when comparing the gene–gene
interactions between normal myometrium and fibroid tumor. Correlation analysis has
clearly shown that there is a shift in gene–gene regulations in fibroid tumors in terms of lost
interplay. Moreover, based on correlation figures, it is clearly evident that the expression
of the aforementioned genes is upregulated in fibroid tumors, ranging above 10 TPMs
in comparison with normal myometrium, which ranges up to but not above 10 TPMs.
The involvement of NPTX1, NPTX2, CHRM2, DRD2 and CACNA1A was additionally
confirmed using a machine learning approach, which also confirmed the involvement of
these genes in the biology of UL in two independent datasets obtained from RNA-seq
analyses and an RT-qPCR experiment. As interesting as this finding may seem, there is
evidence of association between the aforementioned genes and tumorogenesis in some
cancers. NPTX1 (neuronal pentraxin 1) is a member of the pentraxin family and can bind
various ligands, such as bacteria and also chromatin [37]. Molecular studies also reveal
that NPTX1 functions by regulating both Nodal ligands and bone morphogenetic proteins
(BMP) signaling via binding to TDGF1, which regulates pluripotency and neural differ-
entiation [37]. Both Nodal ligands and BMP are also members of the TGF-β family of
ligands [38], which is in accordance with previous findings where TGF-β was considered a
key player gene in UL [39] and further extends previously identified pathways to synaptic
signaling. Furthermore, NPTX1 was also identified as a novel epigenetic regulator that
was associated with prognosis in lung cancer [40]. NPTX2 (neuronal pentraxin 2) is also a
member of the highly conserved pentraxin protein group and was previously associated
with neurodegenerative diseases [41]. Additionally, it was also previously observed that
NPTX2 hypermethylation inhibits cell cycle arrest and apoptosis in gastric cancers via p53
suppression [42], which in turn suggests a possible association of NPTX2 with epigenetic
regulation. Synaptic receptors CHRM2 (cholinergic receptor muscarinic 2) and DRD2
(dopamine receptor D2) have also been listed at significantly enriched terms in GO analysis.
To the best of our knowledge, CHRM2 is not associated with conditions or functions that
could put the gene on the radar in the development of UL pathogenesis. However, expres-
sion of CHRM2 is co-regulated with the expression of DRD2 in healthy myometrium but
not in fibroid tumors, where correlation between these two genes has not been observed.
In contrast to CHRM2, DRD2 has previously been associated with UL. It has been shown
that DRD2 codon 313(*)T-related genotypes/alleles are associated with the presence of
UL [43]. Interestingly, it was observed that the CACNA1A gene was listed at four enriched
terms, where all four aforementioned genes were also present. CACNA1A gene encodes
the voltage-dependent P/Q-type calcium channel subunit α-1A and is widely expressed
throughout the central nervous system. CACNA1A has previously been associated with a
wide spectrum of neurological disorders [44]. Additionally, with epigenetic exploration,
it was shown that methylation of CACNA1A is one of the markers for irradiation efficacy
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in oropharyngeal cancer [45]. Furthermore, CACNA1A has also been shown to have a
high promoter methylation status in ovarian clear cell adenocarcinoma [46]. Methylation
of CACNA1A is also associated with triple-negative breast cancer [47]. The aforemen-
tioned epigenetic associations of CACNA1A support the gene’s involvement in epigenetics
of tumorogenesis. Interestingly, a previous study demonstrated that innervation of the
uterus is involved in multiple pathophysiological processes and suggests that autonomic
innervations together with interstitial telocytes are involved in the microenvironmental
imbalance of UL [48]. Moreover, the difference in adrenergic and cholinergic innervation
between normal myometrium and fibroid tumors demonstrates the pivotal role of the
neuronal component in the formation of UL [48]. These findings are further supported by
the unique subset of genes identified by the present study. Subsequently, in order to further
address and identify additional genetic–epigenetic landmarks involved in the formation of
UL, we integrated a previously published genome-wide association meta-analysis sum-
mary [18] with identified gene regions ranging ±100 kb from the genes. We selected the
most significant SNPs in these regions and extracted four near gene variants (rs9906819,
rs817758, rs77571733 and rs139711611) and one intron variant rs112605945 harboring in
CACNA1A. None of the five variants was previously mentioned to be associated with
any phenotype. Using HaploReg [34], we assessed the potential interplay between these
variants and epigenetic landmarks. All five variants were listed at epigenetic chromatin
state marks predicting enhancer and promoter histone modification. SNPs rs9906819 and
rs139711611 were also listed as genic enhancers. Moreover, rs9906819, rs817758, rs77571733
and rs112605945 were flagged as altering a putative transcription factor binding motif.
Additionally, rs9906819, rs139711611 and rs112605945 were listed at a DNase hypersensi-
tivity chromatin structure. By establishing global chromatin states, histone modifications
influence gene expression [49]. Histone residues can be acetylated or methylated [50], and
acetylation is considered as a hallmark of active transcription [51]. Thus, the locations
of the selected variants may help to elucidate the upregulation and dysregulation of the
selected genes in UL tissue. In silico functional analysis using HaploReg clearly showed
that the locations of the selected SNPs and corresponding effect alleles may influence the
expression of the aforementioned genes. Moreover, these findings warrant a chromatin
immunoprecipitation (ChIP) assay, as they are listed at specific chromatin states, protein
binding sites and regulatory motifs. We hypothesize that the effect alleles of the selected
variants may cause histone modifications in favor of upregulation of nearby genes and
may additionally alter transcriptions binding motifs, promoting gene expression and thus
the formation of the fibroid tumors. However, the role of the synaptic signaling genes in
the biology of UL must be further elucidated. We believe that integration of independent
studies and -omics may help to identify new signals, which are otherwise masked due to
strong statistics signals obtained through homogenous sampling.

5. Conclusions

In summary, the present study identified a unique subgroup of dysregulated synaptic
signaling genes in the biology of UL, adding to the complexity of the tumor biology. These
findings may increase our understanding of the broad molecular interplay of signaling
pathways and neuronal components in the formation of UL and further support epigenetic
regulation as an important mechanism of uterine leiomyoma disease pathogenesis.
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